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Abstract — Traditional software configuration management tools employ existing Diff
tools to identify the difference between intermediate versions of a document such as a
source code file. When any new data structure arises, developers have to create a version
control tool for this specific structure. This paper introduces a universal approach to
the creation of a version control tool for artifacts of any structured data. The approach
taken is to develop a difference calculus for arbitrary objects based on their types.
This calculus is built on a type system in which types are nested. By constructing types
recursively, more structured data can be modelled and the difference between successive
versions of objects can be identified.
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I Introduction

Software Configuration Management (SCM) sys-
tems are used to store and track the changes made
to intermediate versions of general text documents
(in particular source code [1, 2]) which arise dur-
ing the development of a software application, and
to identify, patch and/or merge the differences be-
tween these versions[3].

Traditionally, SCM systems rely on existing diff
tools which are limited in their scope [4], for ex-
ample, the Revision Control System (RCS) [5] is
built on the UNIX diff utility. Some other diff
tools have been developed for other common data
structures, such as XML files [6] or spreadsheet
files [7, 8]. However, regardless of the type of the
object being updated, changes take the form of a
deletion and/or an insertion. Therefore, a generic
version control tool could be developed to identify
the difference between objects of arbitrary data
structure.

Previous work has been done to detect changes
between hierarchically structured data by repre-
senting the source files as trees. [9] developed an
application, namely LaDiff, to identify and high-
light changes between two LATEX documents by
converting the input files to ordered trees. [10]
extended the above algorithm to detect changes

between unordered trees and therefore allow the
comparison of more data structures. The addition
of a new “copy” operation in the edit set facilitates
detection of more meaningful changes. Lempsink
et al., in their paper “Type-safe diff for families of
data types” [11], implemented a generic diff and
patch using a functional programming language in
which they defined a Diff type as a set of edit oper-
ations. The investigation started by applying the
diff and patch algorithms to lists and trees respec-
tively, a generic diff algorithm based on converting
any data structure to a tree was then developed.

Our approach is different, instead of converting
structured data to a tree strucure, we create a dif-
ference calculus based on a type system T . Types
in this type system have different structures and
they are constructed recursively. The difference
between objects of the same type is determined by
the changes to the objects’ components.

In this paper, the difference calculus and the
type system T are described in section II. The
difference calculus is composed of types in this
type system and operators for these types. The
similarity measure operator which is used to
determine the similarity between two objects of
the same type in this type system T is defined and
discussed in section III. The directed difference



operator which is defined to identify the difference
between two objects of the same type is presented
in section IV. Section V presents an application
by applying the difference calculus to graphs of
maps. Finally, section VI is the conclusion.

II Difference Calculus

a) Type System

The investigation of our approach starts with the
construction of a type system T containing prim-
itive and structured types. Structured types are
built recursively on primitive types P ∈ P and/or
structured types:

• Product types: T1 ××× . . . ××× Tn

• Sets: Set(T)

• Multisets: MSet(T)

• Lists: List(T)

• Mappings: S ⇒ T

Here S,T,T1 . . .Tn ∈ T denote any type in T . The
representation of any data structure reconstructed
in types of this type system T is a model of such
data structure. If the difference calculus work on
this new data type successfully, this data type will
become a new structured data type in this type
system, then it can be used by other data struc-
tures. Hence the type system can be extended by
adding more structured data types.

b) Differences and Difference Types

Difference Types are a mathematical model of dif-
ferences for the purpose of implementing effective
version control for artifacts. For the moment we
leave the structure of the underlying types aside.
We consider objects of any type T in the type sys-
tem T . To express that u is an artifact of type T,
we write for short u: T. Let u, v: T be intermediate
versions created in building an artifact.

A typed directed difference operator δT has been
defined to generate the difference between two ar-
tifacts of type T, and ΔT denotes the type of this
difference.

δT: T× T → ΔT

That means applying δT to u, v: T, yields their di-
rected difference, which is of type ΔT:

u, v: T � δT(u, v): ΔT (1)

For many structured data types, multiple pos-
sible interpretations exist for the actual difference
in values. Therefore an algorithmic solution re-
quires a selection criteria. We have choosen the
approach of “minimal difference” or “greatest pos-
sible similarity” to be such criteria. This leads to
the introduction of a similarity measure.

c) Similarity Measure

M = [0, 1], a closed interval of real number, de-
notes the type of similarity measure between two
artifacts, 0 indicates they are completely different
and 1 indicates they are equal. μT is the typed
measurement operator. By applying the measure-
ment operator to these two artifact of type T, a
value of type M is generated:

μT: T× T → M

The similarity measure between two artifacts,
u, v: T, which have been compared completely is
generated by applying μT to them:

u, v: T � μT(u, v): M (2)

However algorithmically it is often sufficient to
compare objects only to a certain degree. When
two objects over type T have not been completely
compared, the partial similarity measure, which is
denoted by M, can be interpreted as the type of
subintervals of [0,1], is generated by applying an
estimated similarity measurement operator μ̃T:

μ̃T: T× T → M

If u, v: T have not been completely compared, by
applying μ̃T to u and v, the partial similarity mea-
sure is generated:

u, v: T � μ̃T(u, v): M (3)

We can always assume that μT(u, v) ∈ μ̃T(u, v).
One could describe μ̃T(u, v) = [μ

T
(u, v), μT(u, v)]

in which μ
T
(u, v) denotes lower bound of μT(u, v)

and μT(u, v) denotes upper bound of μT(u, v)
1.

d) Difference Calculus

Clearly, if the directed difference between two ver-
sions of an artifact can be determined, it would
be useful to find a way of generating one version
by applying this difference to the other version.
To do this an additional operator, the application
operator, �T, needs to be defined:

�T: T×ΔT → T

If for some u, v: T, δT(u,v) can be determined, then
using �T this difference can be applied to u to
generate v:

u, v: T � v = u�T δT(u, v) (4)

A system of {T, ΔT, M, M, δT, μT, μ̃T, �T}T∈T
is called a difference calculus when it fulfills the
above (1), (2), (3) and (4).

1There are many ways of describing the difference be-
tween two artifacts. Each will result in a particular simi-
larity. We define the difference for structured types so as
to maximise the apparent similarity.



III Similarity Measure

In this section, the initial similarity measure is de-
fined across all types in the type system T . The
similarity measure of a structured data type is de-
termined from the similarity measure of types un-
derlying it.

a) Primitive Types

Primitive types P ∈ P have a decidable equality.
For the purpose of this study, primitive types are
viewed as having an atomic behaviour. The simi-
larity measure of objects of primitive types is either
1 or 0, depending on the object being equal or not.

Definition III.1

Let x, y: P be objects of type P. By applying
the typed similarity measurement operator μP

to them, the similarity measure between x, y is
defined as:

μP(x, y) =def

{
1 if x = y
0 otherwise

b) Product Types

A product type containing n elements is denoted
by T1××× . . .×××Tn. The similarity measure of objects
of type T1 ××× . . . ××× Tn is determined by the aver-
age of the similarity measures of the corresponding
components2.

Definition III.2

Let A,B: T1 ××× . . . ××× Tn be two objects of n-
tuple product type with A = (a1, a2, . . . , an) and
B = (b1, b2, . . . , bn). The similarity measure be-
tween A and B is defined by the average of the
similarity measures between correponding com-
ponents:

μ(T1×××. . .×××Tn)(A,B) =def

1

n
(μT1(a1, b1) + . . . + μTn(an, bn))

=
1

n

n∑
i=1

μTi
(ai, bi)

This can be extended to intervals by means of
standard interval arithmetic.

c) Sets

Set(T) denotes finite typed sets whose elements are
of type T. Let A: Set(T) be such a set, |A| denotes
the size of set A. Such a set structure has a boolean
membership (also called characteristic function).

2One could argue that a more realistic similarity mea-
sure would be the weighted average of similarities where
the weight is related to the “size” of objects. This will be
further investigated once experimental data are available.

To define the similarity measure of two sets in
general, all possible mappings between elements
have to be considered and the one with the maxi-
mum similarity measure would be choosen.

To compare the similarity measure of two sets
A and B, four cases need to be considered. The
first case is when A and B both are empty sets,
the similarity between them is 1. The second case
is when A is an empty set while B is a non-empty
set, the similarity measure is 0. The third case is
when A is a non-empty set while B is an empty set,
the similarity measure is also 0. The last case is
when A and B both are non-empty sets. In order
to identify the similarity measure between them,
maximal non-empty subsets X ⊆ A and Y ⊆ B
with |X| = |Y | = min(|A| , |B|) and one-to-one
mappings ϕ : X ↔ Y are considered.
In the last case, if A and B are same size sets,

X = A and Y = B, otherwise, the size of X or
Y is the smaller size set between A and B. In this
way, most similar elements pairs between A and B
are identified. Therefore the similarity measure
between two sets is defined below:

Definition III.3

Let A,B: Set(T) be sets whose elements are of
type T, when A and B both are non-empty sets,
non-empty subset X and Y , X ⊆ A, Y ⊆ B,
|X| = |Y | = min(|A| , |B|) and one-to-one map-
ping ϕ : X ↔ Y are considered.
The similarity measure, σmax, between non-

empty sets A and B is defined as the maximum
value of the average of the similarity measure
between subsets X and Y :

σmax(A,B) =def max
ϕ:X↔Y

X⊆A,Y⊆B
|X|=|Y |

⎛
⎝

∑
x∈X

2μT(x, ϕ(x))

|A|+ |B|

⎞
⎠

Therefore the similarity measure between two
sets is defined:

μSet(T)(A,B) =def⎧⎪⎪⎨
⎪⎪⎩

1 if A = ∅ and B = ∅
0 if A = ∅ and B 
= ∅
0 if A 
= ∅ and B = ∅
σmax(A,B) if A 
= ∅ and B 
= ∅

Again the similarity measure between two sets
can be extended to the partial similarity measure
using interval arithmetic.

IV Directed Difference

In section III, the similarity measure of two objects
of the same data type has been reduced to the
similarity measure of their respective components.
The Directed Difference between objects of each



data type is discussed in this section.
The directed difference of any type T, whose

type is denoted as ΔT, is derived by comparing two
artifacts of type T. When comparing two identical
objcets, the original one is returned. When we do
not get a handle on the structure of the type T,
and we are comparing two different objects, the
directed difference can be described as a pair con-
sisting of these objects, or similarly a structure
built on the directed differences of components of
these objects. Hence the type of directed difference
has a structure like:

ΔT ≈ T | T× T

When we know something about the structure
of a type, i.e. T = τ(S), the type of directed differ-
ence takes the shape:

Δτ(S) ≈ τ(S) | τ ′(ΔS)

a) Primitive Types

For this paper, any type we do not want to inves-
tigate further for the purpose of determining the
difference can be considered primitive.

The type of the directed difference of a primitive
type P, is defined as:

ΔP =def P | P××× P

Definition IV.1

Let x, y: P be objects of primitive type P ∈ P ,
the directed difference between x and y depends
on whether or not they are identical. If x = y,
then the directed difference is x which refers that
x is not changed, otherwise it is defined as (x, y)
which indicates that x is replaced by y.

δP(x, y) =def

{
x if x = y
(x, y) otherwise

b) Product Types

Product types T1 ××× . . . ××× Tn (n � 2) are the sim-
plest structured data type. The directed differ-
ence between instances of n-tuple product type
can be determined by applying the corresponding
typed directed difference operator to each element
of them separately. Let A,B: T1 ××× . . . ××× Tn be
objects of n-tuple of product type T1 ××× . . . ××× Tn

with A = (a1, . . . , an) and B = (b1, . . . , bn). The
type of the directed difference between them is a
n-tuple of directed differences:

ΔT1×××. . .×××Tn =def (T1 ××× . . . ××× Tn) | ΔT1 ××× . . .×××ΔTn

The directed difference between A and B can be
determined by applying the typed directed differ-
ence operator of n-tuple product type, δT1×××. . .×××Tn ,
to A and B.

Definition IV.2

Let A,B: T1 ××× . . . ××× Tn be objects of n-tuple
of product type T1 ××× . . . ××× Tn with A =
(a1, . . . , an) and B = (b1, . . . , bn), the directed
difference between A and B is defined as:

δT1×××. . .×××Tn(A,B) =def{
A if A = B
(δT1(a1, b1), . . . , δTn(an, bn)) otherwise

The equality of two objects over type T1××× . . . ×××
Tn is determined by the identity of each corre-
sponding component. By comparing each corre-
sponding elements in these two n-tuples, if the
componentwise directed difference has been gen-
erated as δT1(a1, b1) = a1, . . . , δTn(an, bn) = an,
then δT1×××. . .×××Tn(A,B) = (a1, . . . , an) = A, hence
A = B.

c) Sets

Sets are the fundamental data structure in mathe-
matics. From one set to the other set, the mathe-
matical concept of the difference between two sets
is already well known, in fact the operation A\B
is defined as a set which contain the elements of A
which are not in B. This already well established
operation proves to be useful in creating our di-
rected difference methodology.

The simplest interpretation of the directed dif-
ference between A and B is as a triple consists of
the set of common elements (i.e. A∩B), the set of
elements to be deleted from A (i.e. A\B) and the
set of elements that are used to be inserted (i.e.
B\A). For sets over primitive types this classical
set theoretical approach suffices. However if an el-
ement of a set has been changed, do we consider
this as a deletion of an element and the insertion of
a new one? What if this was only a minor change?
Here one has to decide, and we choose:

Set(ΔT)︸ ︷︷ ︸
changed

××× Set(T)︸ ︷︷ ︸
deleted

××× Set(T)︸ ︷︷ ︸
inserted

In this triple, the first set is a set of the directed
difference between single elements in A and B, it
contains the common elements and the difference
elements with only small changes, the second set
is composed of all deleted elements in A, the third
set contains all newly inserted elements.

Then the directed difference of finite typed sets
depends on whether or not they are identical. If
two sets have been determined as two identical
ones, the directed difference will return the orig-
inal set as an identical indicator. Otherwise it is
defined as a triple, which includes a single element
directed difference set, a deleted set and a inserted
set. Hence the type of the directed difference be-
tween two finite typed sets of type Set(T) is defined



below:

ΔSet(T) =def Set(T) | Set(ΔT)××× Set(T)××× Set(T)

The similarity measure between two sets has
been identified by finding the most similar pairs
between these two sets. The most similar pair has
the smallest difference, hence the first set in the
directed difference is composed of the directed dif-
ference between pair of most similar elements.

However, when defining the directed difference
between two sets, whether or not they are empty
still needs to be considered.

Definition IV.3

Let A,B: Set(T) be finite typed sets, the di-
rected difference depends on whether or not they
are identical.
When A and B both are non-empty sets, let

Xmax, Ymax: Set(T) be maximal non-empty sub-
sets, i.e. Xmax ⊆ A, Ymax ⊆ B with |Xmax| =
|Ymax| = min(|A| , |B|) and ϕmax : Xmax ↔ Ymax

one-to-one mapping, such that:∑
x∈Xmax

2μT(x, ϕmax(x))

|A|+ |B| = σmax(A,B)

Let Dmax: Set(ΔT) be the set of di-
rected differences between single ele-
ment in Xmax and Ymax with Dmax =
{δT(x, ϕmax(x)) | x ∈ Xmax}.

Then the directed difference, δmax(A,B) is de-
fined as:

δmax(A,B) =def (Dmax, A\Xmax, B\Ymax)

If A = B, then Xmax = Ymax = A = B, ϕmax is
the identity, and hence δmax(A,A) = (A, ∅, ∅).
Therefore the directed difference between two

sets is defined:

μSet(T)(A,B) =def⎧⎪⎪⎨
⎪⎪⎩

∅ if A = ∅ and B = ∅
(∅, ∅, B) if A = ∅ and B 
= ∅
(∅, A, ∅) if A 
= ∅ and B = ∅
δmax(A,B) if A 
= ∅ and B 
= ∅

V Application

The Difference Calculus is a theoretical framework
which has been implemented by a Java program
using Java generics. All types and operators of
each type have been developed in this Java appli-
cation. In order to apply this difference calculus
in a domain, a mathematical model of this domain
has to be created in Java based on types in the type
system T . By doing this the equality, the similar-
ity measure and the directed difference between

instances of this model can be computed simulta-
neously. We demonstrate this in the following with
a simple graph example.

A finite typed graph has been modelled as a set
of pairs, where the first element in each pair is a
vertice, the second element in each pair is a set of
nodes which are linked to that vertice.

Graph(T) =def Set(T××× Set(T))

This graph model has been built in the Java appli-
cation. In order to explain the process, an example
of comparing two graphs is illustrated below.

Let A,B: Graph(S) be graphs3 (see Figure 1).
When comparing A and B, the one-to-one map-
ping with the maximum similarity measure needs
to be determined. To achieve this, all possible
mappings between elements in them are identified,
then the most similar pairs are chosen.

Dublin

Belfast

Derry

Cork

B

Galway

Dublin

Belfast

Londonderry

Cork

A

Galway

Fig. 1: Models of Two Simple Graphs of Travel Maps.

A = {(Dublin, {Belfast,Galway,Cork,Londonderry}),
(Cork, {Dublin,Galway}),
(Galway, {Dublin,Cork}),
(Belfast, {Londonderry,Dublin}),
(Londonderry, {Dublin,Belfast}),
}

B = {(Belfast, {Dublin,Galway,Cork,Derry}),
(Derry, {Belfast}),
(Dublin, {Belfast,Galway,Cork}),
(Galway, {Dublin,Belfast,Cork}),
(Cork, {Dublin,Belfast,Galway}),
}

Each element in A and B is of type S ××× Set(S),
hence the similarity measures between every two

3Graph(S) is then a model of a graph with vertices la-
beled with strings s from the primitive type S.



elements in A and B are calculated in terms
of the definition III.2 and III.3. Therefore, the
one-to-one mapping with the maximum simialrity
measure is determined:

A B Similarity
Dublin Dublin 1

2
∗ (1 + 2∗3

4+3
) � 0.9286

Galway Galway 1
2
∗ (1 + 2∗2

2+3
) = 0.9

Cork Cork 1
2
∗ (1 + 2∗2

2+3
) = 0.9

Belfase Belfast 1
2
∗ (1 + 2∗1

2+4
) � 0.6667

Londonderry Derry 1
2
∗ (0 + 2∗1

2+1
) � 0.3333

Then in terms of definition III.3, the similarity
measure between A and B is 0.7457.

2

10
∗ (0.9286+0.9+0.9+0.6667+0.3333) � 0.7457

This similarity result shows that two graphs are
not identical. At the same time, the directed differ-
ence is identified to indicate the matching nodes,
the deletion and the insertion of routes (see Figure
2).

Dublin

Belfast

Derry

Cork

B

Galway

Dublin

Belfast

Londonderry

Cork

A

Galway

Fig. 2: Results of Comparing Two Graphs Models.

Applying the difference calculus to the refac-
toring of graphs indicates a particular association
between notes in two non-isomorphic graphs.

VI Conclusions

The results of applications indicate that it is possi-
ble to use a universal approach to develop a version
control tool for arbitrary structured data. By ap-
plying the Design Calculus to objects modelled on
the type system, the directed difference and the
similarity measure are obtained. Work continues
to complete the framework and to apply this De-
sign Calculus to more complex structured data.
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