
A Serverless Architecture for Wireless Body
Area Network Applications

Pangkaj Chandra Paul(&), John Loane , Fergal McCaffery,
and Gilbert Regan

Regulated Software Research Centre, Dundalk Institute of Technology, Dundalk,
Co. Louth, Ireland
paulp@dkit.ie

Abstract. Wireless body area networks (WBANs) have become popular for
providing real-time healthcare monitoring services. WBANs are an important
subset of Cyber-physical systems (CPS). As the amount of sensing devices in
such healthcare applications is growing rapidly, security, scalability, availability
and privacy are a real challenge. Adoption of cloud computing is growing in the
healthcare sector because it can provide high scalability while ensuring avail-
ability and affordable healthcare monitoring services. Serverless computing
brings a new era to the design and deployment of event-driven applications in
cloud computing. Serverless computing also helps the developer to build a large
application using Function as a Service without thinking about the management
and scalability of the infrastructure. The goal of this paper is to propose a
dependable serverless architecture for WBAN applications. This architecture
will improve the dependability of WBAN applications through ensuring scala-
bility, availability, security and privacy by design, in addition to being cost-
effective. This paper presents a detailed price comparison between two leading
cloud service providers. Additionally, this paper reports on the findings from a
case study which evaluated security, scalability and availability of the proposed
architecture. This evaluation was conducted by load testing and rule-based
intrusion detection.

Keywords: Wireless body area network � Cloud computing � Serverless
architecture

1 Introduction

With the rapid growth of wireless communication and sensor technology, Wireless
body area network (WBAN) applications are an increasingly important technology in
providing healthcare services. WBAN applications can provide an affordable health-
care service with real-time monitoring [1]. A WBAN application can provide long-term
health monitoring of a patient’s physiological states including body temperature, blood
pressure and heart rate without constraining their normal activities. These sensor-based
applications can be used to monitor patients with different chronic diseases such as
diabetes, hypertension, and cardiovascular disease [2]. In [3], the authors proposed a
solar-powered sensor-based smartphone healthcare application to display data from

© Springer Nature Switzerland AG 2019
Y. Papadopoulos et al. (Eds.): IMBSA 2019, LNCS 11842, pp. 239–254, 2019.
https://doi.org/10.1007/978-3-030-32872-6_16

http://orcid.org/0000-0002-9285-5019
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32872-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-32872-6_16

multiple sensor nodes. Sensors and smartphones can be combined with cloud com-
puting to provide smart and affordable healthcare systems.

Cloud computing is a model which provides on-demand self-service for provi-
sioning resources and rapid elasticity with minimal management effort and service
provider interaction [4]. Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) are three types of service model available in cloud
computing. Currently, Amazon web services (AWS), Microsoft Azure, Google and
IBM are the leading cloud service providers. According to the Gartner magic quadrant
2018 report, AWS and Azure are recognised as leaders in IaaS.

In [5], the authors propose a remote healthcare application developed using a
combination of Android apps and cloud computing to provide medical services for
older adults. In a healthcare application, it is necessary to ensure minimal latency while
exchanging information between sensor devices and servers. This minimal latency will
increase the availability of patient health record for providing real-time healthcare
service. In [6], the authors presented a cloud-based smart healthcare monitoring system
using a docker container-based virtual environment to reduce latency and bandwidth.

As WBANs have limited memory, energy and computing power, a scalable high-
performance computing and storage infrastructure is required to provide real-time data
processing and storage. Serverless computing started a new era in the cloud computing
industry, allowing minimum maintenance and providing cost-effective infrastructure
for application development. Serverless computing is a cloud computing execution
model where a cloud provider will run the server and dynamically manage the resource
allocation. Serverless computing only charges for execution time, which helps in
developing a cost-effective service. The goal of this paper is to present a serverless
architecture for developing a dependable cloud-assisted WBAN application. By
dependable we mean the application will be secure, available, scalable and ensure
privacy.

The rest of the research paper is organised as follows; Sect. 2 briefly describes
current trends in cloud computing in WBAN. Section 3 details the proposed serverless
architecture, while Sect. 4 presents the implementation of the proposed architecture.
Load testing results and attack mitigations for the proposed architecture are presented
in Sect. 5. Finally, Sect. 6 concludes the paper by detailing future work.

2 Cloud Computing in WBAN

A fundamental issue in a WBAN healthcare application is the effective and efficient
management of a large amount of data generated from sensor nodes. Cloud infras-
tructure can provide scalability of data storage, perform data analysis and give access to
the user’s health records [7]. In [8], the authors proposed a SaaS approach called
BodyCloud. This SaaS approach supports the storage and management of sensor data
streams for sensor-based healthcare applications. It also provides offline and online
processing of stored data by using Google PaaS infrastructure, which allows for rapid
prototyping of applications, easy customisation of architectural components, and
scalability. In [9], the authors present cloudlet-based efficient WBAN healthcare
applications which provide reliable large-scale sensor data to the end user. The

240 P. C. Paul et al.

proposed prototype consists of a virtual machine which provides scalable data storage
and processing infrastructure for large-scale WBAN systems. Sensor nodes used in a
WBAN application can have different data transmission rates which require optimal
resources for computing to avoid performance degradation or data loss. In [10], the
authors proposed a cloud-based experimental framework named Cloud-WBAN, which
will automatically adjust computing resources based on data volume and application
type.

In [11], the authors proposed a green cloud-assisted WBAN based health moni-
toring service by adjusting the sleep time of sensor nodes for energy saving. The
authors proposed to use the cloud-based MapReduce algorithm to analyse sensing
frequency of decentralised data transmission between cloud and sensor nodes. In [12],
the authors proposed a virtual hospital architecture by integrating WBAN and software-
defined networking (SDN) in cloud computing to provide a better quality of service. As
cloud computing provides scalability, elasticity and cost efficiency, the SDN will add
further dimensions by providing adaptability and high bandwidth capability.

As sensor nodes of a WBAN application generate large amounts of data, cloud
computing can provide a scalable storage option in addition to assisting with pro-
cessing data in real-time. Cloud computing can also help with quick prototyping and
deployment of the application. Furthermore, easy customisation of cloud infrastructure
will help with feature enhancement of WBAN applications.

3 Proposed Serverless Architecture

Serverless computing is getting popular as a new and compelling paradigm for the
development of cloud-based applications, largely due to the recent migration of
enterprise applications to containers and microservices [13]. In the traditional cloud
computing scenario, the healthcare application provider will pay a fixed and recurring
cost, whether the application is used or not. In serverless computing, the user will only
pay per-execution, not for the idle time. Serverless computing helps the developer to
build a larger application using Function-as-a-Service (FaaS) platforms where each
component of the application can scale separately. It also gives the flexibility to
develop an application without thinking about managing infrastructure.

To develop system architecture, we first need to gather requirements and define the
use cases. In this research paper, we choose a fitness tracking application designed by a
mid-size enterprise, Company A, located in Ireland. This fitness tracking application
consists of a wearable device which sends sensor data to a mobile application. This
mobile application then transmits the data received from the sensors to a cloud-based
backend application for further analysis. The user can access previously uploaded
sensor data through the mobile application. Additionally, a user management process
needs to be in place to manage sign in, sign up, and profile updates. This section
presents an overview of the services required to develop the fitness tracking applica-
tion, along with the cost structure of providing these required services from two leading
cloud providers, that is AWS and Azure.

A Serverless Architecture for WBAN Applications 241

3.1 Domain Name System Service

Amazon Route 53 is a highly available, scalable and cost-effective Domain Name
System (DNS) service for translating a domain name to an IP address. It can be used to
manage user traffic globally through a variety of routing types, including latency-based
routing or Geo DNS [14]. Additionally, it can also connect user requests to other AWS
services such as Elastic load balancer, Amazon S3, CloudFront and API Gateway. The
Azure DNS service also provides a similar service by using the Microsoft global
network of name servers along with anycast networking. To provide high availability
and faster performance, each DNS query is resolved by the closest available DNS
server [15]. AWS Route 53 and Azure DNS have a similar monthly charge which is
based on the number of hosted zones. AWS Route 53 ensures availability and traffic
management using latency-based and geoproximity based routing protocols.

3.2 User Management and Authentication Service

Amazon Cognito is an authentication, authorisation and user management service for
web and mobile applications. The user can sign up and sign in using their user name
and password, without building and managing a backend solution or any infrastructure
to handle identity management [16]. The Cognito service can save authentication
information locally inside the device, which will allow applications to work offline. In
the Azure cloud environment, Azure Active Directory (Azure AD) B2C is a business-
to-consumer identity management service [17]. This service helps to customise and
control how the user will communicate with the application. Azure AD B2C was
developed using OpenID connect and OAuth2.0 protocols to provide security tokens
and secure access to resources. This authentication and authorisation service will
ensure privacy by preventing unauthorised access of personally identifiable
information.

AWS Cognito charges are based on the number of monthly active users, while
Azure AD B2C charges for each authentication. Both services have additional charges
for enabling a multi-factor authentication service.

3.3 Content Delivery Service

A content delivery web service is used to deliver content to end users with low latency,
high data transfer speeds, and no minimum usage commitments. When a user places a
request for content, it will be automatically routed to the nearest edge location, so
content is delivered with the best possible performance. Both cloud providers have
content delivery services named AWS CloudFront and Azure CDN. Azure CDN serves
the content from 30 point of presence (PoP) server locations worldwide [18], while
AWS CloudFront serves content from 79 PoP server locations across 49 countries [19].
CloudFront supports dedicated custom SSL certificates and field level encryption.

AWS CloudFront provides content delivery from more PoP server locations
compared to Azure CDN. Both service providers have a different pricing model based
on the origin of the request, but in CloudFront there is no charge for the first 2,000,000
HTTP/HTTPS requests and 50 GB data transfer out per month for the first year.

242 P. C. Paul et al.

3.4 Serverless Computing Service

Developing applications using serverless architectures requires event-driven or micro
computing services to virtually run code for any application or backend service without
the need to provision or manage servers. This service also needs to provide high
scalability and availability with zero hardware and system administration.

AWS Lambda is an event-driven computing service which helps to build a
serverless backend system to handle requests from the web and mobile applications
using API Gateway [20]. The Lambda service helps to run and trigger code in parallel
processes and scales with the size of the workload. By integrating Cognito services,
Lambda can authenticate each request by using access tokens. Lambda supports several
programming languages, including Java, Go, PowerShell, Node.js, C#, Python, and
Ruby.

Azure Functions or Azure Service Fabric can be used to develop a serverless
application using event-driven or micro computing services [21]. Azure Functions can
directly integrate with mobile or web applications without attaching an application
gateway. Azure Functions support C#, JavaScript, F# and Python in preview mode
which is only available on request. Preview mode is excluded from the Microsoft
service level agreement and might not be brought forward into general release.

Azure Functions provide different pricing models such as per execution, resource
consumption and premium plan, whereas AWS Lambda only has a pay-as-you-go
pricing model. However, AWS Lambda supports more programming languages than
Azure Functions, which allows more flexibility during development of the application.

3.5 API Management Service

An API management service is required to publish APIs to integrate web or mobile
applications with serverless backend services. The Amazon API Gateway and
Azure API Management services are fully managed services which makes it easier for
developers to create, publish, maintain, monitor, and secure RESTful application
programming interfaces (APIs) at any scale and to expose backend and frontend
HTTPs endpoints [22]. The Amazon API Gateway uses the Amazon CloudFront edge
location service and can therefore provide lower latency responses when compared to
Azure. The Azure API management service has three different pricing plans whereas
the AWS API Gateway charges per request [23]. Additionally, the AWS API gateway
supports multiple stages for API development, which provides better API lifecycle
management when compared to Azure.

3.6 Database Service

In a serverless application, it is better to have a database with low latency that requires
zero maintenance. Amazon DynamoDB is a fully managed fast and flexible cloud
NoSQL database service. It is suitable for all applications which require single-digit
millisecond latency at any scale [24]. This database supports both document and key-
value data models. In DynamoDB, the user only needs to create a database table and set
throughput. The rest of the database management tasks such as hardware or software

A Serverless Architecture for WBAN Applications 243

provisioning, autoscaling, and automatic partitioning will be handled by AWS. The
Azure Cosmos DB is a fully managed, globally distributed, multi-model database
service with high scalability and single-digit read-write latency with multiple NoSQL
supports such as document, graph database and key-value data models [25].

In DynamoDB the user is charged per read and write request, whereas Cosmos DB
charges for provisioned throughput and consumed storage by the hour. Furthermore,
the databases are distinguished by their backup processes, as Cosmos DB provides
automatic backup whereas it is a manual process with DynamoDB.

3.7 Web Application Firewall

Finally, a firewall service will be required to protect web and mobile applications from
common web exploits which could affect application availability, compromise security,
or consume excess resources. The AWS Web Application Firewall (WAF) provides
control over which traffic to allow or block to the web application by defining cus-
tomisable web security rules. WAF charges per rule [26]. By creating a custom rule, the
WAF can block common attack patterns, such as distributed denial-of-service (DDoS)
attack, SQL injection or cross-site scripting. The WAF can integrate with other services
such as CloudFront, Elastic load balancer and the API gateway. A lambda function can
be used to analyse the CloudFront access log and automatically update security rules in
the WAF.

In the Azure cloud platform, the WAF service can be enabled as part of the
Application Gateway [27]. This Application Gateway WAF service is based on the
Core Rule Set 3.0 provided by the Open Web Application Security Project (OWASP).
This WAF service does not provide any protection against DDoS attacks. To protect
the application from DDoS attacks in the Azure cloud platform, a separate service
named Azure DDoS Protection needs to be enabled. It comes with a fixed monthly
charge, whereas AWS WAF charges are based on the number of rules created.

3.8 SSL/TLS Certificate

SSL/TLS certificates are used to secure communication between two entities in the
system. AWS certificate manager (ACM) provides easy provisioning, management and
deployment of public or private SSL/TLS certificates. ACM also provides easy cer-
tificate integration with other AWS services such as elastic load balancer, CloudFront
and API Gateway. Azure only provides a public certificate for the Azure CDN and App
services. Both service providers provide public certificates free of charge. There is an
additional charge for private certificates.

3.9 Cost Comparison Between Azure and AWS

In this section, a cost comparison between the selected AWS and Azure services is
presented. This comparison is based on different parameters such as the number of
users, database size and read and write requests per second. During the cost calculation,
a pricing calculator provided by the respective cloud providers for the Ireland region
was used. As AWS and Azure use different pricing models, in some cases, an

244 P. C. Paul et al.

adjustment will be required for the selected parameters. For example, the AWS API
management charge is based on the number of requests per second, whereas the
Azure API management has four tiers including developer, basic, standard and plat-
inum. The basic tier was selected for Azure API management. AWS Cognito charges
for the number of active users in a month, whereas Azure AD B2C charges for the
number of authentication requests. Based on Company A’s business goal to have
50,000 monthly active users with an average of five authentication requests per user,
50,000 monthly active users for AWS Cognito and 250,000 authentication requests for
Azure are considered in the calculation. Additionally, one Web access control list
(WEB ACL) and 15 custom rules for AWS WAF, 10 TB data transfer for content
delivery and a database size of 50 GB was selected for the calculation. Table 1 outlines
the cost for individual services of Azure and AWS.

During the cost analysis, we notice a large difference in the API management and
WAF services. For API management, Azure requires the combination of Application
gateway and API management services which results in higher costs compared to
AWS API Gateway. AWS API Gateway charges are based on the number of requests,
whereas Azure charges are based on the tier subscription and the number of instances.
For WAF, Azure provide a package that secures web and infrastructure for a fixed
monthly price. For AWS, the user needs to configure web security rules which cost $1
per rule. To secure the infrastructure with AWS, the user can rely on AWS with zero
cost. For user management and authentication services, AWS Cognito charges are
based on monthly active users and no charge will be required with free tier support, but
Azure B2C will charge $560 for 250,000 authentications.

3.10 Summary of Comparison Between AWS and Azure

After reviewing the services from AWS and Azure, we notice some key differences in
terms of cost and features. AWS will provide more availability in terms of content
delivery due to having more PoP than Azure. AWS Lambda supports more

Table 1. Azure and AWS monthly cost comparison

Service name Azure AWS

Domain name system service $6.50 $6.50
User management and authentication service $560.00 $0
Content delivery service $828 $870
Serverless computing service $96.80 $2.30
API management service $250.62 $5.00
Database service $70.90 $56.89
Web application firewall $3456 $26.00
SSl/TLS certificate (public) $0 $0
Support plan $100 $100
Total $5368.82 $1,066.69

A Serverless Architecture for WBAN Applications 245

programming language options than Azure Functions service. A summary of the
comparisons between AWS and Azure is presented in Table 2.

3.11 System Architecture

After reviewing the available features and cost comparison the AWS cloud platform
was selected to develop the serverless architecture as it will provide larger programing
language support, lower latency for content delivery, easy management of WAF, costs
less and the developer was more familiar with AWS. To develop the fitness tracking
application, the design of the core backend application system started by adding AWS
Cognito. Lambda and DynamoDB were selected to process user requests and store
data. To connect the backend application with mobile applications API gateway was
deployed and attached with CloudFront to ensure wider availability. Additionally, the
integration of Lambda functions allows for the analysis of CloudFront access logs
Finally, Route 53 with an SSL certificate issued from the Certificate manager will be
connected with CloudFront. The serverless architecture is illustrated in Fig. 1.

4 Implementation of the Proposed Architecture

This section describes the configuration process for the different AWS services con-
tained within the proposed architecture.

4.1 Configuration of AWS Services

An AWS Cognito user pool is created to manage all user accounts and configured to
handle end user sign in and sign up requests. The sign up process requires an email
address and username, along with other attributes related to the application such as
name, address, birthdate, gender and phone number. When a user successfully signs in,
Cognito will provide a JWT token with a one-hour expiration time limit. Therefore, the
mobile app will be configured to request a token refresh operation before the token
expiration time. Each table in DynamoDB is created by assigning a name and primary
key with partition and sort keys for better scalability and availability. To minimise the
database cost, each table was provisioned with a capacity of five reads and writes per
second. To ensure scalability, based on DynamoDB best practice guidelines, auto-
scaling was configured with a target utilisation of 70%. Finally, encryption at rest is set
up by assigning a key from the AWS Key Management Service (KMS).

The AWS Lambda platform supports several programming languages such as .
NET, Go, Java, Python, Node.js and Ruby to create functions. During this imple-
mentation, all functions were developed using Node.js 8.10. Based on application
benchmarking, functions to process and retrieve data were configured with 256 MB
memory and 10 s timeout. The rest of the functions related to other use cases such as
user profile creation, getting and updating endpoints and used a minimum of 128 MB
memory with a 5 s timeout. Each function is designed to be invoked by requests
coming from the API gateway. Additionally, a domain name is registered in AWS

246 P. C. Paul et al.

Table 2. Comparison summary between AWS and Azure

Service name AWS Azure

DNS service AWS Route53:
∙ Latency-based and geoproximity based
routing protocols
∙ Pricing model: cost per hosted zone and
number of requests

Azure DNS:
∙ DNS query resolved by the
closest available DNS server
∙ Pricing model: cost per hosted
zone and number of requests

User
management
and
authentication

AWS Cognito:
∙ Offline and online authentication support
∙ Pricing model: charge based on monthly
active users

Azure AD B2C:
∙ Only support online
authentication
∙ Pricing model: charge per
authentication

Content
delivery service

AWS CloudFront:
∙ 79 PoP server locations
∙ Pricing model: charge based on the origin
of the request and data transfer rate with
free-tier support for first year

Azure CDN:
∙ 30 PoP servers worldwide
∙ Pricing model: charge based on
the origin of the request and data
transfer rate with no free-tier
support

Serverless
compute
service

AWS Lambda:
∙ More supported languages and all
generally available for use
∙ Pricing model: pay per execution and
memory consumption

Azure function:
∙ Less supported language with
preview mode
∙ Pricing model: pay per
execution and memory
consumption or premium plan

API
management
service

AWS API gateway:
∙ Multiple API lifecycle stages support
∙ Better response time and lower latency
with CloudFront
∙ Pricing model: pay per request

Azure API management:
∙ No lifecycle stage support for
API
∙ Pricing model: three different
pricing plans: developer, standard
and premium

Database
service

AWS DynamoDB:
∙ Document and key-value data models
∙ Manual backup
∙ Pricing model: pay per read and write
request

Azure Cosmos DB:
∙ Document, graph database and
key-value data models
∙ Automatic backup
∙ Pricing model: pay per
provisioned throughput and
consumed storage

Web
application
firewall

AWS WAF:
∙ Customisable web security rules
∙ Standalone service can be integrated with
other AWS services
∙ Implement DDoS protection by analysing
CloudFront log
∙ Pricing model: pay per web security rule

Azure WAF:
∙ Web security rules not
customizable and managed by the
service provider
∙ Only available with the
Application gateway
∙ For DDoS protection require
Azure DDoS Protection service
∙ Pricing model: a fixed monthly
charge

(continued)

A Serverless Architecture for WBAN Applications 247

Route 53 to route end-user requests using CloudFront. To enable HTTPS, a public
certificate was assigned from the ACM.

4.2 Deploy RESTful API Using API Gateway

The API gateway exposes the AWS Lambda functions as a RESTful API. A new
REST API is created by assigning a name with edge optimised endpoint option to serve
from the end user’s nearest location. As the WAF service is not fully integrated with
the API gateway, the CloudFront access log will be used with the WAF service for
intrusion detection. To fulfil each end user request, the following steps are necessary to
create a RESTful API using the API gateway:

1. Create the API gateway resource with POST method and attach to associated
Lambda function;

2. Configure the API gateway to use Cognito user pool as an authoriser to validate
user requests using JWT tokens before invoking any Lambda function;

3. Deploy API gateway resources with a stage name called “Prod” and collect the
URL;

Table 2. (continued)

Service name AWS Azure

SSL/TLS
Certificate

AWS ACM:
∙ Central certificate management for other
AWS services
∙ Pricing model: no charge for the public
certificate. Additional charge for a private
certificate

∙ Certificates are managed
separately for Azure CDN and
App service
∙ Pricing model: no charge for the
public certificate. Additional
charge for a private certificate

Fig. 1. Proposed serverless architecture for WBAN applications

248 P. C. Paul et al.

4. Create a CloudFront web distribution with HTTPS;
a. Add alternate domain name and respective SSL certificate from the ACM list;
b. Create a root origin entry with default behaviours using the step 3 URL;
c. Assign an S3 bucket to store the access log and create distribution;

5. Finally, configure Route 53 entry with respective CloudFront distribution.

This proposed architecture uses the OWASP top 10 recommendations for intrusion
detection and prevention. An AWS CloudFormation template was used to deploy the
WEB ACL, condition types and rules. Additionally, a lambda function was used to
analyse the CloudFront access log to identify the source of DDoS attacks and auto-
matically update the security rules in the WAF.

5 Performance Analysis of Proposed Architecture

Performance of the proposed architecture was evaluated by load testing and carrying
out a vulnerability assessment. Load testing will evaluate the scalability and availability
of the system. A vulnerability assessment will help to identify the weaknesses, potential
areas of intrusion, and configuration issues in the system. It will also help to implement
proper countermeasures for identified vulnerabilities to ensure the availability and
security of the proposed architecture. To evaluate the system, load testing and vul-
nerability assessments were conducted in two phases: (1) In-house and (2) Penetration
testing service provider (PTSP). Due to having limited resources for creating real-world
scenarios for load testing and limited knowledge for conducting a vulnerability
assessment in-house, we consulted with several PTSPs. A PTSP was selected based on
budget and experience.

In the following sections, we first provide the load test results and then describe
how the proposed architecture is affected by common web exploits such as distributed
denial-of-service (DDoS) and SQL injection attacks.

5.1 Load Testing Results

A load test is used to evaluate how the application or REST API backend will perform
with hundreds or thousands of concurrent users requests, and respective data volumes
in a real-life scenario. Load testing was performed for two scenarios: (1) users will first
download the mobile app and sign up for an account; (2) a user signs in to the mobile
app and starts sending sensor data along with other profile metadata. Table 3 presents
the list of REST API endpoints used during the load test.

Table 3. List of rest API endpoints for load testing

Scenario 1 (Sign Up) Scenario 2 (Sensor data transmission)

∙ Cognito: SignUp endpoint
∙ Cognito: InitiateAuth endpoint
∙ API:/user/registration
∙ API:/user/profile

∙ Cognito: Sign In
∙ Cognito: InitiateAuth
∙ API:/user/profile
∙ API:/sensordata/upload
∙ API:/sensordata/get
∙ API:/user/profile/update

A Serverless Architecture for WBAN Applications 249

In-House Load Testing: It is recommended to use a modern, powerful and easy to
use tool for load testing. A custom bash script with the help of AWS SDK (Command
line version) was designed to test the sign up and sign in processes. Additionally, the ab
benchmarking tool (Apache HTTP server benchmarking tool) was used to generate
adequate traffic for testing API endpoints. During the test process, 100 sample users
were created with randomly generated emails and passwords using a bash script. All
users were successfully created in the AWS Cognito User pool. No exceptions or time-
outs were noticed during this test. To assess the scalability and availability of the API,
the ab benchmarking tool was used with ten concurrent users, each generating 200 API
requests. The authentication tokens were used to verify each API request. During
testing, 15% of the requests for one of the API endpoints timed-out due to throughput
issues with the DynamoDB tables. Therefore, target utilisation was reduced to 60% for
DynamoDB tables related to this endpoint. After the reconfiguration of DynamoDB the
same test was run again and no timeout issues were noticed.

PTSP: To perform the load test, the PTSP used the Artillery tool with different
combinations of arrival rates and durations. Artillery is a modern, powerful and easy-
to-use distributed load testing toolkit. Distributed load testing will help to create real-
world scenarios by generating traffic from different locations worldwide. The arrival
rate is the number of incoming users per second. Generally, this is ramped up evenly
from a start point to an endpoint throughout the test period. During the load test three
rounds of tests were conducted with (1) arrival rate starting with 1 and ending with 5
for 300 s (henceforth known as Arrival rate A) (2) arrival rate starting with 5 and
ending with 10 for 900 s (henceforth known as Arrival rate B) (3) arrival rate starting
with 5 and ending with 10 for 1800 s (henceforth known as Arrival rate C). Table 4
illustrates the load test results for both scenarios for different arrival rates.

Table 4. Load test results for two scenarios by the PTSP

Scenario 1 (Sign Up) Scenario 2 (Sensor data transmission)

Arrival rate A:
Start: 01
End: 05
Duration: 300 s

No timed-out requests
Latency: <0.5 s

No timed-out requests
Latency: <1.0 s

Arrival rate B:
Start: 05
End: 10
Duration: 900 s

No timed-out requests
Latency: <0.5 s

*10% requests timed-out
Latency: >5.0 s (for *10% requests)
Test result after DynamoDB reconfiguration:
No Timed-out requests
Latency: <1.0 s

Arrival rate C:
Start: 05
End: 10
Duration: 1800 s

No timed-out requests
Latency: <0.5 s

*25% requests timed-out
Latency: >20.0 s (for *25% requests)
Test result after DynamoDB reconfiguration:
No timed-out requests
Latency: <1.0 s

250 P. C. Paul et al.

For scenario 1, a significant load was created with over 10,000 users signing up
over 30 min. No issues were encountered with either timed-out requests (HTTP 504) or
high latency. For scenario 2, no issues were encountered with either timed-out requests
or high latency for Arrival rate A, however, for Arrival rate B, 10 percent of requests
encountered a latency greater than 5 s and thus timed-out. For Arrival rate C more than
25% of requests encountered a latency greater than 20 s and thus timed-out. The key
finding is that the DynamoDB takes a little time to scale, and the sudden high-traffic
spikes caused the time-outs and throughput problems. To mitigate this issue, an
adjustment was made in DynamoDB. Using the auto-scaling configuration feature, the
minimum read and write capacity per second was increased to 10, and the target
utilisation was reduced to 55% for Arrival rate B. For Arrival rate C the minimum read
and write capacity per second was increased to 20 and the target utilisation was reduced
to 45%. After making these configuration changes a similar test was run again for
scenario 2 for both Arrival rates B and C, resulting in latency being reduced to <1.0 s
and no requests timed-out.

5.2 Vulnerability Assessment

In-House Assessment: A denial-of-service scenario was created using the ab bench-
marking tool which generated 400 requests from 30 concurrent users. Additionally, an
IP address-based security rule was configured in the AWS WAF to prevent more than
100 requests per minute from an address. Results indicate that the lambda function
automatically identified the IP address which generated more than 100 requests per
minute. Finally, this lambda function also updated the source IP address in the WAF
block list. The result shows that the proposed architecture assists to ensuring the
availability of the system by preventing more than 100 requests from the same source
over a short period.

Assessment by PTSP: The PTSP uses manual and automated methods to assess and
perform vulnerability testing to attempt to gain access or compromise the service. The
tools and methods used for exploitation during penetration testing are the same as those
commonly used by people trying to compromise systems with malicious intent. Before
testing begins, clear ground rules were established for stop points of the testing process,
which will help to prevent unexpected damage to systems. For instance, when testing
an API which contains an SQL injection flaw, it is enough to identify the compromise
without attempting to obtain further access to the database servers. Network requests
are relayed through several tools for manual and automated inspection, to allow lis-
tening and watching what the platform was doing. These data dumps are then taken
into different tools and tested for any injection points and manual investigation. Table 5
presents the list of tools used during the vulnerability assessment process:
Additionally, manual and scripted testing was used to examine the results found during
automated testing. Below are some of the major vulnerabilities found during the
assessment process along with possible solutions.

Potential Denial of Service Points: During testing, there were several potential DDoS
points found. These are requests that timeout within 10 s due to malformed data inside

A Serverless Architecture for WBAN Applications 251

the payload. These can be run multiple times in multiple threads, driving up the usage
and putting stress and strain on the service.

Solution: Action was taken in the API endpoints backend lambda code to handle
potential malformed data gracefully by assessing each field from the payload. Addi-
tionally, a proper HTTP response was added to allows the user to retry a request later.

Security Misconfiguration – Stack Traces Enabled :During testing, it was discov-
ered that stack traces were enabled for some API endpoints.

Solution: Stack traces were turned off in the lambda code base, and logging was copied
to an encrypted AWS S3 bucket for future analysis from AWS CloudWatch.

After making the necessary changes in the lambda code and infrastructure to
address the issues found during the assessment process, we informed the PTSP. A re-
test of the updated system was unable to reproduce the vulnerabilities.

In summary, load testing and vulnerability assessments are required to evaluate
system availability, scalability and security. In-house testing helped to identify issues
and implement countermeasures in the early stages of the development lifecycle. The
DynamoDB throughput bottleneck issue was identified by both in-house and
PTSP. This issue required reconfiguration of the DynamoDB. Additionally, the PTSP
identified other issues which required code changes in the Lambda functions.

6 Conclusion

Cloud computing is becoming a popular way to develop WBAN based healthcare
applications which provide real-time monitoring. The recent introduction of serverless
computing in the cloud paradigm helps developers to build more dependable appli-
cations which are highly scalable, available and cost-effective. In this paper, we pre-
sented a serverless architecture using AWS serverless computing to develop a
dependable WBAN based healthcare application which is secure, highly scalable and

Table 5. List of tools used for vulnerability assessments

Name Description

OWASP ZAP The open web application security project - Zed Attack Proxy (ZAP) is a
penetration testing tool for finding vulnerabilities in applications

BURP SUITE Burp Suite is a platform for performing security testing of applications
NMAP Nmap (Network mapper) is a free and open source utility for network

exploration or security auditing
SSLSCAN SSLScan tests for different SSL exploits, such as heartbleed and the

POODLE vulnerability, it also tests the cipher suites and key exchanges
HYDRA brute
force

Hydra is a rapid dictionary attacker which can be configured against over
50 different protocols. It is most commonly used for brute forcing user
accounts to test for weak passwords

KALI LINUX Kali is a Debian-derived Linux distribution designed for digital forensics
and penetration testing installed with hundreds of different tools

252 P. C. Paul et al.

available. Serverless computing applications can be developed without thinking about
the maintenance of the infrastructure. Furthermore, as the cost model for serverless
computing is based on execution time, the cost of the core backend services will be
minimised. We also performed load testing and vulnerability assessment by in-house
and PTSP to test the security, scalability and availability of the proposed architecture.
Load tests indicated some initial latency and time-out problems which were resolved by
the reconfiguration of DynamoDB. Additionally, the mitigation of DDoS attacks using
the WAF was tested to verify the availability of the application. Future work will
involve extending the architecture by integrating AWS CloudTrail for privacy gover-
nance, AWS Kinesis Data Analytics and the AWS EMR service to perform big data
analysis.

Acknowledgement. This work was supported with the financial support of the Science Foun-
dation Ireland grant 13/RC/2094 and co-funded under the European Regional Development Fund
through the Southern and Eastern Regional Operational Programme to Lero - the Irish Software
Research Centre (www.lero.ie). Additionally, this work was partly funded by the DEIS H2020
project (Grant Agreement 732242).

References

1. Bouazizi, A., Zaibi, G., Samet, M., Kachouri, A.: Wireless body area network for e-health
applications: overview. In: International Conference on Smart, Monitored and Control Cities
(2017)

2. Taha, M.S., Rahim, M.S.M., Hashim, M.M., Johi, F.A.: Wireless body area network
revisited. Int. J. Eng. Technol. 7, 3494–3504 (2018)

3. Shaji, J.E., Varghese, B., Varghese, R.: A health care monitoring system with wireless body
area network using IoT. Int. J. Recent Trends Eng. Res. 3, 112–117 (2017)

4. Mell, P., Grance, T.: The NIST definition of cloud computing (2011)
5. Luarasi, T., Durresi, M., Durresi, A.: Healthcare based on cloud computing. In: Proceedings

- 16th International Conference on Network-Based Information Systems. NBiS 2013,
pp. 113–118 (2013)

6. Kavita, J., Srichandan, S., Ashok, K.T., Sahoo, L.B., Bhabendu, K.M., Debasish, J.: An IoT-
cloud based smart healthcare monitoring system using container based virtual environment
in Edge device. In: ICETIETR, pp. 1–7 (2018)

7. Fortino, G., Di Fatta, G., Pathan, M., Vasilakos, A.V.: Cloud-assisted body area networks:
state-of-the-art and future challenges. Wireless Netw. 20, 1925–1938 (2014). https://doi.org/
10.1007/s11276-014-0714-1

8. Fortino, G., Parisi, D., Pirrone, V., Di Fatta, G.: BodyCloud: a SaaS approach for community
body sensor networks. Future Gener. Comput. Syst. 35, 62–79 (2014)

9. Quwaider, M., Jararweh, Y.: Cloudlet-based efficient data collection in wireless body area
networks. Simul. Model. Pract. Theory 50, 57–71 (2015)

10. Bhardwaj, T., Sharma, S.C.: Cloud-WBAN: an experimental framework for cloud-enabled
wireless body area network with efficient virtual resource utilization. Sustain. Comput.
Inform. Syst. 20, 14–33 (2018)

11. Chiang, H.P., Lai, C.F., Huang, Y.M.: A green cloud-assisted health monitoring service on
wireless body area networks. Inform. Sci. (Ny) 284, 118–129 (2014)

A Serverless Architecture for WBAN Applications 253

http://www.lero.ie
http://dx.doi.org/10.1007/s11276-014-0714-1
http://dx.doi.org/10.1007/s11276-014-0714-1

12. Al Shayokh, M., Kim, J.W., Shin, S.Y.: Cloud based software defined wireless body area
networks architecture for virtual hospital. In: 10th EAI International Conference on Body
Area Networks, pp. 4–7 (2015)

13. Baldini, I., et al.: Serverless computing: current trends and open problems. In: Chaudhary,
S., Somani, G., Buyya, R. (eds.) Research Advances in Cloud Computing, pp. 1–20.
Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5026-8_1

14. AWS: AWS Route53. https://aws.amazon.com/route53/
15. Azure: Azure DNS. https://azure.microsoft.com/en-in/services/dns/
16. AWS: AWS Cognito. https://aws.amazon.com/cognito/
17. Azure: AD B2C. https://azure.microsoft.com/en-us/services/active-directory-b2c/
18. Azure: Azure CDN. https://azure.microsoft.com/en-gb/services/cdn/
19. AWS: AWS CloudFront. https://aws.amazon.com/cloudfront/
20. AWS: AWS Lambda – Serverless Compute. https://aws.amazon.com/lambda/
21. Azure: Azure Functions. https://azure.microsoft.com/en-gb/services/functions/
22. AWS: Amazon API Gateway. https://aws.amazon.com/api-gateway/
23. Azure: API Management. https://azure.microsoft.com/en-us/services/api-management/
24. AWS: Amazon DynamoDB. https://aws.amazon.com/dynamodb/
25. Azure: Azure Cosmos DB. https://azure.microsoft.com/en-us/services/cosmos-db/
26. AWS: AWS WAF - Web Application Firewall. https://aws.amazon.com/waf/
27. Azure: WAF. https://docs.microsoft.com/azure/application-gateway/waf-overview/

254 P. C. Paul et al.

http://dx.doi.org/10.1007/978-981-10-5026-8_1
https://aws.amazon.com/route53/
https://azure.microsoft.com/en-in/services/dns/
https://aws.amazon.com/cognito/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-gb/services/cdn/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-gb/services/functions/
https://aws.amazon.com/api-gateway/
https://azure.microsoft.com/en-us/services/api-management/
https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://aws.amazon.com/waf/
https://docs.microsoft.com/azure/application-gateway/waf-overview/

	A Serverless Architecture for Wireless Body Area Network Applications
	Abstract
	1 Introduction
	2 Cloud Computing in WBAN
	3 Proposed Serverless Architecture
	3.1 Domain Name System Service
	3.2 User Management and Authentication Service
	3.3 Content Delivery Service
	3.4 Serverless Computing Service
	3.5 API Management Service
	3.6 Database Service
	3.7 Web Application Firewall
	3.8 SSL/TLS Certificate
	3.9 Cost Comparison Between Azure and AWS
	3.10 Summary of Comparison Between AWS and Azure
	3.11 System Architecture

	4 Implementation of the Proposed Architecture
	4.1 Configuration of AWS Services
	4.2 Deploy RESTful API Using API Gateway

	5 Performance Analysis of Proposed Architecture
	5.1 Load Testing Results
	5.2 Vulnerability Assessment

	6 Conclusion
	Acknowledgement
	References

