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Abstract. Software product lines (SPL) advocates the development of 

applications by reusing shared software assets across a set of related products. 

Current approaches to the derivation of products from a product line focuses on 

handling the commonalities and variabilities of the shared software assets. 

These approaches have failed to consider the early phases of product derivation. 

In this paper we report on how we compared both industrial and academic 

approaches to the establishment of a product derivation project. Based on this 

research and our experiences, we have identified key activities and important 

issues that should be considered when establishing a product derivation project.  
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1. Introduction 

1.1 Software Product Lines 

 

“A Software Product Line (SPL) is a set of software-intensive systems that share a 

common, managed set of features satisfying the specific needs of a particular market 

segment or mission and that are developed from a common set of core assets in a 

prescribed way” [1]. The SPL approach makes a distinction between domain 

engineering, where a common platform for an arbitrary number of products is 

designed and implemented, and application engineering, where a product is derived 

based on the platform components [2]. The separation of SPL into domain 

engineering and application engineering allows the development of software artefacts 

which are shared among all the products within that domain. These shared artefacts 

become separate entities in their own right, subscribing to providing shared 

functionality across multiple products.  



During application engineering, individual products are constructed from the 

product line to fulfil the requirements of a particular customer or market. The 

products are built (re-)using a number of shared software artefacts – often called core 

assets – created during domain engineering. The process of creating these individual 

products using the platform artefacts is known as product derivation. 

1.2 Product Derivation 

 

Product Derivation is the process of constructing a product from a Software Product 

Line (SPL) [3]. The underlying assumption of product derivation is that “the 

investments required for building the reusable assets during domain engineering are 

outweighed by the benefits of rapid derivation of individual products” [3]. This 

assumption might not hold if inefficient derivation practices diminish the expected 

gains. 

A number of publications discuss the difficulties associated with product 

derivation. Hotz et al. [4] describe the process as “slow and error prone even if no 

new development is involved”. Griss [5] identifies the inherent complexity and the 

coordination required in the derivation process by stating that “…as a product is 

defined by selecting a group of features, a carefully coordinated and complicated 

mixture of parts of different components are involved”. Therefore, as Deelstra et 

al. [3] point out: the derivation of individual products from shared software assets is 

still a time-consuming and expensive activity in many organisations. The authors state 

that “there is a lack of methodological support for application engineering and, 

consequently, organizations fail to exploit the full benefits of software product 

families.” “Guidance and support are needed to increase efficiency and to deal with 

the complexity of product derivation” [6]. As a means of addressing this imbalance, 

we are investigating the practices and issues surrounding the initial stage of the 

product derivation process, a stage we refer to as pre-derivation.  

1.3 Contribution 

Comparing existing product derivation approaches that consider pre-derivation allows 

the definition of important issues to be addressed and key activities that should be 

supported. The observations, which are reported in this paper, should be of interest to 

both researchers and industry practitioners alike.   

The remainder of this paper is organised as follows: Section 2 discusses related 

work. Section 3, describes our research approach. In Section 4, based on our 

experiences we define key activities for product derivation preparation. In Section 5 

we present important issues to be considered when initiating a product derivation 

project. We conclude the paper with a summary and an outlook on future work in 

Section 6. 



2. Background 

Several approaches with pre-derivation facets have been proposed. Deelstra et al. [3] 

present a product derivation approach developed based on two industrial case studies. 

This work presents a framework of terminology and concepts for product derivation. 

The framework focuses on product configuration and is a high level attempt at 

providing the methodological support that Deelstra et al. [7] agree is required for 

product derivation. Deelstra’s approach suggests that requirements which cannot be 

accommodated by existing assets are handled by product-specific adaptation or 

reactive evolution. Parts of the derivation framework have been implemented in a 

research tool called COVAMOF [8], a variability modelling framework which 

purports to solve the product derivation problems associated with dependencies. 

McGregor [9] introduces the production plan, which prescribes how products are 

produced from platform assets. The product plan facilitates the passing of knowledge 

between the platform developers and the product developers. McGregor [10] also 

provides an overview of technologies and approaches to automate product derivation. 

Rabiser et al. [6] present an approach for supporting product derivation using 

feature specifications. The approach emphasises supporting the requirements 

acquisition and management mechanism through the use of variability models.  

However, despite the above approaches, comparably few publications focus on the 

early stages of product derivation such as requirements management and project 

initiation. Clements and Northrop [11] describe the role of requirements engineering 

when deriving a product. Halmans and Pohl [12, 13] describe a use-case-driven 

method to communicate the variability to the customers and to capture requirements. 

These different approaches have been developed with different goals, for different 

purposes, and in different domains. Some are intended to provide a (process) 

framework for product derivation [3, 14, 15], and others focus on tool-support [8]. 

Our research into pre-derivation has been influenced by these existing approaches. 

The key activities and important issues we derive in Section 4 and 5 therefore also 

partly reflect this previous work.  

3. Research Approach 

The preparatory stage of this research involved reviewing existing SPL whitepapers, 

product derivation papers and software process improvement (SPI) practices. The 

research aimed to identify the fundamental practices of pre-derivation, including 

available empirical evidence on the topic – scientific as well as anecdotal. The initial 

results were further developed and assessed through a series of iterative workshops 

over a four month period. Evidence and feedback from SPL practitioners and 

researchers was collected from these organised workshops.  

For the case study, we collected data on the product derivation practices of a major 

supplier of automotive systems. The systems produced consist of both hardware (such 

as processors, sensors, connectors, and housing) and software. Prior to an on-site visit 

of the case study company, we had access to internal company documentation. These 

documents included information on product derivation practices within a particular 



business unit, organisational structure of the company’s teams and information on 

various derivation techniques applied within the company. 

For the onsite visit to the company, we organised a two day workshop. During the 

workshop we presented our preliminary findings on the company’s derivation 

practices and used these initial findings to drive the workshop discussion. In total 

three researchers facilitated the running of the workshop. 

Our research was further developed through a six month visit to LASSY lab1; 

where our model of product derivation activities and FIDJI [16] were mapped. FIDJI 

is a flexible product derivation process which forms part of a model-driven SPL 

development methodology. Mapping our research to FIDJI provided academic 

validation.  

We conducted a collaboration project with Doppler Laboratory2 where we 

investigated the application of their DOPLER
UCon

 [6] approach to product derivation 

which was developed in conjunction with Siemens VAI. We investigated the issues 

and activities observed within Siemens VAI and our research to date. This paper 

builds on the results from that collaboration [17]. 

4. Pre-Derivation: Key Activities  

From our research, we have identified that the following preparatory steps need to be 

conducted in a product derivation project: 

•  Requirements Management; 

•  Identify Starting Point for Derivation; 

•  Map Customer Requirements to Platform Features; 

•  Customer Negotiation; 

•  Create Product Specific Requirements; 

•  Identify Role and Task Structures; 

•  Plan the Project; 

•  Prepare Guidance for Decision Makers. 

 

4.1 Requirements Management. We identified the need for a more sophisticated 

requirements management process when dealing with large distributed SPL teams, 

particularly within the case study company. Customer requirements are translated 

into the internal organizational language. This prevents terminology confusion and 

customer-specific description of assets. This has to be done in close collaboration 

with the customer. These requirements are processed and augmented through various 

tasks where requirements are analysed for reuse potential and then assigned to 

responsible disciplines. 

 
4.2 Identify Starting Point for Derivation. A “base configuration” may be chosen as 

a starting point for derivation, i.e., from a set of previous product configurations. 

Similar customers often have comparable requirements and experiences from past 

                                                           
1 Laboratory of Advanced Software Systems (LASSY), University of Luxembourg 
2 Christian Doppler Lab. for Automated SW Eng., Johannes Kepler University Linz, Austria 



projects are captured in these product configurations. Reusing previous product 

configurations can speed up the derivation process. If an existing product 

configuration can not be used for the “base configuration”, a new one is derived from 

a subset of the overall platform architecture.  

 

4.3 Customer Negotiation. Customer requirements are mapped to the base 

configuration. Requirements which cannot be satisfied by existing assets have to be 

negotiated with the customer. Effort estimation issues can make customer negotiation 

difficult. The trade-off here is to meet as many of the customer’s needs as possible 

while retaining the profitability of the platform assets for the whole product line. 

In the case study we observed how, through coverage analysis, the project manager 

identifies which requirements are covered by the platform. If specific requirements 

cannot be completely satisfied, they are broken into smaller requirements and then 

mapped to specific components. 

 

4.4 Create the Product Specific Requirements.  The satisfied customer 

requirements and the negotiated customer requirements are merged to form the 

product specific requirements. This could also include the restructuring of the 

customer requirements specification into the internal organisation format.  

We observed how forming the Product Specific Requirements can also include 

allocating requirements to relevant disciplines. The requirements allocation is often 

held in separate requirements documents, such as the platform software requirements 

specification and the customer hardware requirements specification. 

 

4.5 Identify Role and Task Structures. The role and task structures for the product 

derivation project have to be defined. Through allocating role and task structures, 

responsibility for resolving any remaining variability in product derivation to fulfill 

the product requirements is defined. This is very important as it provides different 

views on variability for different people involved in product derivation and helps to 

lower the complexity of large decision spaces (c.f. Section 5.2). 

 

4.6 Plan the Project. We observed two types of project planning. Manual non-tool 

supported product derivation projects tended to have ‘big bang’ releases after 

substantial development periods. Automated approaches appeared to be more iterative 

in nature, as each new version of the product required less effort then the manual 

approaches. 

 
4.7 Prepare Guidance for Decision Makers. Preparing for derivation also means to 

create guidance for decision-makers. Remaining variability must be explained to deal 

with complexity issues in representing product line variability. Guidance is essential, 

especially for sales people, who are confronted with many – often technical – 

decisions [18]. 



5 Pre-Derivation Issues 

Pre-derivation issues were also identified during the course of this this research: 

•  Customer Relationship; 

•  Mapping customer requirements to platform features is often (too) complex; 

•  Use of Documentation; 

•  Introduction of Iterative Development. 

 

5.1 Customer Relationship. Customer involvement in product derivation is typically 

portrayed as a combative relationship involving negotiation between separate parties 

with contrasting motivations. This is in contrast to customer relationship approaches 

we have observed.  

The customer can play a very active and positive role in the derivation process. It 

can be a collaborative role, where the customer makes design decisions alongside the 

derivation team. Good communication where the limitations and opportunities 

provided by the product line feature set are clearly explained, can nurture a 

collaborative relationship with the customer.  

 
5.2 Mapping customer requirements to platform features is often (too) complex. 
Poor requirements elicitation practices can lead to poorly specified requirements. The 

specification of incompatible customer requirements and undocumented dependencies 

can be costly at a later stage in the product derivation process. The size and 

complexity of variability models for large-scale product lines exasperates the issue, as 

difficulties in communicating the variability provided by the product line may lead to 

unrealistic customer requirements. 

In industrial contexts, where there are hundreds or even thousands of requirements, 

the cognitive complexity makes mapping customer requirements to platform features 

difficult. As a result, situations can develop where the product team cannot 

distinguish between requirements which are mapped or not. To compensate, product 

teams perform extensive verification which is expensive and time-consuming. 

 
5.3 Use of Documentation. Different organizations have different attitudes towards 

documentation. Organizations with a documentation culture tend to use it in response 

to other problems. For instance, in communicating information across large 

distributed teams, such organizations tend to be overly-reliant on documentation.  An 

organization’s documentation often becomes bloated as teams attempt to capture too 

much. Such overly detailed documentation decreases traceability of relevant 

information and results in failure to correctly identify artefacts for reuse especially in 

team sizes where the transfer of tacit knowledge is prohibitive.  

Alternatively, organizations may rely on tacit knowledge and do not have practices 

of knowledge externalization. For instance, during product assembly, product teams 

often remark that the selected components are incompatible. This is due to the fact 

that all compatibility aspects between these components are not externalized.  

 
5.4 Project Planning: Iterative Development. The identification of product 

derivation iterations is a key aspect of deriving high quality, customer satisfying 



products. According to Carbon et al. [19] with a SPL, an organisation is capable of 

producing a first version of a product for a specific customer, including the core 

functionality, quicker than other software development methods. Because of the 

approved quality of the reusable assets, the customer can get a high quality product 

that can be used and evaluated to give feedback 

During the course of this research we observed that for iteration management, 

product teams could benefit from applying the planning game practice from the XP 

methodology for gathering and negotiating product specific requirements. In the 

planning game, a customer priorities the requirements and the developers estimate the 

effort required to satisfy those requirements. The end dates of iterations are specified 

and requirements are allocated to specific iterations based on their priority [19].  

6. Conclusions and Future Work 

In this paper, we have presented the results of our research into the early stages of 

product derivation. We compared both industrial and academic approaches to the 

establishment of a product derivation project. For academia, our results provide 

structure to an important phase of product derivation. Our work points to areas of 

uncertainty and helps to identify remaining challenges in preparing for derivation. 

Such a roadmap encourages the insertion of those pieces that may be missing, or the 

extra detail that may be needed. 

For industry, it is envisaged that our results will help the advancement of product 

derivation practices. It will assist organisations by specifying the activities to be 

supported when initiating product derivation and highlight key issues to be 

considered. 

In future work, we plan to continue case study research for further elaboration on 

activities and issues to be considered. Based on these results, we will define a 

framework of activities for pre-derivation. 

7. Acknowledgements 

This work is partially funded by IRCSET under grant no. RS/06/167 and by Science 

Foundation Ireland under grant no. 03/CE2/I303_1.  

References 

1. Kurmann, R.: Agile SPL-SCM Agile Software Product Line Configuration and 

Release Management. 1st International Workshop on Agile Product Line Engineering 

(APLE'06). Maryland, USA (2006) 

2. Trinidad, P., Benavides, D., Ruiz-Cortes, A., Segura, S.: Explanations for Agile 

Feature Models. 1st International Workshop on Agile Product Line Engineering (APLE'06), 

Maryland, USA (2006) 



3. Deelstra, S., Sinnema, M., Bosch, J.: Product Derivation in Software Product 

Families: A Case Study. J. Syst. Softw., Vol. 74. Elsevier Science Inc., New York, NY, USA 

(2005) 173-194 

4. Hotz, L., Gunter, A., Krebs, T.: A Knowledge-based Product Derivation Process and 

some Ideas how to Integrate Product Development. Proc. of Software Variability Management 

Workshop, Groningen, The Netherlands (2003) 

5. Griss, M.L.: Implementing Product-Line Features with Component Reuse. Springer-

Verlag, London, UK (2000) 

6. Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting Product Derivation by 

Adapting and Augmenting Variability Models. 11th International Software Product Line 

Conference, Kyoto, Japan (2007) 

7. Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families: 

Problems and Issues During Product Derivation. Software Product Lines, Third International 

Conference. Springer, Boston, MA, USA (2004) 

8. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Modeling Dependencies in Product 

Families with COVAMOF. 13th Annual IEEE International Conference and Workshop on the 

Engineering of Computer Based Systems (ECBS 2006), Potsdam, Germany (2006) 

9. Chastek, G., McGregor, J.D.: Guidelines for Developing a Product Line Production 

Plan. Product Line Practice Initiative. Software Engineering Institute, Pittsburgh, PA (2002) 

10. McGregor, J.D.: Preparing for Automated Derivation of Products in a Software 

Product Line. Software Engineering Institute, (2005) 

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001) 

12. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family 

to Customers. Informatik - Forschung und Entwicklung 18 (2003) 113-131 

13. Pohl, K., Böckle, G., v. d. Linden, F.: Software Product Line Engineering: 

Foundations, Principles, and Techniques. Springer, Heidelberg (2005) 

14. Czarnecki, K., Helson, S., Eisenecker, U.W.: Staged configuration using feature 

models. Proc. of the 3rd International Software Product Line Conference (SPLC 2004). 

Springer Berlin Heidelberg, Boston, MA, USA (2004) 266-283 

15. Kang , K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented 

Domain Analysis (FODA) Feasibility Study. Carnegie-Mellon University Software 

Engineering Institute, Pittsburgh, PA, USA (1990) 

16. Perrouin, G., Klein, J., Guelfi, N., Jezequel, J.M.: Reconciling Automation and 

Flexibility in Product Derivation. Software Product Line Conference, 2008. SPLC '08. 12th 

International (2008) 339-348 

17. O’Leary, P., Rabiser, R., Richardson, I., Thiel, S.: Important Issues and Key 

Activities in Product Derivation: Experiences from Two Independent Research Projects 

(awaiting notification of acceptance). Software Product Line Conference, San Francisco, CA, 

USA (2009) 

18. Rabiser, R., Dhungana, D., Grünbacher, P., Lehner, K., Federspiel, C.: Product 

configuration support for nontechnicians: Customer-centered software product-line 

engineering. IEEE Intelligent Systems 22 (2007) 85-87 

19. Carbon, R., Lindvall, M., Muthig, D., Costa, P.: Integrating Product Line Engineering 

and Agile Methods: Flexible Design Up-front vs. Incremental Design. 1st International 

Workshop on Agile Product Line Engineering (APLE'06), Maryland, USA (2006) 

 

 


