
286 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

Ultra-High Throughput Low-Power
Packet Classification

Alan Kennedy and Xiaojun Wang

Abstract— Packet classification is used by networking equip-
ment to sort packets into flows by comparing their headers to
a list of rules, with packets placed in the flow determined by
the matched rule. A flow is used to decide a packet’s priority
and the manner in which it is processed. Packet classification is a
difficult task due to the fact that all packets must be processed at
wire speed and rulesets can contain tens of thousands of rules.
The contribution of this paper is a hardware accelerator that
can classify up to 433 million packets per second when using
rulesets containing tens of thousands of rules with a peak power
consumption of only 9.03 W when using a Stratix III field-
programmable gate array (FPGA). The hardware accelerator
uses a modified version of the HyperCuts packet classification
algorithm, with a new pre-cutting process used to reduce the
amount of memory needed to save the search structure for large
rulesets so that it is small enough to fit in the on-chip memory
of an FPGA. The modified algorithm also removes the need
for floating point division to be performed when classifying a
packet, allowing higher clock speeds and thus obtaining higher
throughputs.

Index Terms— Hardware accelerator, high throughput, low
power, packet classification, parallel processing.

I. INTRODUCTION

THE increasing growth in Internet usage has been aided by
its ease of access through a wide range of devices such

as desktops, notebooks, netbooks, tablets, and smartphones,
putting a real strain on the networking equipment needed
to inspect and process the resultant traffic. A survey carried
out [1] showed how this ease of access has allowed Internet
penetration to reach 32.7% of the world’s population by
December 2011, with the number of Internet users growing by
528% between 2000 and 2011. This survey also showed that
the U.S. had over 108 million internet users in 2000 and that
the number of worldwide users in 2011 was over 2.2 billion,
which is important when considering that the total amount of
energy used in the year 2000 by various networking devices
in the U.S. equated to the yearly output of a typical nuclear
reactor unit [2]. This means that the current amount of energy
used by networking devices worldwide could exceed the yearly
output of 21 typical nuclear reactor units. Power consumption
should, therefore, be a key concern when designing any new

Manuscript received June 11, 2012; revised December 22, 2012; accepted
January 8, 2013. Date of publication February 11, 2013; date of current version
January 17, 2014. This work was supported in part by FP7 ECONET and the
Irish Research Council for Science, Engineering and Technology (IRCSET).

A. Kennedy is with the School of Electronic Engineering, Dundalk Institute
of Technology, Dundalk, Ireland (e-mail: alan.kennedy@dkit.ie).

X. Wang is with the School of Electronic Engineering, Dublin City
University, Dublin 9, Ireland (e-mail: xiaojun.wang@dcu.ie).

Digital Object Identifier 10.1109/TVLSI.2013.2241798

networking equipment for the purpose of processing the ever-
increasing amount of network traffic.

Network processors are key components used to process
packets as they pass through a network, carrying out tasks
such as packet fragmentation and reassembly, encryption,
forwarding, and classification. The growing number of tasks
that need to be carried out, along with the increase in line rates,
have placed the network processor under increased pressure.
Relieving this pressure through the addition of extra processing
capacity is not easy due to factors such as silicon limitations
and tight power budgets. Ramping up clock speeds to gain
extra performance is difficult due to physical limitations in
the silicon used to create these devices, while increasing
the number of processing cores can cause difficulty when it
comes to writing the software needed to control the network
processors. Both these approaches also lead to large increases
in power consumption due to the extra heat generated by
increasing the clock speed and the extra transistors needed
to increase the number of processing cores.

The use of hardware accelerators dedicated to the most com-
putationally heavy tasks of a network processor can help to
reduce power consumption while increasing processing capac-
ity. This is because a hardware accelerator can be designed
to have fewer transistors than that of the general-purpose
processors used in multi-core network processors. Hardware
accelerators can also process more data than a general-purpose
processor while running at slower clock speeds as they are
optimized to carry out specific tasks. A reduction in clock
speed and number of transistors leads to large savings in power
consumption.

The information presented in this paper centers around
the design and implementation of an energy-efficient packet
classification hardware accelerator (classifier) that can relieve
a network processor’s processing engines of the difficult and
power hungry networking task of packet classification. Packet
classification is difficult due to the fact that all packets entering
a router must be processed at wire speed. The large number
of services being provided by network providers makes this
problem even more difficult as rulesets containing thousands
of rules are needed.

Software approaches to packet classification use algorithms
[3]–[11] that run on the processing engines of multi-core
network processors. A network processor’s flexibility reduces
throughput, limiting packet classification to edge routers where
line speeds are typically only a few gigabits per second.
Analysis of popular packet classification algorithms in [12]
showed that even the best performing algorithm in terms of

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KENNEDY AND WANG: ULTRA-HIGH THROUGHPUT LOW-POWER PACKET CLASSIFICATION 287

throughput RFC [5] can only classify around 400 000 packets
per second. This is when it is implemented in software and
run on an reduced instruction set computing (RISC) processor
similar to the type used as the processing cores in many of
today’s programmable network processors.

Most hardware approaches that can classify packets at
core network line speeds, which can exceed 40 Gb/s, use
power hungry ternary content addressable memory (TCAM).
The Cypress Ayama 10 000 Network Search Engine [13], for
example, uses up to 19.14 W when classifying 133 million
packets per second.

The classifier presented here allows packet classification to
be moved to the core of a network, thus improving security.
It uses multiple packet classification engines working in par-
allel with a shared memory, allowing it to classify packets at
speeds of up to 138.56 Gb/s, while using rulesets containing
tens of thousands of rules. It implements a modified version
of the HyperCuts [3] packet classification algorithm, which
breaks a ruleset into groups, with each group containing a
small number of rules that can be searched linearly. A decision
tree is used to guide a packet based on its header values to
the correct group to be searched.

The rest of this paper is organized as follows. Section II
explains decision tree-based packet classification and gives
a detailed explanation of the HyperCuts algorithm. This is
done so that the changes made here to make the algorithm
more suited to hardware acceleration can be better understood.
These changes are explained in Section III. Section IV explains
the architecture of the classifier. The performance results
including memory usage, throughput, and power consumption
are given in Section V. This section also compares the perfor-
mance of the classifier against prior art. Section VI concludes
this paper.

II. DECISION TREE-BASED PACKET CLASSIFICATION

The fields of a packet’s header most commonly used to
perform packet classification are the 32 b source and des-
tination IP addresses, the 16 b source and destination port
numbers, and the 8 b protocol number. The simplest way to
match these five fields to a rule is to linearly search through
the rules one at a time, starting with the highest priority rule
and ending with the lowest priority rule, until a match is
found. This will result in an unacceptably large worst case
processing time, making it difficult to classify packets at the
speeds required for the core or even edge of a network. This
worst case amount of processing time can be reduced by
using the HyperCuts [3] packet classification algorithm. It is
a decision tree-based algorithm that builds a search structure
that allows incremental updates to a ruleset. Search structures
that allow incremental updates do not have to be rebuilt each
time a ruleset has a rule added or deleted. HyperCuts works by
breaking a ruleset into groups, with each group containing a
small number of rules suitable for a linear search. Each group
of rules is stored in a leaf node of a decision tree, with a
packet finding the leaf node that contains the matching rule
by traversing the decision tree using values from its header to
guide it.

TABLE I

SAMPLE RULESET CONTAINING NINE RULES

RuleID S. IP D. IP S. Port D. Port Protocol Action

R1 0000 0101 30-80 0-65535 UDP ACT1

R2 111* 1*** 0-2000 10-10 UDP ACT2

R3 1*** 101* 60-80 0-65535 TCP ACT3

R4 101* 0*** 0-65535 960-990 TCP ACT4

R5 00** 101* 0-65535 800-811 TCP ACT5

R6 000* 0111 30-80 0-65535 UDP ACT6

R7 000* 0110 30-80 0-65535 UDP ACT7

HyperCuts creates this decision tree by taking a geometric
view of a ruleset, with each rule considered to be a hypercube
in hyperspace. The boundaries of each hypercube are defined
by the ranges of the rule it represents. The algorithm cuts into
this hyperspace by performing cuts to the fields used to define
it. Each cut will create subregions, with each subregion con-
taining the rules whose hypercube overlap. The information
regarding the first set of cuts used to divide the hyperspace is
stored in the root node of a decision tree. This information
includes the number of cuts that are to be performed to
each field and the memory location of each of the resulting
subregions. These subregions are known as the root’s child
nodes, with subregions that contain no rules known as empty
nodes. Subregions whose number of rules do not exceed a
user-defined limit are known as leaf nodes. This user-defined
limit is known as the binth value. Each leaf node stores one
rule group that can be searched linearly. A subregion that
contains more rules than is allowed by the binth value is
known as an internal node and the space it occupies must
be further cut up into smaller subregions. An internal node
records the number of cuts that must be performed to the fields
used to split the space it occupies into smaller subregions. It
also stores the memory locations of the resulting subregions
that are the internal node’s child nodes. An internal node can
also have empty, leaf, and internal nodes. The division of the
hyperspace into ever-smaller subregions ends when the number
of rules in all subregions do not exceed the binth value.

A. Building a Decision Tree

This section describes, step by step, how to build a decision
tree from the ruleset shown in Table I. The source and
destination IP addresses have been reduced from 32 to 4 b
to aid the explanation. The first step in building the decision
tree is to decide a value for sp f ac and binth. The sp f ac
value is used to control how many cuts can be made to each
root or internal node and is used to control memory usage. In
this example, sp f ac will be three and binth will be two. The
next step involves deciding which dimensions should be used
by the root node to cut the hyperspace. This is done by first
calculating the number of distinct range specifications for each
field, with the source and destination IP addresses both having
six, the source and destination ports both having four, and the
protocol number having two, giving a mean of 4.4. The fields
whose distinct number of range specifications is greater than
or equal to the mean number of distinct range specifications
are then considered for cutting. The source and destination IP
addresses shall, therefore, be considered for cutting as they

288 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

R 5 R 2
R 3

SIP –2 Cuts
DIP –2 Cuts

SIP

R 4

DIP

R 2

R 5 R 3

1111

0000

00
00

1111

R 7
R 1

R 6 R 1 R 6
R 7

R 4

Fig. 1. Cuts performed to a decision tree’s root node.

both have a distinct number of range specifications greater
than the mean. The maximum number of cuts that can be
performed to the root node is calculated next using

max cuts to node i ≤ spfac∗sqrt(number of rules at i) (1)

where i is the internal or root node being cut. Small sp f ac
values will result in fewer cuts to nodes, creating a deep
and narrow decision tree, while larger values for sp f ac will
allow more cuts, resulting in a wide but shallow decision tree.
A deep and narrow decision tree will generally require less
memory but will have a longer worst case processing time
when matching a packet to a rule as more internal nodes will
need to be traversed.

The maximum number of cuts that can be made to the root
node in this example is 7.9. The number of cuts that can be
made to a node is limited to be a power of 2 for ease of
implementation, which means that a maximum of 4 cuts can
be performed.

The next step involves trying all combinations of cuts
between the chosen dimensions that are less than or equal
to 4, with the maximum number of rules stored in a child
node for each combination of cuts recorded. The combinations
of cuts that can be made to the source and destination IP
addresses are [0, 2], [0, 4], [2, 0], [2, 2], and [4, 0]. The
combination that results in the smallest maximum number of
rules stored in a child node is to cut both the source and
destination IP addresses in two. Fig. 1 shows the decision
tree after performing these cuts. It also shows a geometric
representation of the source and destination IP addresses,
showing the cuts made to the root node (represented by an
octagon in the decision tree). It can be seen that these cuts
create four subregions. Three of these subregions conform
to the binth value as they contain two or less rules. This
means that they are leaf nodes (represented by rectangles in
the decision tree). The fourth subregion contains more rules
than the binth value allows. This means that it is an internal
node (represented by an oval in the decision tree) that must
be cut further.

The first step that must be carried out when cutting the
internal node is to decide which dimensions should be con-
sidered for cutting. This is done by calculating the number
of distinct range specifications for each field using the rules
contained within the subregion. The source IP address now

E

R 5 R 2
R 3

R6
R 7

SIP –2 Cuts
DIP –2 Cuts

DIP – 4 Cuts

E

SIP

DIP
0111

0000

00
00

0111

R 7
R 1

R 1

R 4

R 6

Fig. 2. Cuts performed to a decision tree’s internal node and the path
traversed.

has two distinct range specifications, the destination IP address
has three, and the source port, destination port, and protocol
number all have one, giving a mean of 1.6. The source and
destination IP addresses are again considered for cutting as
they both have a distinct number of range specifications greater
than the mean. Equation (1) is used again to calculate the
maximum number of cuts that can be performed to the internal
node, which is 4 in this case. The combination of cuts that
can be made to the source and destination IP addresses are
the same as the combinations tried when cutting the root
node. This time the combination that results in the smallest
maximum number of rules stored in a child node is to perform
four cuts to the destination IP address. This results in four
subregions, with all subregions conforming to the binth value,
having two or less rules, which means that no more cutting
needs to take place.

Fig. 2 shows the finished decision tree and the cuts per-
formed to the destination IP address when cutting the internal
node. It can be seen that two of the subregions contain no rules
which means that they are empty nodes (represented by circles
in the decision tree). The remaining two subregions are stored
as leaf nodes. A packet with a header value [0001, 0111, 50,
80, UDP] would traverse the decision tree to find a matching
rule in the following manner, with Fig. 2 showing the path
traversed. The root node is first looked at and it can be seen
that it specifies that two cuts must be performed to both the
source and destination IP addresses. This is done by examining
the most significant bit (MSB) of each header field. Only 1 b
needs to be examined for each field, as each field only has
two cuts, which can be represented by 1 b. The MSB for each
field in this case is [0001, 0111]. These bits are concatenated
to form the index 00, which represents the child node that must
be traversed to. This child node is an internal node, meaning
that more cuts need to be performed to the packet header in
order to find the appropriate leaf node to search. The internal
node is split by performing four cuts to the destination IP
address. The next two MSBs in the destination IP address of
the packet header must, therefore, be examined as 2 b are
needed to represent the four possible cuts. The value of these
bits is [0111], giving the index 11, which represents the child
to be traversed to. This child is a leaf node, which is searched
linearly by comparing each of the rules to the packet header
one by one until a match is found. This will return rule R6 as
the matching rule in this example.

KENNEDY AND WANG: ULTRA-HIGH THROUGHPUT LOW-POWER PACKET CLASSIFICATION 289

B. Heuristics Used to Reduce Memory Usage

The HyperCuts packet classification algorithm uses different
heuristics to reduce the amount of memory needed to save a
decision tree and the number of memory accesses required to
match a rule. This section gives a brief description of these
heuristics. One of these heuristics is called node merging and
it is used to avoid the duplicated storage of identical nodes.
Node merging is carried out by first searching the decision
tree for leaf nodes that contain the same list of rules. The
pointers to these nodes (stored in root and internal nodes)
are then modified so that they point to just one of these
leaf nodes, meaning that multiple copies do not need to be
stored.

A second heuristic called rule overlap is used to avoid the
storage of rules in leaf nodes that can never be matched. A
rule can never be matched and is, therefore, removed from
a leaf node if the hypercube of a rule with a higher priority
completely covers the space it occupies within the leaf node’s
subregion.

A third heuristic used to avoid the duplicated storage of
rules is called pushing common rule subset upward. This
heuristic stores rules at an internal or root node that would
otherwise need to be stored in all of the internal or root node’s
subregions.

The final heuristic is called region compaction and it is
used to aid in the more efficient cutting of the hyperspace.
Each node in a decision tree will cover a specific region
of the hyperspace. The rules associated with a node may,
however, cover a smaller region. Region compaction shrinks
the area covered by a node so that it only covers the minimum
amount of hyperspace that will cover all rules linked with
the node. This means that a smaller region will need to be
cut when dividing the hyperspace occupied by a node into
subregions. This could result in fewer cuts, thus reducing
memory consumption.

III. ALGORITHMIC MODIFICATIONS

The HyperCuts algorithm works well when implemented in
software. It is not, however, optimized for implementation with
dedicated hardware. This section explains the modifications
made to the cutting scheme, region compaction heuristic, and
rule storage method in order to make the algorithm better
suited to hardware acceleration. The pushing common rule
subset upward heuristic is not used as it was found during
testing of rulesets to make only a fractional reduction in
memory usage. It also results in a more complicated search
structure that would slow down the classifier as it would have
to be able to search root, internal and leaf nodes for matching
rules. Pushing common rules upwards can also add extra
memory accesses when classifying a packet. This is because
a leaf node might still need to be searched even if a matching
rule is found at an internal or root node. This is because a
leaf node might contain another matching rule with a higher
priority. Such a case would mean that the search of the rules
at internal or root nodes was unnecessary.

A. Cutting Scheme

The cutting scheme was modified to improve throughput by
making the decision tree as shallow as possible so as to reduce
the number of memory accesses needed to classify a packet.
The new cutting scheme requires the following three values to
be specified before building of the decision tree can begin.

1) Number of cuts to be made to the root node.
2) Maximum number of cuts that can be made to an internal

node.
3) Maximum number of rules that a leaf node can store.

The cutting scheme performs the majority of cuts to the
root node because this will result in a shallow decision tree
with the leaf nodes located closer to the root. The number of
cuts that can be performed to an internal node is limited to
only a few cuts to prevent the decision tree from using too
much memory. It also means that the information needed to
traverse an internal node can be placed in a single memory
word, allowing them to be traversed in a single clock cycle.

The algorithm begins by first performing the required num-
ber of cuts to the root node. The number of cuts must be
2n , where n can be any whole number in the range 1–18,
limiting the maximum number of cuts that can be performed
to 262 144. This is due to limitations on the amount of memory
available to save the search structure. The algorithm uses the
same method employed by HyperCuts to select the fields that
should be considered for cutting. It only considers fields whose
number of distinct range specifications is greater than or equal
to the mean number for all fields. All combinations of cuts
between the chosen fields that equal the 2n limit are tried
on the root node. The maximum number of rules stored in a
child node is recorded for each combination of cuts, with the
combination that results in the smallest number chosen.

The algorithm searches through all child nodes created from
cutting the root node, with more cuts performed to the nodes
whose number of rules exceed the maximum specified limit.
The number of cuts that can be performed to the internal nodes
is 2m , where m can be any whole number between 1 and 4.
The number of cuts that can be performed to an internal node
has been capped at 16 so that all the information needed to
traverse an internal node can fit in a single memory word,
allowing them to be traversed in a single clock cycle.

Limiting the number of cuts also prevents excess memory
usage and reduces the amount of time required to build the
decision tree. The cutting of an internal node differs from the
cutting of a root node in that all combinations of cuts are
tried between the dimensions chosen for cutting that are less
than or equal to the maximum limit. All combinations of cuts
that are less than or equal to the maximum limit can be tried
because there are only a few valid combinations that can be
tried quickly. Cutting is complete when the number of rules in
all subregions does not exceed the maximum specified limit.

1) Region Compaction: The region compaction scheme
introduced in the HyperCuts algorithm is modified because
it requires floating point division to be carried out when a
packet traverses the decision tree. It also requires the minimum
and maximum values of the area covered by all fields to be
stored at a decision tree’s internal and root nodes so that it

290 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

SIP

DIP
0111

0000

00
00

0111

E R 6
R 7

DIP – 4 Cuts

E R 1 R 6
R 7

DIP – 4 Cuts

R 1
R 7

SIP

DIP
0111

0101

00
00

0001

R 7

R6

R 7
R 1

R 6

R 1

(a) (b)

Fig. 3. Region division with and without region compaction. (a) No Region
compaction. (b) Region compaction.

is possible to calculate the child node to be traversed to. An
alternative scheme is introduced here that uses pre-cutting to
compact the region covered by a node more intelligently so
that floating point division is not required when traversing the
decision tree. Another advantage of pre-cutting is that it does
not need to store the minimum and maximum values for each
field, reducing memory consumption further.

A detailed explanation of the region compaction heuristic
used by HyperCuts is now given so that the modifications
made here can be better understood. Fig. 3(a) shows how
the internal node from the decision tree shown in Fig. 2
was divided by performing four cuts to the length of the
destination IP address covered by the internal node, with all
resulting subregions containing two or less rules. This method
of dividing the region allows for a simple scheme to be used
when deciding which subregion a packet should traverse to,
with only two pieces of information required for each field.
This information includes the number of cuts that need to be
performed to each field of a packet header and the bits in
these fields where the cuts need to be performed. A packet
with a destination IP address of 0111 will use its second and
third MSBs to represent the index of the subregion that must
be selected. The MSB is not needed as it was already used
to form part of the index for the root node which cut the
destination IP address in two. These 2 b represent the four
possible subregions that could be selected.

Performing four cuts to the destination IP address is waste-
ful in this example as the rules that must be divided only span
a small length of this section. The region compaction heuristic
used by HyperCuts overcomes this problem as illustrated in
Fig. 3(b) by only cutting the area covered by the rules and not
the full region. Fewer cuts may, therefore, be needed to divide
the region in a way that results in all subregions containing two
or less rules. In this example, region compaction halves the
number of cuts that are needed to divide the region. The use
of region compaction requires three pieces of information to
be stored for each field in order to calculate the subregion that
must be traversed to. This information includes the minimum
and maximum limits of the compacted region for a given
field (Fmin and Fmax) and the number of cuts (nc) that must

R6
R7

DIP – 4 Cuts

SIP

DIP
0111

0000

00
00

0111Step A – Pre-cut
SIP and DIP

SIP

DIP
0111

0100

00
00

0011

Step B – Pre-
cut SIP

SIP

DIP
0111

0100

00
00

0001

Step C – Cut
the region

R 7
R1

R 6

R1

R 7
R1

R 6
R 7

R 1

R6

Fig. 4. Compacting of a region through pre-cutting.

be performed to this field in a packet’s header (Fheader).
Equations (2) and (3) show how the index for each field is
calculated, as follows:

((Fmax − Fmin) + 1)/nc = d (2)

�(Fheader − Fmin)/d� = index. (3)

A packet with a destination IP address of 0111 will have its
index calculated as follows: index = �(7 − 5)/1.5� = 1, where
the denominator d = ((7 − 5) + 1)/2 = 1.5. This index is the
subregion that must be traversed to as only the destination
IP address is used for cutting. Use of the region compaction
heuristic in HyperCuts can lower memory consumption by
reducing the number of subregions that need to be stored. It
does not, however, work well when implemented in hardware
as extra logic is needed to carry out the floating point division
that is required when calculating the subregion that must be
selected. The delay caused by the extra logic and additional
clock cycles needed for floating point division will slow down
the classifier, decreasing throughput and increasing power
consumption.

2) Compacting of a Region Through Pre-Cutting: A new
method for compacting the region to be cut at each internal
or root node called pre-cutting is presented here. It uses the
same methods employed by the scheme that uses no region
compaction when calculating the subregion a packet should
traverse to. This scheme only requires an internal or root node
to store the number of cuts that must be performed to each
field of a packet header and the bits in these fields where the
cuts are to be performed. The simplicity of this scheme helps
to improve throughput and decrease power consumption. The
region that needs to be divided is compacted by recursively
cutting all fields in two. This cutting of a specific field in two
stops and will not be carried out if it results in rules being
contained in more than one subregion. Each precut to a field
used to divide the region will halve the number of subregions
that need to be stored and the number of cuts that need to
be performed to a packet header when selecting the subregion
to traverse to. Each precut to a field also means that the bits
which need to be inspected in that field of a packet’s header
are shifted to the right by one place.

Fig. 4 shows an example where pre-cutting is used to
compact the area covered by the internal node from the
decision tree shown in Fig. 2 so that it can be cut more
efficiently. The process begins by performing precuts to the
source and destination IP addresses as shown in step A,
reducing the area that needs to be considered for cutting by
75%. Precuts can be performed to both fields as it results in

KENNEDY AND WANG: ULTRA-HIGH THROUGHPUT LOW-POWER PACKET CLASSIFICATION 291

P ref ix Length B it [34 :7] B it [6 :3] B it [2 :1] B it [0]

28-B it IP

32- B it IP 0

0

00

1132- B it IP

32

29
28 011100 1

..

0 28-B it IP 000000 1

..

Fig. 5. Encoding scheme used for source and destination IP addresses.

only one subregion that contains rules. In step B, only the
source IP is precut as pre-cutting the destination IP address
would result in more than one subregion that contains rules.
Pre-cutting the source IP address in step B reduces the area
that needs to be considered for cutting by another 50%. Finally,
in step C no more precuts can be performed so the compacted
region is cut in two, with none of the resulting subregions
containing more than two rules. Pre-cutting gives the same
effect as the region compaction heuristic used by HyperCuts
in this example, with the number of subregions that need to
be stored reduced from four to two when compared to the
method where no region compaction is used.

The subregion that must be traversed to for a packet with
a destination IP address of 0111 can be simply calculated by
using its third MSB as an index. The MSB is not needed as it
was already used to form part of the index for the root node
which cut the destination IP address in two while the second
MSB is not needed because of the pre-cutting that has just
taken place. Only the third MSB is needed as an index as two
cuts are performed to this field, meaning that 1 b can represent
both possible subregions that could be selected.

B. Rule Storage

Modifications have also been made to the way that a rule
is stored in a leaf node to reduce both memory consumption
and the number of memory accesses needed to retrieve the
information required to match a packet header to a rule.
The first modification is to store the actual rule in the leaf
node rather than a pointer to the rule. This was found during
testing of rulesets to have only a small increase in memory
consumption for some rulesets and a reduction for others as
pointers to rules do not need to be stored. Storing the actual
rule rather than a pointer to it allows for a large increase in
throughput as data are presented to the classifier one clock
cycle earlier.

A second modification is to reduce the number of bits
required to store the source and destination IP addresses from
76 b down to 70 by using an encoding scheme. An IP address
usually requires 32 b to store its address and 6 b to store
its mask. The mask number is used to specify the number
of MSBs of the address that must be an exact match to the
corresponding bits in a packet header to record a match. The
remaining LSBs are wildcard bits, meaning that the value of
the corresponding bits in a packet header can have any value
and still record a match. The encoding scheme stores the 32 b
IP address and 6 b mask as a 35 b number. The least significant
bit is used to indicate if more than 28 b of the IP address need
to be matched exactly. If not set, 32 b are used to store the

SIP Prefix DIP Prefix SPmax SPmin DPmax DPmin

35-Bit 35-Bit 16-Bit 16-Bit 16-Bit 16-Bit

PR PRmask

8-Bit 1-Bit

Leafend

1-Bit

Fig. 6. Layout of information used to match a packet header to a rule (144 b).

IP address, with the remaining 2 b indicating the number of
bits that need to be matched. If the least significant bit is
set, 28 b are used to store the IP address, with the remaining
6 b indicating the number of bits that need to be matched.
The encoding scheme used by the classifier is shown in Fig. 5.
This method of encoding the IP address and mask can easily
be modified so that only 33 b are needed, with only a slight
increase in the logic needed to decode the information.

Each rule will require 143 b to record the information
needed to match it to a packet header, with the source and
destination IP addresses each requiring 35 b. The source and
destination port numbers both require 32 b, with each port
number’s minimum and maximum range values needing 16 b.
A total of 9 b are required to store the information needed to
match the protocol number, with 8 b used to store the protocol
number and 1 b to store its mask. The mask only requires
1 b as the protocol number can only be an exact match or
wildcard. Each rule also has a flag bit that is set if it is the
last rule in a leaf node. The classifier will know that it has
finished searching a leaf node if it comes across a rule with
this bit set. Fig. 6 shows the memory layout of the information
needed to match a packet header to a rule.

C. Cut Selection

The cutting information for each field consists of two pre-
computed values. The first pre-computed value is called Cuts
and it is used to indicate how many cuts can be performed on
a field. The number of cuts that can be performed on a field is
limited to be a power of 2 for ease of implementation. An 8 b
protocol number limited to 256 cuts, for example, can only
have 0, 2, 4, 8, 16, 32, 64, 128, or 256 cuts performed to it.
To save space a 4 b number for Cuts can be used to represent
the nine possible cut values. A maximum of 262 144 cuts can
be performed to the source and destination IP addresses when
dividing the hyperspace as explained in Section IV. This means
that 5 b are required to store their Cuts value as there are 19
possible cut values. The source and destination port numbers
can have up to 65 536 cuts performed to them when dividing
the hyperspace, which means that they also require 5 b to store
their Cuts value as they have 17 possible cut values.

The value of Cuts is also the length of the bit-mask for a
given field. This bit-mask will be ANDed with the appropriate
bits of a field to extract the index for this field. Before the
index of the child node is calculated, the Cuts information is
extended to form the bit-mask for each field. The second pre-
computed value for each field is called B Pos, and it is used
to indicate the bits that the bit-mask should be ANDed with. In
the calculation of a child node index, B Pos is the number of
lower bits in a packet field that need to be removed by shifting
the field right, before the operation of ANDing with the bit-
mask can be performed. The protocol number, for example,
will require three bits to store its B Pos value as it will need to

292 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

BPosSIP CutsSIP BPosDIP CutsDIP BPosDP CutsDP BPosSP CutsSPBPosPR CutsPR

5-Bit 5-Bit5-Bit 5-Bit 4-Bit 5-Bit 4-Bit 5-Bit 3-Bit 4-Bit

Fig. 7. Layout of root node cutting information (45 b).

C uts P R

> > B P os P R

C utsDPC uts S PC uts DIPC uts S IPfie
ld

in
de

x
ex

tra
ct

io
n

S IP D IP S P D P P R

< < C utsDIP

< <C uts S P

< < C utsDP

< < C utsP R

Index S IP Index DIP Index S P Index DP Index P R

fie
ld

in
de

x
co

nc
at

en
at

io
n

> >B P os DP> > B P os S P> > B P os DIP> > B P os S IP

OR

OR

OR

OR

Index

Fig. 8. Architecture of cut selection logic.

Address 1
..

T ype1 Pos1 Address 16 T ype16 Pos16
Address 17

..
T ype17 Pos17 Address 32 T ype32 Pos32

16-b it 1-b it 1-b it

Fig. 9. Layout of root node pointers (up to 16 pointers stored in a memory
word using a max of 288 b/word).

be shifted right by 0–7 places. The 32 b source and destination
IP addresses will require 5 b to store their B Pos value and the
16 b source and destination port numbers will require 4 b to
store their B Pos value. The layout of the root nodes cutting
information is shown in Fig. 7. This cutting information is
stored in a register separate from the field-programmable gate
arrays (FPGAs) block RAM as it is used by every packet being
classified. Having this information constantly available in a
register will reduce the number of memory accesses needed
to classify each packet by one.

The architecture of the cut selection logic is shown in
Fig. 8. It can calculate the appropriate child node that a packet
must traverse to in a single clock cycle as a result of the
simplicity of the new region compaction and cutting schemes
that have been presented here. These schemes can generate
the appropriate child node index by performing simple shift
and AND operations. The shifting of bits is carried out using
multiplexers so that all shift operations can be performed in a
single clock cycle. The child node index is generated in two
stages. The first stage generates the subindex for each field,
while the second stage concatenates these subindices together
to form the final 18 b index of the child node to be selected.
The subindex for a field is generated by first shifting it to
the right by the number of bits specified by the field’s B Pos
value. The lower bits of this shifted value are then ANDed with
the field’s bit-mask to create its subindex. As mentioned, the
bit-mask for a field is generated by extending its Cuts value.
The subindices are concatenated in the final stage to form the
final index of the child node by left shifting the subindex of
each field by the length of the subindex of the next field and
then ORING them together. This is done until the indexP R is
combined with the others as illustrated in Fig. 8.

Address1 Cuts Info..Type1 Pos1 Address16 Type16 Pos16

16-bit 1-bit 1-bit 36-bit

BPosSIP CutsSIP BPosDIP CutsDIP BPosDP CutsDP BPosSP CutsSP BPosPRCutsPR

5-bit 5-bit3-bit 3-bit 3-bit 3-bit 3-bit 3-bit4-bit 4-bit

Fig. 10. Layout of internal node (324 b used if an internal node contains its
max allowed limit of 16 pointers).

R uleA Info R uleA ID R uleB Info R uleB ID
R uleC Info R uleC ID R uleD Info R uleD ID

144-b it 18-b it

Fig. 11. Layout of leaf node (two rules stored in a memory word will use
324 b).

D. Memory Organization

This section explains how to store the root, internal and leaf
nodes of the decision tree in memory. It also explains how
the nodes are carefully arranged in memory after the decision
tree has been built to ensure that there are no gaps of unused
memory. The classifier uses the internal memory of an FPGA,
exploiting the flexibility of this internal memory by using
324 b wide memory words. The root node requires 18 b to
store each of its child node pointers, with each memory word
used to store up to 16 pointers. This allows for a simple
indexing system, with the MSBs of the child node index used
to retrieve the memory word where its pointer is stored and the
LSBs used to indicate its position in that memory word. The
pointer uses 16 b to store the child node’s address in memory,
with a value of zero meaning that the child node is empty
and no matching rule has been found. Another bit is used to
indicate if the child is an internal or leaf node, while the final
bit indicates the starting position of the node at its memory
location if it is a leaf node. This bit is required because each
memory word can hold two rules. Fig. 9 shows the layout of
a root node’s pointers. In this example, the root node has 32
child nodes, with the pointers to these nodes occupying two
memory words.

Each internal node requires 36 b to store its cutting infor-
mation. The only difference in the cutting information for an
internal node and the root node is that the Cuts value for each
field only requires 3 b. This is because a maximum of 16 cuts
can be performed to each field, which means that there are only
five possible cut values for each field that can be represented
using 3 b. An internal node will fit fully in one memory word
as the cutting information and maximum of 16 pointers will
require 324 b. Fig. 10 shows the layout of an internal node
with the maximum allowed number of 16 child nodes. Fig. 11
shows the layout of a leaf node containing 4 rules, with these
rules stored across two memory words. Each rule in a leaf
node requires 162 b, of which 18 b are used to store the rule
ID, 143 b to store the information needed to match a rule to
a packet header, and 1 b to indicate if the rule is the last rule
stored in a leaf node.

The nodes that form the decision tree are carefully
rearranged after it has been built in order to obtain maximum
storage efficiency and to ensure that no extra memory accesses

KENNEDY AND WANG: ULTRA-HIGH THROUGHPUT LOW-POWER PACKET CLASSIFICATION 293

R oot N ode P ointers [0 :15]
R oot N ode P ointers [16:31]

Internal N ode 0
Internal N ode 1

Leaf N ode A R ules [0:1]
Leaf N ode B R ules [0:1]
Leaf N ode B R ules [2:3]
Leaf N ode B R ules [4:5]

Leaf Node C Rule [0] Leaf Node D Rule [0]
Leaf N ode D R ules [1 :2]

R oot N ode
P ointers

Internal N odes

Leaf N odes w ith
O dd N um ber

of R ules

Leaf N odes w ith
E v en N um ber

of R ules

0
1
2
3
4
5
6
7
8
9

Fig. 12. Memory map showing how a decision tree is saved to memory.

Tree
Traverser

Leaf Node
S earcher

Empty Child No Matched Rule

Tree S tructure Leaf Nodes

Leaf, Packet,
Control &
Address Info .

RuleID

S
P

D
P

P
R

P
ac

ke
tF

ie
ld

s

Match

D
IP

S
IP

M em ory

Finished

No MatchPacket ID Ready Packet ID

Fig. 13. Architecture used by the packet classification engines.

are added to the worst case required to classify a packet. The
pointers of the root node’s child nodes are stored first, followed
by the internal nodes. Leaf nodes that contain an even number
of rules are stored next and then the leaf nodes that contain
an odd number of rules. A memory map showing how to save
a decision tree with 32 cuts made to the root node, 2 internal
nodes, and 4 leaf nodes containing 1–6 rules can be seen in
Fig. 12.

IV. PACKET CLASSIFICATION ENGINE

Fig. 13 shows the architecture of the packet classification
engine which is built using two modules. The first module
is a tree traverser that is used to traverse a decision tree
using header information from the packet being classified.
The decision tree is traversed until an empty node is reached,
meaning that there is no matching rule, or a leaf node is
reached. A leaf node being reached will result in the tree
traverser passing the packet header and information about the
leaf node reached to the second module known as the leaf
node searcher. The leaf node searcher compares the packet
header to the rules contained in the leaf node until either a
matching rule is found or the end of the leaf node is reached
with no rule matched. The leaf node searcher employs two
comparator blocks that work in parallel. This allows two rules
to be searched on each memory access, reducing lookup times.

Information on the decision tree’s root node is stored in
registers in the tree traverser, making it possible for the tree
traverser to begin classifying a new packet while the previous
packet is being compared with rules in a leaf node. This use
of pipelining allows for a maximum throughput of one packet
every two clock cycles if the decision tree is made up of only
a root node and leaf nodes containing no more than two rules.

C alculate root ch ild w hen packet
becom es availab le

Load child pointer

C hild em pty?

Save search structure to
m em ory & root node cutting

in form ation to reg ister

Packet availab le ?N o

Yes

Yes Leaf node?

T raverse in ternal node

Search leaf node & if ru le m atched
or leaf end, ca lcu late root ch ild if

packet is availab le

N o
N o

Yes

Yes

Yes

N o
N o

Leaf
end? M atc h?

Fig. 14. Operation of a packet classification engine.

The flowchart shown in Fig. 14 explains the operation of the
packet classification engine. The engine has been designed to
traverse a root or internal node in one memory access. It can
also search leaf nodes at a rate of two rules per memory access.

A. Architecture of the Classifier

The classifier has been implemented with multiple packet
classification engines working in parallel using Stratix III
and Cyclone III FPGAs. The maximum clock speed that an
engine can achieve when implemented using an FPGA is much
slower than the maximum clock speed of an FPGAs internal
memory. This is due to logic delays in the components used
by an engine such as the comparator blocks. It is, therefore,
necessary to use multiple engines working in parallel so that
the classifier can achieve maximum throughput. The use of
multiple engines will help to ensure that the bandwidth of an
FPGAs internal memory is better utilized.

Another reason for using multiple packet classification
engines working in parallel is that it allows rulesets that
contain many wildcard rules to be broken up into groups,
with each engine used to search a group for a matching rule.
Splitting rulesets that contain many wildcard rules into groups
makes it easier to build shallow decision trees that have small
leaf nodes, which helps to increase throughput and reduce
memory usage. This is because the rules with wildcard source
IP addresses can be kept in one group and the rules with
wildcard destination IP addresses can be kept in another group.
The group that contains the wildcard destination IP addresses
is cut by performing the majority of the cuts to the source
IP address, while the group that contains the wildcard source
IP addresses is cut by performing the majority of the cuts
to the destination IP address. The majority of the cuts are
usually performed to the IP addresses because many of the
ports can contain the common port range of 1024 to 65 535.
The matching rule with the highest priority (rule with the
lowest rule ID) will be chosen in the case where multiple
engines return a matching rule. The search structure for each
group can be saved to the same block of memory that is shared
by the engines.

Both the Stratix III and Cyclone III implementations of the
classifier use eight packet classification engines working in

294 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

C las s if ic a t ion
E ng ine 1A

P ac k et ID

N o M atc h
M atc h
R ule ID

C las s if ic a t ion
E ng ine 2A

N o M atc h
M atc h
R ule ID

C las s if ic a t ion
E ng ine 3A

N o M atc h
M atc h
R ule ID

C las s if ic a t ion
E ng ine 4A

N o M atc h

M atc h
R ule ID

So
rte

r

N
oM

at
ch

M
at

ch
Ru

le
ID

M
em

ory
Interface

C las s if ic a t ion
E ng ine 1B

N o M atc h
M atc h

R ule ID

C las s if ic a t ion
E ng ine 2B

N o M atc h
M atc h

R ule ID

C las s if ic a t ion
E ng ine 3B

N o M atc h
M atc h

R ule ID

C las s if ic a t ion
E ng ine 4B

N o M atc h

M atc h
R ule ID

S
orter

N
oM

atch
M

atch
R

ule
ID

M em oryT ree S t ruc tu re Leaf N odes

P ac k et
H eader
B uf fe r APa

ck
et

He
ad

er

P ac k e t
H eader
B uf fe r B

PacketHeader

P ac k e t ID

P ac k et ID

P ac k et ID P ac k et ID

P ac k et ID

P ac k et ID

P ac k et ID

Fig. 15. Architecture of the classifier.

parallel. Fig. 15 shows the classifier’s architecture, which takes
advantage of the fact that the internal memory of an FPGA is
dual port by placing two separate classifiers in parallel, sharing
the same memory. Each classifier reads data from a separate
data port and has its own packet buffer for storing the headers
of incoming packets, four engines that work in parallel to
maximize the bandwidth usage of a data port and a sorter
logic block used to make sure that the classification results
are outputted in the correct order.

The packet buffer stores the source and destination IP
addresses, source and destination port numbers, and protocol
number from the incoming packets. It works on a first come,
first served basis, with packets being outputted from the buffer
to the packet classification engines in the same order that they
were inputted. The buffer also creates a packet ID for each
header that is passed to the packet classification engine along
with the packet header. The packet ID is used to make sure
that the matching rule IDs are outputted by the classifier in
the same order that the packet headers were inputted to the
system.

The four engines belonging to a classifier run at the same
clock speed, with the clock used by each engine 90° out of
phase with the clock used by the previous engine. Memory
runs at a speed equal to four times that of an engine, ensuring
a simple memory interface, with each engine guaranteed
access to memory on each of its clock cycles. The Stratix III
implementation of this classifier has 46 080 memory words
available to save the search structures required for classifying
packets, while the Cyclone III implementation has 12 288
memory words available. The memory used is made up of
a series of small memory blocks which are connected up so
that they act as a continuous memory space. The memory ports
of each memory block have their own enable signals. These
enable signals are used to reduce power consumption by only
activating the memory blocks that are being read from on a

given clock cycle. This architecture also allows the splitting of
a ruleset used to classify packets into groups of four or two in
order to reduce the memory consumption and the worst case
number of memory accesses needed to classify a packet for
rulesets containing a large number of wildcard rules.

The sorter logic block is used to make sure that the matching
rule IDs are outputted in the correct order and that the rule
with the highest priority is selected when there are multiple
rule matches in the case where rulesets are broken up into
groups. The sorter logic block accepts the Match, NoMatch,
RuleI D, and Packet I D signals from each of the packet
classification engines. It knows that an engine has finished
classifying a particular packet when either the Match or
NoMatch signals have been asserted. The first job the sorter
logic block does is to make sure that the rule with the highest
priority is selected between engines working in parallel to
classify the same packet. This is done by picking the lowest
rule ID between packets with the same packet ID. The sorter
logic block registers the Match, NoMatch, and RuleI D
signals for a classified packet to a chain of registers and
multiplexers in series. The register selected will depend on
the packet ID number. The Match, NoMatch, and RuleI D
signals will be registered to the output register if they are next
in the sequence of results to be outputted, and stored if not.
All stored results are shifted toward the output register each
time a result appears that is due to be outputted. This means
that the classification results are outputted from the classifier
in the same order that the packets were inputted.

B. Supporting IPv6 Packet Classification

The classifier can also perform IPv6 packet classification
with some minor modifications. One modification would be to
widen the memory words from 324 to 348 b, with a memory
word storing one rule instead of two. This is because 348 b will
be needed to match a packet header to a rule instead of the 162
currently used, assuming that the encoding scheme explained
in Section III-B is used to store the 128 b IP addresses and
their 8 b masks as 129 b numbers. This means that only one
rule could be checked on each memory access. This could
increase the average number of clock cycles needed to classify
a packet. A second modification is that the tree traverser
would use more logic resources as larger multiplexers would
be needed to shift the IP addresses when creating the index
used to select the node that a packet must traverse to. The
logic needed for the leaf node searcher would also increase as
a larger comparator block would be needed when comparing
a packet header to rules in a leaf node.

The final modification is that the root and internal nodes
would require an extra 4 b to store their cutting information.
This is because 7 b would be needed to store the B Pos value
for each IPv6 IP address instead of the 5 currently used. The
128 b IPv6 IP addresses might result in a deeper decision
tree because smaller leaf nodes would be needed as only one
rule could be compared on each clock cycle. The increased
amount of logic and wider memory words will reduce the
maximum achievable clock speed that the IPv6 classifier can
obtain. This combined with the expected increase in the depth

KENNEDY AND WANG: ULTRA-HIGH THROUGHPUT LOW-POWER PACKET CLASSIFICATION 295

TABLE II

FPGA RESOURCE UTILIZATION FOR CLASSIFIER

Device Logic Element Usage Memory Usage fmax
Cyclone III 23 491/119 088 (19.7%) M9Ks 432/432 (100%) 219 MHz

Stratix III 40 070/254 400 (15.7%)
M9Ks 852/864
M144Ks 48/48

(99.3%) 433 MHz

of the decision tree would slow down an IPv6 implementation
of the classifier.

V. PERFORMANCE RESULTS

The classifier has been tested extensively by measuring its
logic and memory usage, throughput in terms of Mpps, amount
of memory it requires when storing the search structures
needed to classify packets for access control list (ACL),
firewall (FW), and Internet protocol chain (IPC) rulesets gen-
erated using ClassBench [14], worst case number of memory
accesses needed to classify a packet, power consumption,
and its performance when classifying packets using real life
OC-48, OC-192, and OC-768 packet traces. These results have
been benchmarked against state-of-the-art dedicated FPGA-
based classifiers.

A. Hardware Implementation Parameters

The classifier was implemented in VHDL and targeted at:

1) a Cyclone EP3C120F484C7 FPGA, running at 1.2 V;
2) a Stratix EP3SE260H780C2 FPGA, running at 1.1 V.

Both of these devices are built on TSMC 65 nm process
technology. The classifier was synthesized using Altera’s
Quartus II design software to obtain the maximum clock
speeds and the logic and memory usage. The post place and
route results are shown in Table II.

It can be seen from looking at the table that the memory of
the classifier can achieve a maximum clock speed of 433 MHz
when implemented using a Stratix III FPGA, giving it a
maximum throughput of 433 Mpps. This is possible because
each of its engines can classify a packet in two memory
accesses and dual port memory is used, allowing two memory
accesses to be made per clock cycle. A maximum throughput
of 433 Mpps makes it the first packet classification hardware
to the best of our knowledge that can process packets at line
rates of up to 138.56 Gb/s. To meet these line speeds, the
classifier needs to be able to process 433 Mpps as minimum-
sized 40 byte packets can arrive back-to-back. The Stratix III
implementation of the classifier can store the search structure
required for rulesets containing in excess of 80 000 rules.

The Cyclone III implementation of this architecture also
achieves a high throughput, with its memory obtaining a
maximum clock speed of 219 MHz. This allows it to reach
line speeds of up to 70 Gb/s or 219 Mpps. The Cyclone III
implementation can store the search structure required for
rulesets containing over 20 000 rules. These high levels of
throughput makes it possible for the Stratix III and Cyclone III
implementations to easily cope with core network line speeds
when they are used to classify packets for rulesets containing
tens of thousands of rules.

B. Memory Usage and Worst Case Number of Memory
Accesses

The amount of memory required to save the ACL, FW, and
IPC search structures built for the classifier using the modified
HyperCuts algorithm can be seen in Table III. This table also
shows the worst case number of memory accesses required to
classify a packet when using these search structures. Other
metrics given are the binth value used when building a
decision tree, maximum depth of each decision tree and the
average number of memory accesses a packet header would
need to reach and be matched to each rule stored in a decision
tree. Results followed by an * show where a ruleset has been
split into two groups in order to reduce the memory needed to
save its search structure and to reduce the worst case number
of memory accesses needed to classify a packet.

The results show that the classifier performs well in terms
of memory usage and worst case number of memory accesses
when using the ACL and IPC rulesets, achieving maximum
throughput for all ACL and IPC rulesets tested, with two
memory accesses needed at most to classify a packet. The
classifier does not perform as well when classifying packets
using the FW rulesets. This is because FW rulesets contain
a large number of wildcard rules, with these wildcard rules
covering a large area of the hyperspace, making it hard to
divide the hyperspace into subregions that contain a small
number of rules that are suitable for a linear search. This
means that large leaf nodes need to be used, which slows down
the classifier as longer linear searches need to be performed. It
also means that a large amount of memory is used as there will
be replicated storage of rules with the wildcard rules appearing
in many leaf nodes.

The classifier, for example, requires 53 memory accesses
at worst to classify a packet when using the search structure
built for the FW ruleset with 23 087 rules. This will severely
reduce the throughput of the classifier from its maximum of
433 Mpps to a worst case of 16.34 Mpps. The classifier will
also require 14 747 832 b when storing this search structure.
This problem can be overcome as explained in Section IV
by splitting the ruleset into groups. Rules where wildcard
ranges occur in the same fields can be grouped together, with
these fields not used for cutting, where possible. This makes
it easier to divide a ruleset into subregions that contain a
small number of rules and reduces the replicated storage of
rules. The throughput of the FW ruleset with 23 087 rules
can be increased by splitting this ruleset into two groups,
with two packet classification engines used to classify each
packet. Splitting the ruleset will mean that the classifier will
only require four memory accesses at worst to classify a
packet, increasing the worst case throughput to 216.5 Mpps.
The amount of memory needed to store the search structure
is also reduced down to 4 736 232 b.

296 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

TABLE III

MEMORY USAGE IN BITS, BINTH (B), MAX TREE DEPTH (D), WORST CASE NUMBER OF MEMORY ACCESSES NEEDED TO CLASSIFY A PACKET (M),

AVERAGE NUMBER OF MEMORY ACCESSES NEEDED TO CLASSIFY A PACKET (A)

Ruleset and Number of Rules
Stratix III Cyclone III

Memory B D M A Memory B D M A
ACL 5000 1 473 876 2 1 2 2 1 473 876 2 1 2 2

ACL 10 000 2 283 876 2 1 2 2 2 283 876 2 1 2 2

ACL 15000 3 093 876 2 1 2 2 3 093 876 2 1 2 2

ACL 20000 3 903 876 2 1 2 2 3 903 876 2 1 2 2

ACL 24920 4 700 916 2 1 2 2

FW 5000 1 142 100 2 1 2 2 1 142 100 2 1 2 2

FW 10 000
7 968 456 4 3 4 2.4 3 933 360 76 2 39 11.3

2 615 976* 2* 1* 4* 4* 2 615 976* 2* 1* 4* 4*

FW 15000
11 708 388 4 3 4 2.4 3 425 976* 2* 1* 4* 4*
3 425 976* 2* 1* 4* 4*

FW 20000 14 543 388 30 2 16 6.3 3 567 240* 4* 2* 6* 2.3*
4 235 976* 2* 1* 4* 4*

FW 23087
14 747 832 104 2 53 14.8 3 914 244* 8* 2* 9* 2.7*
4 736 232* 2* 1* 4* 4*

IPC 5000 1 473 876 2 1 2 2 1 473 876 2 1 2 2

IPC 10 000 2 283 876 2 1 2 2 2 283 876 2 1 2 2

IPC 15000 3 093 876 2 1 2 2 3 093 876 2 1 2 2

IPC 20000 3 903 876 2 1 2 2 3 903 876 2 1 2 2

IPC 24274 4 596 264 2 1 2 2

The search structures built for the largest ACL, FW, and
IPC rulesets tested only use about 30% of the Stratix III’s
memory. This means that the classifier can easily support
dynamic updates as space can be left for leaf nodes to grow.
The only difficulty that can occur is if a rule has to be added
to an empty subregion. This is handled by creating a new leaf
node and modifying the subregion’s pointer so that it points to
the new leaf node rather than to an empty node. A drawback
to allowing the expansion of leaf nodes is that some leaf nodes
may exceed the limit on the maximum number of rules that
they should store, increasing linear search times and reducing
throughput. This means that the decision tree may need to
be rebuilt periodically so that the throughput does not suffer
excessively.

C. Evaluation Against Prior Art

The area of packet classification is a well-studied field. Most
research, however, has concentrated on the implementation of
new packet classification algorithms tailored toward increased
performance with software implementation in mind. These
algorithms rarely consider the effects of power consumption,
with their main aims instead being to increase the storage
efficiency of rulesets while reducing the number of memory
accesses needed to classify a packet. One algorithm that does
tackle the issue of power consumption when implementing
packet classification is EffiCuts [15]. It improves on the HiCuts
[4] and HyperCuts [3] algorithms by lowering memory usage.
This is done by reducing the replicated storage of rules in a
decision tree, which means that a smaller amount of SRAM
needs to be used when storing a ruleset’s search structure,
thus saving power. This power reduction, however, comes at

a price, with throughput being reduced as EffiCuts requires
more memory accesses to classify a packet.

Research into the increased throughput of packet classifica-
tion through hardware acceleration with power consumption
in mind is an increasingly important field of research as
hardware accelerators have become essential when trying to
meet core network line speeds. This is because line speeds are
growing steadily due to advances in optical fiber technology
and rulesets are expanding due to the increasing number of
services that need to be performed. Packet classification is
extremely difficult to implement at core network line speeds
of over 40 Gb/s (125 Mpps in the worst case when 40 byte
packets arrive back-to-back) using software approaches alone.
Research in [12] shows that the most popular packet classifica-
tion algorithms RFC [5], HiCuts [4], HyperCuts [3], TSS [9],
and EGT-PC [8] can only classify packets at speeds of 400 937,
57 042, 32 242, 10 700, and 7491 p/s, respectively. This is when
they are run on an RISC processor similar to the type used
as the processing cores in many of today’s programmable
network processors. Most state-of-the-art classifiers aim to
increase throughput through the use of TCAM [16]–[21]. The
use of TCAM, however, makes these approaches a power
hungry solution, even if power reduction techniques are used.

Classifiers targeted toward the use of FPGAs and SRAM
instead of high power TCAM include the work presented
in [22]–[25]. The classifier in [22] introduces a packet clas-
sification algorithm known as distributed crossproducting of
field labels, with the authors claiming that their architecture
could classify 100 Mpps while using rulesets containing up
to 200 000 rules. These performance figures, however, assume
that their logic intensive architecture could run at the maxi-
mum clock frequency of an FPGA.

KENNEDY AND WANG: ULTRA-HIGH THROUGHPUT LOW-POWER PACKET CLASSIFICATION 297

TABLE IV

PERFORMANCE COMPARISON OF CLASSIFIERS

Approach Device No. of
Rules

Speed (Mpps) Memory Usage
(bits) Logic Usage (6-LUTs) SF

Ultra-wide [23] Stratix III 10 000 169 2 303 496 48 719/101 760 288

Pipelining [24] Virtex 5 9603 250 5 013 504 41 228/122 880 82

HiCuts [25] Stratix IV 10 000 74(100) 3 000 000 6 374/212 480 129

New classifier Stratix III 10 000 433 2 283 876 16 028/101 760 37

The classifier from our previous work in [23] also
implements a modified version of the HyperCuts packet clas-
sification algorithm that can classify packets at speeds of up to
169 Mpps while using rulesets containing tens of thousands of
rules. It uses ultra-wide memory words (7704 b) that allow it
to compare up to 48 rules from a leaf node in a single memory
access. This allows it to use large leaf nodes that reduce the
number of cuts needed to divide the hyperspace when building
the decision tree, resulting in low memory usage. Large leaf
nodes also allow the classifier to perform well when using FW
rulesets as they do not need to be broken up into small groups
of rules.

The paper in [24] implements a decision tree-based, dual
pipeline architecture that can classify 250 Mpps when using
rulesets containing up to 10 000 rules. It proposes optimization
techniques to the HyperCuts algorithm such as a precise range
cutting heuristic that reduces the replicated storage of rules. It
also employs a tree to pipeline mapping scheme to improve
memory utilization. Drawbacks with this design include poor
storage efficiency for rulesets containing many wildcard rules,
meaning that very large rulesets cannot be supported. Another
drawback is that the architecture must be reconfigured if the
depth of the decision tree constructed exceeds the worst case
depth allowed by the implemented architecture.

A classifier that implements the decision tree-based packet
classification algorithm HiCuts [4] is presented in [25], with
HiCuts being the algorithm that HyperCuts is based on.
Table IV compares the performance of the Stratix III imple-
mentation of the classifier presented here against the classifiers
from [23]–[25]. The performances of [23] and [24] and
the classifier presented here are compared when classifying
packets using an ACL ruleset with 10 000 rules, generated
using ClassBench. The authors of [25] tested their classifier
using their own artificial ruleset containing 10 000 rules. The
performance metrics examined are their speed or throughput
in terms of worst case number of packets that they can classify
per second, amount of memory needed to save the search
structure required to classify packets, and their logic usage.
A comparison of the power consumption is given in the next
section.

The classifier presented here and in [23] were implemented
on a Stratix EP3SE260 FPGA, while the approach employed in
[24] used a Virtex XC5VFX200T FPGA. A direct comparison
is fair as the performance of both FPGAs is similar due
to the fact that both are manufactured using 65 nm process
technology and both devices also have similar amount of
internal memory and logic available. The classifier from [25]
was implemented on a larger Stratix EP4SGX530 FPGA
manufactured using 40 nm process technology, which Altera

claim is 35% faster than other devices such as Virtex 5
FPGAS. The throughput of this classifier has, therefore, been
reduced in the table, with the original data shown in brackets.
The logic usage of the classifiers has been compared using
six input lookup tables (LUT) as Virtex FPGAs give the logic
utilization in slices, with each slice capable of implementing
four 6 input LUT, while Stratix FPGAs give logic utilization
in adaptive logic modules, with each capable of implementing
one 6 input LUT. It can be seen that our classifier outperforms
all others in the important metrics of throughput and amount
of memory needed to save the search structures for the rulesets
with 10 000 rules.

D. Throughput Versus Power Consumption

The two main causes of power consumption in an FPGA-
based packet classifier are static power and dynamic power.
Static power is consumed as a result of leakage currents and
dynamic power is consumed because of switching activity.
The classifier presented here consumes less power than other
FPGA-based packet classifiers as it has been designed to use
less dynamic power. The classifier’s dynamic power is lowered
by reducing the amount of logic that there is to switch and
the number of times that this logic is switched. A new metric
is introduced here called switching factor (SF) that measures
a classifier’s dynamic power efficiency. The SF is calculated
by dividing the number of 6-LUTs a classifier uses to classify
1 Mpps by the number of packets classified per clock cycle.
Fewer 6-LUTs will mean that there is less logic to switch,
while more packets classified per clock cycle will mean that
the logic is switched less often. A classifier will be more power
efficient if it has a lower SF as there will be less switching
activity.

Table IV compares the SF of the classifier presented here
with the classifiers from [23]–[25]. It can be seen that the
classifier presented here will consume less dynamic power as
it has the lowest SF. The power consumption figures given
in Fig. 16 also show this. The classifier presented here uses
37 6-LUTs to classify 1 Mpps and classifies 1 packet per clock
cycle, compared with the classifier in [23] which uses 288 6-
LUTs and classifies 1 packet per clock cycle, the classifier
in [24] which uses 164 6-LUTs and classifies 2 packets per
clock cycle, and the classifier in [25] which uses 86 6-LUTs
and classifies 0.67 packets per clock cycle.

The classifier’s power consumption was measured when
it was used to classify packets using the rulesets shown in
Table III. The power consumption was measured by carrying
out post place and route simulations, with the Quartus 2
PowerPlay Power Analyzer Tool used to analyze VCD files

298 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2014

Fig. 16. Power consumed by the classifier.

generated by ModelSim. These results showed that the clas-
sifier’s power consumption scales well as rulesets increase in
size, with the power consumption being similar for each ruleset
regardless of the size. This is because it will usually take two
memory accesses to classify a packet for most rulesets, which
means that the same amount of processing needs to be carried
out on all packets. Two memory accesses, for example, are
required to classify a packet for all ACL and IPC rulesets used.
This means that the dynamic power consumption will be simi-
lar for all rulesets when classifying packets at a certain speed,
while the static power consumption also remains the same. The
classifier used slightly more power when classifying packets
for the larger FW rulesets as they needed more memory
accesses to classify a packet. The classifier’s power consump-
tion is shown in Fig. 16, with these results generated using
the ACL ruleset containing 10 000 rules. These results are
compared to the classifier that uses ultra-wide memory words
[23]. A comparison cannot be made with the classifiers in
[24] and [25] as no power consumption figures were given.

Fig. 16 shows that the classifier presented here performs
far better than the classifier in [23] in terms of throughput
and power consumption when both are implemented using the
Cyclone III FPGA. The classifier presented here consumes
1.73 W when classifying packets at its maximum through-
put of 219 Mpps (70.08 Gb/s), which means that it uses
24.69 mW/(Gb/s). This is an increase in throughput of 237%
and a decrease in power consumption of 40% when compared
to the classifier in [23]. The classifier in [23] consumes
0.85 W when classifying packets at its maximum throughput
of 65 Mpps (20.8 Gb/s), which means that it uses 40.87
mW/(Gb/s).

Fig. 16 also shows that the classifier presented here performs
better than the classifier in [23] when both are implemented
using the Stratix III FPGA. The classifier presented here
consumes 9.03 W when classifying packets at its maximum
throughput of 433 Mpps (138.56 Gb/s), which means that it
uses 65.17 mW/(Gb/s). This is an increase in throughput of
156% and a decrease in power consumption of 42% when
compared to the classifier in [23]. The classifier in [23]
consumes 6.08 W when classifying packets at its maximum
throughput of 169 Mpps (54.08 Gb/s), which means that it
uses 112.43 mW/(Gb/s).

The power consumption is much higher for the Stratix III
implementation than the Cyclone III implementation because

it is a much larger device, with greater amount of logic
and memory resources available, leading to a larger amount
of static power consumption. The larger amount of memory
and logic used in the Stratix III implementations combined
with the higher speeds will also cause more dynamic power
consumption due to an increased amount of switching. The
classifier presented here can achieve much higher throughput
and lower power consumption than the classifier in [23]
because it uses far less logic and narrower memory words.
This allows it to achieve a higher clock speed as there are
smaller routing delays, while the power savings come from
the fact that there is far less logic being switched.

E. Performance on Real-Life Packet Traces

The classifier was tested extensively using synthetic
OC-48, OC-192, and OC-768 packet traces that were created
by aggregating Abilene, CENIC, and SCO4 backbone packet
traces until peak line rates of 2.5, 10, and 40 Gb/s were
reached. These traces were obtained from NLANR [26]. The
OC-48 and OC-192 traces were looked at over a 6000-s period,
while the OC-768 trace was looked at for a 2000-s period. The
peak numbers of packets per second for the traces are 143 768
p/s for the OC-48 trace, 661 526 p/s for the OC-192 trace, and
3 302 488 p/s for the OC-768 trace. The timestamp from these
traces was spliced to packet headers created using ClassBench
for the ACL, FW, and IPC rulesets. The input buffer usage was
then looked at when the classifier was used to classify packets
using the ACL, FW, and IPC rulesets. The tests showed that
the input buffer, which can store up to 256 packet headers, was
kept clear at all times, with no build up of packets on both
the Stratix III and Cyclone III implementations. This was the
case even when the FW ruleset with 23 087 rules was used to
classify packets using the OC-768 trace.

The maximum theoretical throughput of an OC-768 fiber
optic link is 125 Mpps in the worst case when 40 byte
packets arrive back-to-back. This means that the Stratix III
and Cyclone III implementations of the classifier can cope
with OC-768 line rates when their maximum clock frequency
is reduced from their peaks of 433 and 219 MHz, respec-
tively, down to 125 MHz. At this speed, the Stratix III
implementation will only consume 3.5 W, while the Cyclone
III implementation will only consume 1.05 W. These power
consumption figures were taken from the test results shown in
Fig. 16. We found in practice that the Stratix III and Cyclone
III implementations can still cope with all rulesets and traces
used here when their maximum clock frequency is reduced to
16 MHz, with minimal buffer usage, giving them peak power
consumptions of only 1.56 and 0.26 W, respectively.

VI. CONCLUSION

Packet classification is usually limited to use by routers at
the edge of a network where line speeds do not typically
exceed a few gigabit per second. This paper introduced a
new algorithm and packet classification hardware accelerator
with enough processing power to allow packet classification
to be implemented at the core of a network, thus improving
security. It worked with rulesets containing tens of thousands

KENNEDY AND WANG: ULTRA-HIGH THROUGHPUT LOW-POWER PACKET CLASSIFICATION 299

of rules at speeds of up to 138.56 Gb/s, allowing Internet
service providers to perform a large plethora of tasks. The
classifier consumed only 9.03 W when classifying packets
at its maximum throughput of 433 Mpps. This is low when
compared to other FPGA-based classifiers. The classifier ran
a modified version of the HyperCuts algorithm that has been
modified so that it is better suited to hardware implementation.
These modifications included changing the cutting scheme
so that the need for slow and logic intensive floating point
division is removed when classifying a packet. This was done
by replacing the region compaction scheme used by HyperCuts
with a new scheme that uses pre-cutting.

REFERENCES

[1] Usage and Population Statistics. (2012, Jun.) [Online]. Available:
http://www.internetworldstats.com/stats.htm

[2] M. Gupta and S. Singh, “Greening of the internet,” in Proc. ACM Special
Interest Group Data Commun. Conf., Aug. 2003, pp. 19–26.

[3] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in Proc. ACM Special Interest Group
Data Commun. Conf., Aug. 2003, pp. 213–224.

[4] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41, Feb. 2000.

[5] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
in Proc. ACM Special Interest Group Data Commun. Conf., Sep. 1999,
pp. 147–160.

[6] F. Baboescu and G. Varghese, “Scalable packet classification,”
IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 2–14, Feb. 2005.

[7] T. V. Lakshman and D. Stiliadis, “High-speed policy based packet
forwarding using efficient multi-dimensional range matching,” in
Proc. ACM Special Interest Group Data Commun. Conf., Sep. 1998,
pp. 203–214.

[8] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
routers: Is there an alternative to CAMs?” in Proc. IEEE Int. Conf.
Comput. Commun., Apr. 2003, pp. 53–63.

[9] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search, ” in Proc. ACM Special Interest Group Data Commun.
Conf., Sep. 1999, pp. 135–146.

[10] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Netw. Mag., vol. 15, no. 2, pp. 24–32, Mar. 2001.

[11] T. Woo, “A modular approach to packet classification: Algorithms
and results,” in Proc. IEEE Int. Conf. Comput. Commun., Mar. 2000,
pp. 1213–1222.

[12] A. Kennedy, D. Bermingham, X. Wang, and B. Liu, “Power analysis
of packet classification on programmable network processors,” in Proc.
IEEE Int. Conf. Signal Process. Commun., Nov. 2007, pp. 1231–1234.

[13] Cypress Ayama 10000 Network Search Engine. (2004, Mar. 10)
[Online]. Available: http: //www.datasheetarchive.com/CYNSE10512-
datasheet.html

[14] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
bench-mark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511,
Jun. 2007.

[15] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “Efficuts: Optimizing
packet classification for memory and throughput.” in Proc. ACM Special
Interest Group Data Commun. Conf., Aug. 2010, pp. 207–218.

[16] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended TCAMs,” in Proc. 11th IEEE Int. Conf. Netw. Protocols,
Nov. 2003, pp. 120–131.

[17] K. Zheng, H. Che, Z. Wang, B. Liu, and X. Zhang, “DPPC-RE: TCAM-
based distributed parallel packet classification with range encoding,”
IEEE Trans. Comput., vol. 55, no. 8, pp. 947–961, Aug. 2006.

[18] D. Pao, Y. Li, and P. Zhou, “Efficient packet classification using
TCAMs,” Comput. Netw., vol. 50, no. 18, pp. 3523–3535, 2006.

[19] J. V. Lunteren and T. Engbersen, “Fast and scalable packet classifi-
cation,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 560–571,
May 2003.

[20] K. Zheng, H. Che, Z. Wang, and B. Liu, “TCAM-based distributed
parallel packet classification algorithm with range-matching solution,”
in Proc. IEEE Int. Conf. Comput. Commun., Mar. 2005, pp. 293–303.

[21] C. Meiners, A. Liu, and E. Torng, “Topological transformation
approaches to TCAM-based packet classification,” IEEE/ACM Trans.
Netw., vol. 19, no. 1, pp. 237–250, Feb. 2011.

[22] D. E. Taylor and J. S. Turner, “Scalable packet classification using
distributed crossproducting of field labels,” in Proc. IEEE Int. Conf.
Comput. Commun., Mar. 2005, pp. 269–280.

[23] A. Kennedy, Z. Liu, X. Wang, and B. Liu, “Multi-engine packet
classification hardware accelerator,” in Proc. 19th Int. Conf. Comput.
Commun. Netw., Aug. 2009, pp. 1–6.

[24] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classifica-
tion on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, Feb. 2009, pp. 219–218.

[25] T. Zhang, Y. Wang, L. Zhang, and Y. Yang, “High throughput archi-
tecture for packet classification using FPGA,” in Proc. 5th ACM/IEEE
Symp. Archit. Netw. Commun. Syst., Oct. 2009, pp. 62–63.

[26] National Laboratory for Applied Network Research. (2006). Passive
Measurement and Analysis Project, San Diego, CA, USA [Online].
Available: http://www.caida.org/home/about/research/nlanr/

Alan Kennedy received the Diploma degree from
the Dundalk Institute of Technology (DKIT), Dun-
dalk, Ireland, in 2004, and the B.Eng. and Ph.D.
degrees from Dublin City University, Dublin, Ire-
land, in 2006 and 2010, respectively, all in electronic
engineering.

He is currently a Lecturer with the School of Elec-
tronic Engineering, DKIT. He was an FPGA Hard-
ware Design Engineer with CréVinn and The Now
Factory from 2009 to 2010. His current research
interests include energy-efficient, high-throughput

hardware accelerators for packet classification and deep packet inspection.

Xiaojun Wang received the B.Eng. degree in com-
puter and communications and the M.Eng. degree in
computer applications from the Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China, in 1984 and 1987, and the Ph.D. degree in
electronic engineering from Staffordshire University
(then Staffordshire Polytechnic), Staffordshire, U.K.,
in 1993.

He was a Lecturer with BUPT from 1987 to 1989.
He joined the School of Electronic Engineering,
Dublin City University, Dublin, Ireland, as a Faculty

member in 1992, where he is currently a Senior Lecturer. His current research
interests include network security, energy-efficient networking, and network
intrusion detection methods using traffic statistics, content, and behavioral
analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

