
This is the Post-Print version of the published material

For Citation: Özcan-Top Ö., and McCaffery F. (2017) “How Does Scrum Conform
to the Regulatory Requirements Defined in MDevSPICE®?" In: Software Process Im-
provement and Capability Determination. SPICE 2017. Communications in Computer
and Information Science, vol 770. Springer, Cham, https://doi.org/10.1007/978-3-
319-67383-7_19

How does Scrum Conform to the Regulatory
Requirements Defined in MDevSPICE®?

Özden Özcan-Top1, Fergal McCaffery1,2

1Regulated Software Research Centre & Lero
Dundalk Institute of Technology, Dundalk, Ireland

2STATSports Group, Dundalk, Ireland
ozden.ozcantop@dkit.ie, fergal.mccaffery@dkit.ie

Abstract. Medical device software development is subject to high regulations

due to the potential risk of harming patients with unsafe medical devices. These

regulations require software development to be performed with high discipline

and evidence to be provided for auditory purposes. It’s not easy to manage both

conformance to regulations and efficiency in medical device development.

Therefore, there is a transition towards agility in safety critical systems develop-

ment, to build high quality systems, shorten time to market, improve customer

and employee satisfaction and ensure both safety and reliability. In this study, we

evaluated one of the most highly adopted agile software development methods,

Scrum from a regulatory perspective. We investigated to what extend the regula-

tory requirements defined in MDevSPICE® are met with implementation of the

Scrum method and what additional processes and practices have to be performed

to ensure safety and regulatory compliance in the healthcare domain.

Keywords. MDevSPICE®, Scrum, Regulatory Compliance, Safety Critical Do-

main, Agile Software Development.

1 Introduction

The safety critical nature of medical device software requires Medical Device (MD)

regulations are in place to ensure the safety of these devices. Manufacturers have to

comply with the requirements to market an MD within a particular region. International

standardizing bodies and regional regulatory authorities issue these requirements as

standards or guidance. In the US, the Food and Drug Administration (FDA) issues the

regulation through a series of official channels, including the Code of Federal Regula-

tion (CFR) Title 21, Chapter I, Subchapter H, Part 820 [1]. In the EU, the corresponding

regulation is outlined in the general Medical Device Directive (MDD) 93/42/EEC [2],

the Active Implantable Medical Device Directive (AIMDD) 90/385/EEC [3], and the

In-vitro Diagnostic (IVD) Medical Device Directive 98/79/EC [4] - all three of which

have been amended by 2007/47/EC [5].

Software development in medical domain is typically performed with traditional,

plan-driven approaches like Waterfall and V-Model. The V-Model is perceived to be

the best fit with regulatory requirements [6]. Some of the reasons why these methods

are still valid today, despite their rigidness and limitations, can be listed as follows: (a)

It is pretty straightforward to produce the necessary deliverables required to achieve

regulatory audits with these models. (b) Verification, validation and risk assessments

are particularly important in medical device software development and these processes

are planned and executed in parallel with a corresponding development phase of the V-

Model. (c) In these models, each phase must be completed before the next phase begins.

This approach works well when there is high confidence in the requirements defined.

Ensuring regulatory requirements continuously is only one of the challenges that

medical companies face. Some of others are managing the change during development,

being timely to market, ensuring high quality, safety and high productivity. Agile soft-

ware development methods have positive results for overcoming these challenges [7].

Therefore, there is a transition going on in medical device development companies to

achieve agility as well as safety and reliability.

In this study, we evaluated Scrum [8], to understand the level of regulatory compli-

ance when they are implemented. A mapping between these methods and the medical

device software process assessment framework, MDevSPICE® has been performed for

this purpose. The second purpose of this research is to reveal additional practices that

have to be performed to ensure compliance when there is no specific adaptation of

Scrum for the medical domain.

The rest of the paper is structured as follows: In Section 2, we provide the back-

ground for this research which includes brief descriptions of MDevSPICE® and Scrum.

We also provide a literature review of Scrum in the medical device development do-

main. In Section 3, we described the research methodology. In Section 4, we present

the mapping and discuss the additional practices that have to be considered. In Section

5, we provide conclusions for this research.

2 Background

2.1 MDevSPICE®

MDevSPICE® is a medical device software process assessment framework developed

with the purpose of integrating the regulatory requirements from the relevant medical

device software standards and guiding medical device software developers to produce

medical software that will be safe and reliable. It has been built upon 19 medical soft-

ware development and software engineering standards, some of which can be seen on

Fig 1.

The MDevSPICE® process assessment model is a two-dimensional model of the

process quality characteristic of process capability. In one dimension, the process di-

mension, the processes are defined. In the other dimension, the capability dimension, a

set of process attributes are grouped into capability levels. Processes in this process

assessment model are described in terms of their Purpose, Process Outcomes, Base

Practices and Work Products. Although the set of Process Outcomes is necessary and

sufficient to achieve the Purpose of the process, the Base Practices together with Work

Products provide a possible way to achieve the Process Outcomes. The list of processes

in MDevSPICE® process assessment model is given in

Fig. 2.

Fig. 1. Some of the Standards and Guidelines within MDevSPICE®

Safety classifications reflect the degree of harm that can result from medical device

usage. Every medical device has to be assigned a safety class. Different international

safety classification systems are in use throughout the world. There are three medical

device safety classifications under US and EU regulations. Based on IEC 62304:2006,

Class A devices are not intended to support or sustain human life, and may not lead to

unreasonable risk of illness or injury. Class B medical devices may cause damage or

harm to humans. Class C devices are usually those that support or sustain human life,

and present a potential risk on illness or injury. Hand-held surgical instruments are

Class A devices. An example of a Class B medical device is a powered wheelchair. An

example of a Class C device is an implantable pacemaker.

The software safety classification of a medical device will determine the amount of

IEC 62304 requirements that have to be fulfilled, with class A requiring much less

IEC 62304:2006, Medical
device software – Software

life cycle processes

Medical Standards

IEC 80002-3:2014,
process reference model

for Medical device
software processes

ISO 14971:2009, Medical
devices — Application of

risk management to
medical devices

ISO 13485:2003, Medical
devices — Quality

management systems —
Requirements for

regulatory purposes

IEC 80002-1:2009,
Guidance on the

application of ISO 14971
to medical device software

Process Assessment
Standards

ISO/IEC 33002:2014,
Information technology —
Process assessment —

Requirements for
performing process

assessment

ISO/IEC 15504-5:2012,
Information technology –
Process assessment –An

exemplar process
assessment model

ISO/IEC 15504-2:2003,
Information technology –
Process assessment –
Part 2: Performing an

assessment

ISO/IEC 12207:2008,
Systems and Software

Engineering – Software life
cycle processes

Software Life Cycle

practices to be put in place than for Class C. Additionally, the higher the safety classi-

fication the greater the amount of overhead associated with defining, implementing and

providing objective evidence that the defined processes have actually been imple-

mented. In this context, for each process, MDevSPICE® defines what outcomes have

to be achieved and which base practices need to be performed for these safety classes.

Fig. 2. MDevSPICE® Processes

2.2 Scrum

Scrum was developed by Schwaber and Sutherland with the purpose of providing a

management framework for software development [8, 9]. Scrum does not provide any

specific technical practices for implementation.

The fundamental idea behind Scrum is to apply process control theory to software

development to achieve flexibility, adaptability and productivity [7]. It relies on a set

of values, principles and practices which can be adopted based on specific conditions.

Scrum gives value on providing frequent feedback, embracing and leveraging variabil-

ity, being adaptive, balancing upfront and just-in-time work, continuous learning,

Medical Device System Life Cycle Processes
PRO.1 Project Planning
PRO.2 Project Assessment and Control
PRO.4 Risk Management
ENG.1 Stakeholder Requirements Definition
ENG.2 System Requirements Analysis
ENG.3 System Architectural Design
ENG.5 System Integration
ENG.6 System Qualification Testing
ENG.7 Software Installation
ENG.8 Software Acceptance Support

Medical Device Software Life Cycle Processes
ENG.4 Software Development Planning
DEV.1 Software Requirements Analysis
DEV.2 Software Architectural Design
DEV.3 Software Detailed Design
DEV.4 Software Unit Implementation and
Verification
DEV.5 Software Integration and Integration
Testing
DEV.6 Software System Testing
SRM.1 Software Risk Management

Support Processes
PRO.5 Configuration Management

SUP.4 Software Release
SUP.8 Software Problem Resolution

SUP.9 Software Change Request Management
ENG.10 Software Maintenance

value-centric delivery and employing sufficient ceremony [10]. It offers effective solu-

tions by providing specific roles, artifacts, activities and rules.

A Scrum Team consists of a Product Owner, a Scrum Master and the Development

Team roles. Scrum Teams are self-organizing and cross-functional so that they could

accomplish their work by themselves, rather than being directed by others outside the

team and without depending on others not part of the team [9]. There are special events

in Scrum which have been developed to create regularity and to minimize the need for

meetings and are time-boxed.

2.3 Scrum Implementation in Safety Critical Domain

In the literature, we see many examples of Scrum implementation in the safety critical

domain [11-16] . We briefly discuss some of these studies below:

Wolff [11] presents implementation of a formal specification language and Scrum

with combination in an aircraft project. Executable specifications were used in order to

validate system functionality, to understand the requirements and design of the system

more precisely. In addition to conventional software implementation tasks within a

sprint, formal specification investigation tasks were also defined.

Regulated Scrum [12] is an example of an adapted approach which has been imple-

mented and validated in a highly regulated organization. Scrum was enhanced to ensure

regulatory compliance in the medical domain. Some of the enhancements of the ap-

proach are having quality assurance people who ensure regulatory compliance at the

end of each sprint (called continuous compliance), using templates to guide the devel-

opment process, implementing coding standards and performing peer code review, es-

tablishing end-to-end traceability from the requirements elicitation stage to the code

base with the help of tool support (called living traceability), risk management and con-

tinuous integration.

Another implementation of Scrum in a European space industry company with Test

Driven Development, Continuous Integration and Pair Programming was discussed in

[13]. Siemens Healthcare integrates Scrum into their software development process and

additionally implements “feature orientation” practice to resolve the challenge of man-

aging the flow of requirements coming from several product lines [14].

This literature review shows that Scrum was not used in the safety critical domain

with their original versions, but, tailored for this domain and also combined with sup-

plementary practices to ensure safety and regulatory compliance.

3 Research Approach

The purpose of this research is to reveal to what extend the regulatory requirements

defined in MDevSPICE® are met when implementing Scrum. We defined the following

research questions in relation to this purpose:

RQ1: How well the regulatory requirements of a safety Class B type medical device

are met by through implementation of Scrum? RQ2: Which processes of MDevSPICE®

are covered by implementing Scrum? RQ3: Which base practices of MDevSPICE® are

covered by an implementation of Scrum? RQ4: What additional practices regarding

those processes specified need to be performed in order to fully achieve a process at

Level 1: Performed Process?

Research steps.

1. Listing Scrum practices at a fine granularity level.

2. Mapping MDevSPICE® base practices with Scrum Practices.

3. Identifying which processes were affected from the mapping.

4. Identifying the coverage ratio and deciding which MDevSPICE® base practices

need to be included for those processes to satisfy a fully-achieved level.

Abrahamsson et al. [7], compared different agile software development methods to

show which phases of software development were supported by these methods. Based

on the comparison, Scrum covers project management, requirements specification, in-

tegration test and system test phases

However, instead of selecting these processes mentioned above first, and then check-

ing the coverage within MDevSPICE®, we preferred to do the mapping in the other way

around. We first listed the Scrum practices and then mapped them to MDevSPICE®

base practices. With this approach we were able to identify which processes of

MDevSPICE® were covered with a basic Scrum implementation.

Limitation of the Research.

Scrum could be taken as a prescriptive method with the descriptions of how the Scrum

events will be performed and artifacts will be developed. However, Scrum is not de-

fined at the practice description level provided by MDevSPICE®. Mapping of the

method was limited to the given information in the following resource: The Scrum

GuideTM by Ken Schwaber and Jeff Sutherland [17].

4 The Mappings and Discussions

Scrum and practices were mapped against MDevSPICE® (IEC 62304) Class B require-

ments. As the level of detail for the Scrum practices was limited, we needed to make

some assumptions during the mapping. We assumed that process artifacts such as pro-

ject plans or project monitoring reports would be developed during a Scrum implemen-

tation, as evidence required for the audits needed to be collected. Although it is very

likely that some base practices would be performed during software development using

Scrum, we couldn’t rate a 100% coverage for them, as they might not be performed at

the level of the detail required in MDevSPICE®. The coverage ratio is calculated based

on the formula of: “the number of achieved base practices in a process / all base prac-

tices in a process”.

4.1 Scrum Mapping

Scrum Method was described in terms of its roles, events and artifacts. Below, we pro-

vide the mapping for the roles and events. The artifacts which are basically product

backlog and sprint backlog were not included in the mapping separately, as they were

part of the events. Even though MDevSPICE® does not emphasize any specific roles,

we mapped the activities that needs to be performed by the Scrum roles to the base

practices of MDevSPICE®, shown in Table 1. In Table 2, the mapping between the

Scrum events and the MDevSPICE® Processes and Base Practices are provided (RQ2-

RQ3). The bold written text in the 3rd column of Table 1 and Table 2 show the mapped

processes. The other text in the same column refer to the mapped base practices (BPs).

Table 1. Mapping of Scrum Roles‘ Activities and MDevSPICE® Processes & Base Practices

Scrum

Roles

Specific Activities of the Roles MDevSPICE® Processes & Base

Practices

Product

Owner

“¾ deciding which features and func-

tionality to build and the order in

which to build them

¾ communicating to all other partici-

pants a clear vision of what the Scrum

team is trying to achieve

¾ being responsible for the overall

success of the solution being devel-

oped or maintained”

PRO.1 Project Planning

PRO.1.BP1: Define the scope of work

PRO.1.BP3: Evaluate feasibility of the

project.

PRO.1.BP6: Define needs for experience,

knowledge and skills.

PRO.1.BP7: Identify and monitor project

interfaces

PRO.1.BP9: Allocate resources and re-

sponsibilities.

PRO.1.BP11: Implement the project plan.

ENG.1 Stakeholder Requirements Defi-

nition

ENG.1.BP1: Identify stakeholders.

Scrum

Master

“¾ helping everyone involved under-

stand and embrace the Scrum values,

principles, and practices.

¾ helping the organization through

the challenging change management

process that can occur during a Scrum

adoption

¾ protecting the team from outside in-

terference and takes a leadership role

in removing impediments that inhibit

team productivity”

PRO.1 Project Planning

PRO.1.BP2: Define life cycle model for

the project.

Dev-

Team
“¾ a diverse, cross-functional collec-

tion of these types of people who are

responsible for designing, building,

and testing the desired product”

PRO.1 Project Planning

PRO.1.BP4: Define and maintain esti-

mates for project attributes

PRO.1.BP5: Define project activities and

tasks.

PRO.1.BP8: Define project schedule.

PRO.1.BP10: Establish project plan.

PRO.1.BP11: Implement the project plan.

Table 2. Mapping of Scrum Events and MDevSPICE® Processes & Base Practices

Scrum

Events

Descriptions of the Events MDevSPICE® Processes and Base Prac-

tices

Sprint

Planning

“The work to be performed in

the Sprint is planned at the Sprint

Planning. This plan is created by

the collaborative work of the en-

tire Scrum Team.”

PRO.1 Project Planning

PRO.1.BP4: Define and maintain estimates

for project attributes

PRO.1.BP5: Define project activities and

tasks.

PRO.1.BP7: Identify and monitor project

interfaces.

Daily

Scrum

“A 15-minute time-boxed event

for the Development Team to

synchronize activities and create

a plan for the next 24 hours.”

PRO2. Project Assessment and Control

PRO.2.BP3: Report progress of the project.

PRO.2.BP4: Perform project review.

Sprint

Review

“A meeting held at the end of the

Sprint to inspect the Increment

and adapt the Product Backlog.

The timeline, budget, potential

capabilities, and marketplace for

the next anticipated release of the

product are reviewed”

PRO2. Project Assessment and Control

PRO.2.BP1: Monitor project attributes

PRO.2.BP2: Monitor project interfaces

PRO.2.BP3: Report progress of the project.

PRO.2.BP4: Perform project review.

PRO.2.BP5: Act to correct deviations.

Sprint Ret-

rospective

“A meeting to inspect how the

last Sprint went with regards to

people, relationships, process,

and tool”

PRO2. Project Assessment and Control

PRO.2.BP6: Collect project experiences

Product

Backlog

Grooming

“Product Backlog (PB) is an or-

dered list of everything that

might be needed in the product

and is the single source of re-

quirements for any changes to be

made to the product.” “PB lists

ENG.1 Stakeholder Requirements Defini-

tion

ENG.1.BP2: Obtain requirements.

ENG.1.BP3: Define constraints.

ENG.1.BP4: Define user interaction.
ENG.1.BP5: Identify critical requirements.

all features, functions, require-

ments, enhancements, and fixes

that constitute the changes to be

made to the product in future re-

leases. Product Backlog items

have the attributes of a descrip-

tion, order, estimate and value.”

“PB Grooming is the act of add-

ing detail, estimates, and order to

items in the Product Backlog.

This is an ongoing process in

which the Product Owner and the

Dev-Team perform”

ENG.1.BP6: Evaluate requirements

ENG.1.BP7: Agree on requirements.

ENG.2 System Requirements Analysis

ENG.2.BP1: Establish system requirements.

ENG.2.BP3: Optimize project solution.

ENG.2.BP4: Analyze system requirements.

ENG.2.BP5: Evaluate and update system

requirements.

ENG.2.BP7: Communicate system require-

ments.

DEV.1 Software Requirements Analysis

DEV.1.BP1: Define and document all soft-

ware requirements.

DEV.1.BP2: Prioritize requirements.

DEV.1.BP6: Evaluate and update require-

ments

DEV.1.BP7: Baseline and communicate

software requirements.

According to the mapping shown in Table 1 and Table 2, Scrum is related to 5 processes

of MDevSPICE® when it is implemented fully (RQ2). Within the mapping process, we

also evaluated and calculated the coverage ratio of the MDevSPICE® base practices for

Scrum. Table 3, shows the coverage ratio for each mapped process. The coverage eval-

uation performed by one of the authors for base practices from a Scrum perspective,

was subjective, but peer reviewed by the other author. Therefore, depending on the

implementation details and perception of the methods, different coverage ratios than

we provided could be obtained. However, the purpose of giving this ratio is to provide

readers and practitioners with an indication of how much value is achieved with basic

Scrum implementation and how much needs to be done more from a regulatory per-

spective.

Table 3. Coverage of Mapped MDevSPICE® Processes from Scrum Perspective

 Mapped MDevSPICE® Processes Coverage Ratios

1. PRO.1 Project Planning 100%

2. PRO.2 Project Assessment and Control 90%

3. ENG.1 Stakeholder Requirements Definition 55%

4. ENG.2 System Requirements Analysis 71%

5. DEV.1 Software Requirements Analysis 33%

Below, we discuss why processes #3, #4, and #5 in Table 3 did not have a full cov-

erage ratio and what additional practices need to be performed for compliance to med-

ical requirements (RQ4).

#3 ENG.1 Stakeholder Requirements Definition Process: (Coverage Ratio: 5 BPs

/ 9 BPs). The following base practices of ENG.1 are assumed to be achieved by the

product owner and the development team in product backlog grooming sessions:

ENG.1.BP1: Identify stakeholders, ENG.1.BP2: Obtain requirements, ENG.1.BP3:

Define constraints, ENG.1.BP6: Evaluate requirements, ENG.1.BP7: Agree on re-

quirements. However, the other base practices of this process need special attention

which are not addressed in Scrum.

For an IEC 62304 Class B type medical software, user interaction has to be defined

and evidence has to be provided. Based on the ENG.1.BP4: Define user interaction

base practice the following information has to be defined for a medical device:

– Intended medical indication, e.g. conditions(s) or disease(s) to be screened, moni-

tored, treated, diagnosed, or prevented; – Intended patient population, e.g. age, weight,

health, condition; – Intended part of the body or type of tissue applied to or interacted

with; – Intended user profile; – Intended conditions of use, e.g. environment including

hygienic requirements, frequency of use, location and mobility; and –Operating prin-

ciple.

In a product backlog grooming session, we may assume that all stakeholder require-

ments are specified. However, as part of the ENG.1.BP5: Identify critical requirements

practice of MDevSPICE®; it has to be ensured that health, safety, security, environment

and other stakeholder requirements and functions that relate to critical qualities and

shall address possible adverse effects of use of the system on human health and safety

are identified as well.

In medical device software development, every change on the product, whether it is

on the artifacts or the code has to be made in a controlled way. This is one of the major

contradictions between agile and the regulated worlds. For a change to be controlled, a

version control system should be in place and baselines established. This is referred to

in ENG.1.BP8: Establish stakeholder requirements baseline base practice. However,

a product backlog is a dynamic list which is continuously changing and no baselines

are taken over it.

The other major requirement in medical device software development is to build

traceability links between artifacts as this plays a significant role in defect management

and change management. This is referred to in ENG.1.BP9: Manage stakeholder re-

quirements changes. The purpose is to “Maintain stakeholder requirements traceability

to the sources of stakeholder need”. However, there is no specific emphasis on the de-

velopment of a traceability schema in Scrum method.

#4 ENG.2 System Requirements Analysis Process: (Coverage Ratio: 5 BPs / 7

BPs). We may assume that base practices: ENG.2.BP1: Establish system requirements,

ENG.2.BP3: Optimize project solution, ENG.2.BP4: Analyze system requirements,

ENG.2.BP5: Evaluate and update system requirements, ENG.2.BP7: Communicate

system requirements are performed in product backlog grooming sessions, as there are

mechanisms to achieve them. However, the following two base practices need to be

handled separately.

As part of ENG.2.BP2: Assign a safety class to the medical device based on the

regional regulations process, at the system requirements analysis phase, a safety class

has to be assigned to the product as the specific regulations apply based on the safety

class in order to prevent potential harm to human life. As mentioned also in base prac-

tice ENG.1.BP9, bilateral traceability between the stakeholder requirements and the

system requirements needs to be established as part of ENG.2.BP6: Ensure consistency

base practice.

#5 DEV.1 Software Requirements Analysis Process: (Coverage Ratio: 3 BPs / 9

BPs) We assumed that base practice, DEV.1.BP1: Define and document all software

requirements is partially achieved, as there are specific issues that needs to be addressed

for this BP. Based on FDA rules, software requirements have to be documented in a

software requirements specification document and this document should contain details

of the software functions.

It is important to determine the interfaces between the software requirements and

other elements of the operating environment such as third party software. This is achie-

ved as part of base practice, DEV.1.BP3: Determine the impact the requirements have

on the operating environment. At this stage, it is expected that the acceptance criteria

for the software tests are defined from software requirements (DEV.1.BP4: Develop

acceptance criteria for software testing based on the software requirements.) Scrum

does not have such a rule.

As mentioned above, consistency of system requirements to software requirements

has to be ensured. This is achieved through establishing and maintaining bilateral trace-

ability between system requirements and the software requirements (DEV.1.BP5: Ver-

ify all software requirements.)

 The 7th base practice of DEV.1 requires establishing a baseline of software require-

ments and also providing communication of the software requirements. Due to use of

communication channels in Scrum, we feel that the second part of this base practice

can be achieved. However, the baseline of software requirements should also be added.

In medical device software development, special attention is given to risk analysis

and mitigation. With base practices, DEV.1.BP.9: Re-evaluate and maintain medical

device risk analysis and DEV.1.BP8: Establish and maintain risk control measures in

software requirements, it is ensured that risks regarding the software requirements are

identified and risk control measures are defined. Risk management should be a part of

daily or weekly Scrum review meetings.

Although we have mapped the Stakeholder, System and Software Requirements

Analysis processes with the product backlog grooming practice in Scrum, it is neces-

sary to ensure that distinction between these requirement types are clear, the traceability

links are established, and the changes made to them is managed.

In MDevSPICE®, there another process, ENG.4 Software Development Planning

includes very specific practices for regulatory requirements compliance. Some of these

base practices include assigning the software safety class of the software system, having

a software integration test plan, a verification plan, a software risk management plan

and configuration management plan. Although Scrum proposes effective ways to man-

age projects, these plans are not part of a basic Scrum method. Therefore, we assumed

that ENG.4 Software Development Planning is not covered with Scrum, even though it

is a “planning” process.

5 Conclusions

In this study, we evaluated if a Scrum implementation could meet the regulatory re-

quirements defined in MDevSPICE®, the software process assessment framework for

medical device software development. Scrum was selected due to its high recognition

and adoption in software development world. The research approach included the map-

ping of Scrum practices to MDevSPICE® processes and base practices. With this ap-

proach, we were able to define MDevSPICE® processes and base practices that could

be achieved in a basic Scrum implementation, more importantly the additional base

practices that have to be performed for ensuring safety and regulatory compliance.

We also identified the coverage ratio of MDevSPICE® processes from a Scrum per-

spective. Even though the coverage ratios are calculated from a subjective point of

view, they provide important information to readers and practitioners about which

MDevSPICE® processes are covered to what extent.

The significance of this study is that it presents a coverage analysis at the

MDevSPICE® base practice level which is very detailed and has never been performed

before. The coverage ratios showed the level of the gap between methods. The study

has also revealed conflicting practices such as “controlled change management over

continuous and dynamic change”. In addition, the discussions made around the addi-

tional practices that need to be performed, complete the missing pieces to ensure safety

and be successful over a regulatory audit in the medical device domain. The results of

this study also provide guidance us for the development of an agile integrated medical

device software development framework.

 As future work, we will extend the mapping by adding XP, other agile methods

which propose a whole software development life cycle coverage such as Dynamic

Systems Development Method and scaling agile frameworks such as Disciplined Agile

Delivery and SAFE.

Acknowledgement. This research is supported by Science Foundation Ireland under

a co-funding initiative by the Irish Government and European Regional Development

Fund through Lero - the Irish Software Research Centre (http://www.lero.ie) grant

13/RC/2094. This research is also partially supported by the EU Ambient Assisted Liv-

ing project – Maestro.

References

[1] FDA. (15.05). Chapter I - Food and drug administration, department of health

and human services subchapter H - Medical devices, Part 820 - Quality system

regulation. Available:

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CF

RPart=820

[2] Directive 93/42/EEC of the European Parliament and of the Council

concerning medical devices, 1993.

[3] Council directive 90/385/EEC on active implantable medical devices

(AIMDD), 1990.

[4] Directive 98/79/EC of the european parliament and of the council of 27

october 1998 on in vitro diagnostic medical devices, 1998.

[5] Directive 2007/47/EC of the European Parliament and of the Council

concerning medical devices, 2007.

[6] M. Mc Hugh, O. Cawley, F. McCaffcry, I. Richardson, and X. Wang, "An

agile v-model for medical device software development to overcome the

challenges with plan-driven software development lifecycles," in Software

Engineering in Health Care (SEHC), 2013 5th International Workshop on,

2013, pp. 12-19: IEEE.

[7] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, "Agile software

development methods: Review and analysis," ed: VTT Finland, 2002.

[8] K. Schwaber, "Scrum development process," in Business Object Design and

Implementation: Springer, 1997, pp. 117-134.

[9] K. Schwaber and J. Sutherland, Software in 30 days: how agile managers beat

the odds, delight their customers, and leave competitors in the dust. John

Wiley & Sons, 2012.

[10] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile

Process. Addison-Wesley Professional, 2012.

[11] S. Wolff, "Scrum goes formal: Agile methods for safety-critical systems," in

Proceedings of the First International Workshop on Formal Methods in

Software Engineering: Rigorous and Agile Approaches, 2012, pp. 23-29:

IEEE Press.

[12] B. Fitzgerald, K.-J. Stol, R. O'Sullivan, and D. O'Brien, "Scaling agile

methods to regulated environments: An industry case study," in Software

Engineering (ICSE), 2013 35th International Conference on, 2013, pp. 863-

872: IEEE.

[13] E. Ahmad, B. Raza, R. Feldt, and T. Nordebäck, "ECSS standard compliant

agile software development: an industrial case study," in Proceedings of the

2010 National Software Engineering Conference, 2010, p. 6: ACM.

[14] M. Kircher and P. Hofman, "Combining systematic reuse with Agile

development: experience report," in Proceedings of the 16th International

Software Product Line Conference-Volume 1, 2012, pp. 215-219: ACM.

[15] R. Faber, "Architects as service providers," IEEE software, vol. 27, no. 2,

2010.

[16] J. W. Spence, "There has to be a better way![software development]," in Agile

Conference, 2005. Proceedings, 2005, pp. 272-278: IEEE.

[17] J. Sutherland and K. Schwaber, "The scrum guide," The Definitive Guide to

Scrum: The Rules of the Game. Scrum. org, 2013.

