
J Physiol 576.3 (2006) pp 689–694 689

SYMPOS IUM REPORT

Organization and function of ICC in the urinary tract
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ICC are found in both the upper and lower urinary tract. They are not found in the ureter itself

but are confined to the lamina propria of the renal pelvis and pelvi-calyceal junction. They do

not appear to have a primary pacemaker role (this is ascribed to atypical smooth muscle cells

in the same location) but rather conduct and amplify the pacemaker signals generated by the

atypical smooth muscle cells. In the bladder, ICC are widely distributed in the sub-urothelial

region, in the lamina propria and at the margins of the detrusor smooth muscle bundles. Again

they appear not to have a pacemaking role and such evidence as there is would suggest that they

have a role in the modulation of signal transduction. The strongest evidence that ICC in the

urinary tract act as pacemakers comes from studies of those in the urethra. Isolated ICC show

regular spontaneous depolarizations in current clamp which resemble very closely the slow waves

recorded from intact tissue. In voltage clamp they show abundant calcium-activated chloride

current and spontaneous transient inward currents which can be blocked by chloride channel

blockers. However, their role in the modulation of urethral tone has yet to be fully elucidated.
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The urinary tract has some affinity with the lower gastro-
intestinal tract in that it could be viewed as the fluid waste
disposal system by analogy with the solid waste disposal
system that is the lower gastrointestinal tract. Thus the
kidney decides how much fluid and solute to retain and
what to reject. The rejected fluid must then be propelled
by the ureter to the storage depot (the bladder) where
it is retained until it can be emptied when a suitable
occasion presents itself. Thus the ureter must be capable of
efficient peristalsis which is responsive to the rate of urine
production. The bladder must be sufficiently compliant
to accommodate an adequate volume increase without
intravesicular pressure rising to a level where it would
inhibit urine flow from the kidney. Lastly the urethra is
the guardian of continence and as such makes the final
decision as to whether urine is voided or retained in the
bladder. What these organs have in common is that, under-
lying their apparently very different functions, they all have
a basic spontaneous electrical rhythm. In the case of the
ureter the role of a pacemaker is rather obvious in that
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it initiates the propulsion of fluid from the renal calyx to
the bladder by means of well-coordinated peristaltic waves
that have their site of origin in the renal pelvis. It is less
obvious why the bladder, which acts as a storage organ
most of the time, and the urethra, which remains tonically
contracted most of the time, should have any need for
spontaneous electrical rhythm. Nevertheless it has been
known for a long time that activity recorded using external
(Orbeli & Brucke, 1910; Prosser et al. 1955) or intracellular
electrodes (Ursillo, 1961; Kuriyama et al. 1967; Creed,
1971; Creed et al. 1983; Hashitani et al. 1996; Bradley et al.
2004) shows rhythmic firing of action potential complexes
in all three organs. The purpose of the present review
is to explore the origins of this electrical activity and in
particular the possible role of ICC or ICC-like cells in its
generation or modulation.

Ureter

Electrical activity appears to arise in the most proximal
calyceal regions of the renal pelvis. This is not accompanied
by a significant contraction since this region is only weakly
contractile due to the paucity of smooth muscle cells. It is
only when the impulse is conducted to the ureter proper
that it initiates a vigorous contraction that is propagated
to the uretero-vesical junction as a peristaltic wave. The
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source of the electrical impulse has been extensively
studied by Lang and colleagues (Lang et al. 1998, 2001;
Klemm et al. 1999) and is the subject of several reviews by
these authors (Lang et al. 2002; Lang & Klemm, 2005).
Using intracellular recording and by injecting neuro-
biotin they identified spindle-shaped ‘pacemaker’ cells
in pelvi-calyceal junction and the proximal renal pelvis.
These were approximately 160 μm in length and fired
oscillations at a frequency of 8 min−1. Their morphology
was closer to that of smooth muscle cells than to typical
ICC and they were described as atypical smooth muscle
cells. These cells have not yet been studied in isolation
in voltage clamp so their detailed electrophysiology and
the nature of the pacemaking current have not been
described. In the lamina propria of the renal pelvis and
pelvi-calyceal junction a cell type similar to typical ICC
was found. They fired ‘intermediate’ action potentials at
a frequency of 3–4 min−1. These cells were not regarded
as the primary pacemaker but rather were thought
responsible for conducting and amplifying pacemaker
signals to initiate action potentials in smooth muscle
cells. The observation that c-kit expression is up-regulated
in the developing ureter prior to its ability to undergo
unidirectional contractions (David et al. 2005) and that
anti-c-kit antibodies inhibit peristaltic contractions would
suggest that these cells, even if they are not the primary
pacemakers, do play an important role in normal ureteral
rhythmic activity.

Bladder

The bladder has two essential functions: it must store
the urine that is continually produced by the kidney
without its pressure rising above the kidney filtration

Figure 1. Flow through a cannulated rat urethra that is
connected to a constant pressure reservoir of Krebs solution
Under resting conditions flow was about 20% of maximum.
Stimulation of the inhibitory nerves caused the urethra to relax and
flow to exceed 80% of maximum. When 30 μM wortmanin was
added, flow increased almost to the level seen when the inhibitory
nerves were stimulated.

pressure and it must be able to empty quickly when
required. However, the bladder is not simply a compliant
bag but is rather a spontaneously active muscular organ.
After voiding, spontaneous contractions are minimal and
filling occurs with little increase in pressure but against
a background of small phasic increases in pressure. These
rhythmic pressure oscillations are myogenic resulting from
poorly coordinated contractions which arise at many
different sites throughout the bladder. As filling proceeds
the pressure waves increase in magnitude and eventually
cause the urge to micturate. The bladder must at this
point change from an ill-coordinated set of oscillators
which provide background tone to a well-coordinated
propulsive system capable of efficient emptying. How both
of these functions are controlled is not yet fully understood
but it is clear that there must be many pacemaking loci
which generate the fundamental rhythmic activity. ICC
would be obvious candidates for such a role and there
is ample evidence of their presence in the sub-urothelial
region, in the lamina propria and on the peripheries
of the muscle bundles of the detrusor (Sui et al. 2002;
Wiseman et al. 2003; Davidson & McCloskey, 2005).
These authors all speculated that the different types of
ICC (or myofibroblasts), which had been identified using
morphological techniques, were potential pacemaker cells
but they presented no convincing evidence in support of
these speculations. In a careful study using microelectrodes
and intracellular calcium imaging, Hashitani et al. (2004)
could find no evidence of a pacemaking role for ICC in

Figure 2. Whole mount of rabbit urethra labelled with anti-Kit
antibody
ICC are evident as irregular elongated cells of about 80–100 μm in
length between and surrounding the smooth muscle bundles (the
latter are evident because of their weak autofluoresence).
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the guinea-pig bladder. The latter authors suggested that
spontaneous excitation in the bladder might be initiated
by detrusor smooth muscle cells themselves with the main
role of ICC being to modulate the signal transmission.
Clearly we are not yet in possession of enough detailed
information to define the role of ICC in the bladder.

Figure 3. Contrasting electrical properties
of interstitial and smooth muscle cells
Interstitial cells showed regular ‘slow-wave’
depolarizations in current clamp (A) while
smooth muscle cells were quiescent, although
they could produce an action potential in
response to depolarizing current (B). Under
voltage clamp, interstitial cells exhibited both
L-type calcium currents and calcium-activated
chloride currents (C) while the smooth muscle
cells showed only L-type calcium currents (D).
E and F show summaries of the currents
measured in 26 interstitial and 21 smooth
muscle cells (redrawn from Sergeant et al.
2000).

Urethra

The mechanism by which urinary continence is achieved
is complex and has at least three components: (1)
external pressure on the urethra due to contraction of the
abdominal and pelvic muscles; (2) neurogenic tone due to
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sustained contraction of both smooth and striated muscle
in response to excitation of cholinergic and noradrenergic
nerves; and (3) myogenic tone due to sustained contraction
of urethral smooth muscle. While all of these undoubtedly
play a part, it is likely that contraction of striated muscle
is more important in the increase in urethral tone that
accompanies increases in bladder pressure secondary to
coughing or other sudden increases in intra-abdominal
pressure than in the long-term maintenance of tone. On
the other hand, smooth muscle in the urethral wall is better
adapted to this latter task since it can achieve it at relatively
low energy cost.

There is no doubt that the smooth muscle of the urethra
is capable of generating significant tone in the absence
of neural input. We have recently demonstrated that an
isolated cannulated rat urethra can maintain sufficient
tone to limit flow from a reservoir (held at a constant
pressure of 20 cmH2O) to less than 25% of the flow
encountered when the urethra is maximally dilated
(Fig. 1). Under these conditions nerve and striated muscle
contributions are likely to be minimal so tone is largely
due to sustained contraction of the intramural smooth
muscle. That this is so can be demonstrated by applying
wortmanin (a myosin light chain kinase inhibitor) which
has the effect of fully dilating the urethra within 30 min.
Prior to wortmanin application, electrical field stimulation
of the inhibitory nerves (0.3 ms pulse width at 0.5 Hz in the
presence of atropine and guanethidine) caused a similar
increase in flow.

The mechanism of myogenic tone in the urethra is still
not fully understood. It has been assumed in the past that
tone was due to steady influx of Ca2+ through L-type
channels during a window current, a mechanism similar
to that proposed for arterial smooth muscle (Smirnov
& Aaronson, 1992; Fleishmann et al. 1994). However, a
number of recent studies have suggested that urethral tone
is associated with the generation of spontaneous transient
depolarizations and large regularly occurring slow waves
(Hashitani et al. 1996; Hashitani & Edwards, 1999). These
events appear to be due to spontaneous release of calcium
from intracellular stores and this in turn activates a
calcium-activated chloride current which provides the
depolarizing current responsible for slow-wave activation.
The above studies were carried out by impaling the
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Figure 4. The effect of anthracene-9-carboxcylic
acid on flow through the isolated urethra
A-9-C (1 μM), like wortmanin, caused an increase in
flow almost equal to the effect of stimulation of the
inhibitory nerves.

urethras of rabbits or guinea-pigs with sharp electrodes
so it was not possible to determine the exact source of
the electrical activity that was being measured. Hashitani
et al. (1996) drew attention to the similarities of the
slow-wave activity in urethra to that of the gastrointestinal
tract, where spontaneous activity originates in specialized
pacemaker cells or interstitial cells of Cajal (ICC). They
noted that no such cells had been found in urethra.
However, in the same year, Smet et al. (1996) demonstrated
that the human bladder and urethra had interstitial cells
which bore a striking resemblance to the ICC in the
digestive tract (Thuneberg, 1982; Sanders, 1996).

Sergeant et al. (2000) reported that collagenase dispersal
of strips of rabbit urethra yielded, in addition to
normal spindle-shaped smooth muscle cells, a small
proportion of branched cells which resembled the inter-
stitial cells of Cajal dispersed from canine colon (Langton
et al. 1989). These were clearly distinguishable from
smooth muscle in their appearance under the phase
contrast microscope, their immunohistochemistry and
ultrastructure. They had abundant vimentin filaments
but no myosin, a discontinuous basal lamina, sparse
rough endoplasmic reticulum, many mitochondria and
well-developed smooth endoplasmic reticulum. At the
time it was reported that the cells were not c-kit positive
but with improved procedures it has recently been
demonstrated that they are. Figure 2 shows a whole mount
preparation of rabbit proximal urethra stained with Kit
antibody. ICC are evident as irregular elongated cells of
about 80–100 μm in length between and surrounding the
smooth muscle bundles (the latter are evident because of
their weak autofluoresence). ICC generated spontaneous
depolarizations, whereas isolated SMCs from the same
preparation were electrically quiescent, but could respond
to injection of depolarizing current by producing action
potentials (Fig. 3, taken from Sergeant et al. 2000). Clues
to the mechanisms underlying these different responses
were provided by the results of voltage clamp studies,
which showed that ICC possessed an abundance of
Ca2+-activated chloride current (IClCa) whereas SMCs
in comparison did not. Moreover, when ICC were
held at −60 mV they generated spontaneous transient
inward currents (STICs; Sergeant et al. 2000) which were
notably similar to pacemaker currents recorded from
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ICC in the gastrointestinal tract (Thomsen et al. 1998;
Koh et al. 1998). This property, coupled with other
fundamental structural and morphological similarities,
opens up the intriguing possibility that urethral
interstitial cells serve a similar purpose and are therefore
key determinants of urethral tone. Our hypothesis
therefore is that tone in the urethra is initiated by the
oscillatory release of calcium from intracellular stores
in the interstitial cells. This, in turn, causes activation
of calcium-activated chloride channels resulting in the
spontaneous depolarizations referred to above. These, in
turn, activate in an asynchronous fashion the smooth
muscle bundles to which they are electrically coupled to
produce a sustained tone. Recent experiments with the
isolated cannulated urethra preparation lend some
support to this idea (Fig. 4). Anthracene-9-carboxylic acid
(which is known to block Ca2+-activated chloride channels
and spontaneous depolarizations in the isolated interstitial
cells) was almost as effective as wortmanin in relaxing
urethral tone.

Conclusions

The urinary tract shows evidence of rhythmical electrical
and mechanical activity at all levels. The purpose of this
is evident in the ureter where it is important for pumping
urine but rather less so in the bladder and in the urethra.
It would seem that the bladder’s ability to expand in
a controlled way is dependent on the tone generated
by asynchronous firing of many pacemakers. Clearly if
these pacemakers could then be coordinated (under neural
influence) one has the basis of an efficient emptying
system. The urethra, on the other hand, exists only to
produce tone and this may also occur by asynchronous
firing of many pacemakers.
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