Sourcing of sustainable groundwater supplies: An assessment of a weathered crystalline rock aquifer system, southwest-central Uganda

Sam Kagwisagye

Supervisors: Suzanne Linnane (DKIT), Eleanor Jennings (DKIT), Bruce Misstear (TCD) and Albert Rugumayo (MUK).

Higher Education Authority An tÚdarás um Ard-Oideachas

Research overview-Key words

> Sustainability issues

> Remember \approx 79 percent of 27.6 million people in rural Uganda depend on groundwater source types and most of them shallow.

Groundwater quantity-Introduction

≻ Aim

□ The study is to calculate a water balance for a weathered crystalline rock aquifer system under current and future climatic conditions

Specific objectives

□ To install field instrumentation and undertake monitoring

□ To select an appropriate hydrological model for use

 $\hfill\square$ To compare the use of different evapotranspiration calculation methods on water

balance outputs under current climatic conditions

□ To assess the sensitivity of catchment hydrology to future temperature and

rainfall variations under projected climatic change

Groundwater quantity-Study approach

Catchment location

Conceptual model

Solution Soil Moisture Balance Model $SW_t = SW_0 + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_a - w_{seep} - Q_{qw})$

Groundwater quantity-Model application

GWLF hydrology Model

Groundwater quantity-SWAT and data requirements

➢ DEM

Soils map and physical properties

► Land cover/use map and basin slope

Stations location, climatic and weather generator data

Groundwater quantity-Catchment delineation

SWAT Model (Area-19 Km² over 24 sub-basins)

□ Sensitivity analysis based on OAT and LH

□ Calibration against stream discharge

Groundwater quantity-Preliminary findings

> Comparison of actual evapotranspiration outputs

> AET outputs vary depending on the method of calculation

Groundwater quantity-Preliminary findings

Rainfall (mm/day)

Groundwater quantity-Preliminary findings

Water balance (SB's 4 and 10 as examples)

□ Hargreaves method- AET rates (78-86 percent of incoming rainfall) resulting in low recharge rates (8 percent of in coming rainfall)

□ Penman-Montienth method–AET rates (53-60 percent of in coming rainfall)

resulting in higher recharge rates (15-22 percent of in coming rainfall)

> Impacts on Makondo hydrology

Groundwater quality-Introduction

≻ Aim

☐ The study is to assess the community water needs and to evaluate existing groundwater sources in Makondo parish

Specific objectives

□ To establish baseline data on community water needs in selected villages

□ To locate and determine the types of pollutants to groundwater sources in the selected villages

□ To assess the influences of rainfall on pollutant loadings into the shallow groundwater

□ To assess specific risk factors on contamination of various source types and develop models for contamination.

Groundwater quality-Introduction

Study location

> Methods

□ Field studies

Questionnaire study

□ Literature review

□ Field tests and measurements

Laboratory analyses

> Study extent

□ Eight parishes: 35 water sources

Groundwater quality-Key baseline data

 \Box Water chemistry meets statutory guideline requirements except for elevated levels of Mn²⁺and Fe²⁺ in 11% and 46% of water sources respectively.

Groundwater quality-Contamination models

Effect of changing seasons on water quality

□ How do variations in groundwater levels affect water quality at sources?

 \triangleright And finally, different risk factors will be related to water quality at various water sources to assess any relationship.

Contribution of WP1 to wider WIL

➤ Specifically, W1 project is informing WIL project on key sustainability issues of water quantity and quality

□ Improved accessibility & availability of clean water helps in meeting the minimum quantity required for health & hygiene

□ Improved health leads to saving on medical expenses, a better productive labour force and hence, breaking the poverty circle

□ Improved access & availability of water reduces the burden on women & children who are responsible for fetching water in rural communities of Uganda

Impact of WP1 on rural communities

- A guideline document outlining siting, design, construction and maintenance of new sources shall be produced which will lead to:
- Communities influencing decisions on development of groundwater sources in their areas
- Better appreciation of water quality issues in respect to water source selection , treatment of drinking water & protection of sources
- Planning adaptation measures during water scarcity under changing climatic conditions

Contribution of WP1 to the knowledge on sustainable water management in Uganda

> This research pulls together key groundwater aspects of a crystalline aquifer system

with a view to informing future groundwater sourcing and developments.

Acknowledgements

Irish Aid
WIL
MUK
DKIT
TCD
MMM Sisters
Makondo community
Fellow PhD students

