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Publishable Executive Summary 
Cyber-Physical Systems (CPS) provide enormous potential for new types of applications, services and 

business models in any embedded systems domain, such as automotive, rail, healthcare or home 

automation. Overall, we anticipate a future of heavily interconnected, distributed, heterogeneous and 

intelligent systems, which are bound to have a significant economical and societal impact in the years to 

come.  

However, several challenges need to be tackled before the full potential of CPS can be unlocked. One core 

challenge is to ensure the trustworthiness and dependability of single and composite systems, as 

established approaches and standards were designed with closed standalone systems in mind, thus 

building on a complete understanding and analysability of a system and its relevant environment. As this is 

no longer a given, we urgently require new types of approaches that do not (solely) rely on this basic 

assumption (now rendered void).  

A general solution concept involves shifting parts of the assurance activities into runtime, where unknowns 

and uncertainties can be resolved dynamically. To this end, it is necessary to equip the constituent systems 

with dedicated and adequate modularised and formalised dependability information. The key innovation 

that is the aim of DEIS is the corresponding concept of a Digital Dependability Identity (DDI). A DDI contains 

all the information that uniquely describes the dependability characteristics of a CPS or CPS component. 

DDIs are synthesised at development time and are the basis for the (semi-)automated integration of 

components into systems during development, as well as for the fully automated dynamic integration of 

systems into systems of systems in the field.  

In this document we build upon the initial version of the ODE meta-model and present version 2 of the 

model, which now includes a new security package. The main goal of this document is to specify the 

algorithms needed to provide adequate engineering support for the generation and integration of DDIs. 

With this goal in mind, tool transformations are specified so that DDI’s can be generated from information 

already stored in existing tools. Additionally, this document demonstrates how tools can be used to 

generate DDI’s in a semi-automated way, and how the integration of DDI into existing systems can be 

achieved through the use of supported tools in a semi-automated way, thus increasing efficiency as well as 

the confidence in the system’s dependability. For the integration of DDIs, the information contained in DDIs 

must be transformed back into an appropriate (ODE-compliant) format that can be used in the tool chain 

used by the integrator. 

Finally, verification of the utility of DDI is demonstrated through presenting how DDIs support a number of 

DEIS use cases and engineering stories, and how DDIs can be used in applications that must comply with 

the new General Data Protection Regulations (GDPR). 

DEIS aims at providing comprehensive tool support for DDI, covering the supported/semi-automated 

synthesis of DDI as well as the (semi-)automated integration at development time. Moreover, it is our aim 

to support multi-tool scenarios, where DDI are exchanged and evolved among different development 

teams and tools.  
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1 Introduction 
Cyber-Physical Systems (CPS) provide enormous potential for new types of applications, services and 

business models in any embedded systems domain, such as automotive, rail, healthcare or home 

automation. Overall, we anticipate a future of heavily interconnected, distributed, heterogeneous and 

intelligent systems, which are bound to have a significant economical and societal impact in the years to 

come.  

However, several challenges need to be tackled before the full potential of CPS can be unlocked. One core 

challenge is to ensure the trustworthiness and dependability of single and composite systems, as 

established approaches and standards were designed with closed standalone systems in mind, thus 

building on a complete understanding and analysability of a system and its relevant environment. As this is 

no longer a given, we urgently require new types of approaches that do not (solely) rely on this basic 

assumption (now rendered void).  

A general solution concept involves shifting parts of the assurance activities into runtime, where unknowns 

and uncertainties can be resolved dynamically. To this end, it is necessary to equip the constituent systems 

with dedicated and adequate modularised and formalised dependability information. The key innovation 

that is the aim of DEIS is the corresponding concept of a Digital Dependability Identity (DDI). A DDI contains 

all the information that uniquely describes the dependability characteristics of a CPS or CPS component. 

DDIs are synthesised at development time and are the basis for the (semi-)automated integration of 

components into systems during development, as well as for the fully automated dynamic integration of 

systems into systems of systems in the field.  

This deliverable builds on the initial version of the ODE meta-model and specifies the algorithms needed to 

provide adequate engineering support for the generation and integration of DDIs. In order to generate a 

DDI, means of completing the following tasks need to be developed: 

1. For the generation of DDI from existing safety engineering artefacts, tool-transformations shall be 

specified to translate the information stored in existing tools like ComposR, HiP-HOPS, ACME and safeTbox 

into an ODE-compliant model.  

2. Generation of a DDI in a (semi-)automated way from ODE-compliant models. A DDI is designed to mask 

as much information as possible and to only provide what is absolutely required for a sound integration.  

The information contained in the full-fledged ODE-compliant model (i.e. the white box dependability case 

specification) is to be abstracted, simplified and formalized for the DDI. In order to enable a degree of 

automation in the construction of a DDI, a system for the synthesis of DDI’s is required. 

3. With regards to the integration of DDIs, the information contained in DDIs must be transformed back 

into an appropriate (ODE-compliant) format that can be included in the tool chain used by the integrator. 

When a component is integrated into a system, or when a system is integrated into another system, 

corresponding DDIs shall enable (semi-)automated integration into the dependability case of the overall 

system and thus significantly increase efficiency. A similar case is the exchange or the modification of a 

component and the respective DDI, when the impact of the change is to be analysed on the level of the 

overall integrated system.  
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Section 3 provides a recap of version 1 of the DDI concept, along with the modifications that have been 

made for the Open Dependability Exchange (ODE) Meta-model version 2. This section is the core of this 

document as it describes on the one hand, which types engineering tasks are to be (semi-)automatically 

supported by DDIs and on the other hand the conceptual basis, how we envision semi-automated 

generation and integration of DDIs to happen technologically. 

Section 4.1 provides the meta-model for ODE version 2 which now includes a threat and risk analysis 

package. Section 4.2 describes the Structured Assurance Case Meta-Model (SACM) and its extension 

mechanisms, which constitute the backbone of the ODE. Section 4.3 describes the auxiliary modular ODE 

packages, which provide coverage for architectural modelling, hazard and risk analysis, threat and risk 

analysis, failure logic modelling and dependability requirements. Section 4.4 provides a certification meta-

model which has been developed by the AMASS project. This meta-model has been developed for process 

and certification modelling and DEIS plans to use part of it in conjunction with ODE and SACM. Section 4.6 

highlights the ODE’s flexibility by briefly mentioning the potential for interoperation with pre-existing, 

established modelling languages such as SysML, EAST-ADL and AADL. 

Section 5.1 describes the utilization of DDI in the European Train Control System use case, while Section 

5.2 describes how the DDI can be used in applications involving General Data Protection Regulations 

(GDPR). 

2 Engineering Framework for the Generation and Integration of DDI 

2.1 DDI concept evolution 

Section 3.1 provides an outline of the initial DDI concept, in addition to the modifications and extensions 

that now make up version 2 of the ODE meta-model. 

2.1.1 Recap of the DDI concept  

The general concept of the ODE meta-model and the DDI was designed on the basis of the diverse previous 

work of the DEIS consortium and the DEIS objectives and vision. A fundamental outcome of the ODEv1 was 

the decision to use SACM 2.0, the Structured Assurance Case Meta-Model of the Object Management 

Group, as a core ingredient for the ODE meta-model. Using the SACM entails several advantages which 

include: 

1. It is already standardised and relatively mature, which might help us get the DDI concept and the 

ODE meta-model accepted and adopted eventually.  

2. SACM is an exchange format for structured assurance cases and provides corresponding means for 

modularisation.  

These properties render SACM a good candidate for being utilised as a backbone for the ODE meta-model. 

To illustrate the utilisation of the SACM in the context of the ODE, consider the example depicted in Figure 

1. It shows how an argumentation structure can be the front and centre artefact within a DDI. All other 
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relevant artefacts – functional design, hazard and risk analyses or failure logic models – are directly linked 

to elements of the argumentation.  

 

Figure 1 - SACM-based safety argumentation as the backbone of a DDI 

The integration of different systems, each equipped with a DDI, is then also done by linking the modularised 

assurance case fragments of the systems (cf. Figure 2). This means that in an integration scenario, there is 

no direct linkage between any other safety engineering artefacts (e.g., failure logic models) beyond the 

argumentation (at least not initially). Everything is interlinked and interrelated via the argumentation 

structure of the assurance case, which thus constitutes the backbone of all DDIs (regardless of whether the 

DDI is a constituent system DDI or an integrated system-of-systems DDI). On this basis, it is also relatively 

easy to integrate systems where different failure logic modelling techniques such as HiP-HOPS and CFTs 

have been used. 

In order to enable semi-automated (or even fully automated) integration of DDIs, it is necessary to formalise 

the interfaces of the assurance case fragments sufficiently. Moreover, it is important to enable a certain 

extent of flexibility because the assured properties given by a constituent system DDI might not fit exactly 

with what is demanded by the superordinate assurance case of the integrating system. Here ConSerts 

provide a good starting point, even though the flexibility enabled by ConSerts is still not as good as we 

would expect for the development time “white-box” DDI integration scenario. Here we would like to 

achieve deeper integration between the different safety engineering artefacts so that, for instance, a 

change in the architecture at one point of a constituent system would propagate through different channels 
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(e.g., failure logic models) and the integrator would see the impact for the overall integrated system on the 

level of its safety guarantees. Alternatively, in the grey-box case, the DDI of a constituent system may 

provide a bundle of variants that can be switched by the integrator. Even though the details are masked 

due to IP protection, the different variants exhibit different properties at the assurance case interface. 

Based thereon, optimisation could be performed to find an overall system configuration for the integrating 

system (i.e., resolving the variants in the supplier systems) that is optimal with respect to dependability, 

cost and performance.  

 

Figure 2 - Integration scenario where the assurance case models are the backbone of the DDI 

The examples and elaborations above reveal that an assurance case argumentation is well-suited as a 

central artefact of a DDI, but that other aspects obviously need to be covered as well. Thus, the ODE cannot 

just be a slightly adapted version of the SACM, but rather needs to be a set of interlinked meta-models 

covering all relevant dependability concerns. Still, we chose to use the SACM as the DDI interface language 

for the reasons mentioned above (standard, acceptance, adoption due to potential widespread tool 

support). In addition, there is a mechanism within the SACM that could be utilised to this end: The so-called 

terminology package allows arbitrary information to be referenced in an assurance case (in the form of 

SACM Expressions/Terms/Categories). In this sense, the SACM is able to link to models (which may contain 

system information, FME(D)A, FTA, dependability requirement models etc.). One may choose to use either 

a weak link or a strong link. For weak links, the SACM can simply point to the referred model with text. For 

strong links, with the help of the facilities provided by the SACM, such information can be retrieved 

automatically from the referenced models (by using a model querying language such as the Object 

Constraint Language or the Epsilon Object Language). Thus, the SACM can link (either via weak links using 

text or via strong links using queries) models which conform to heterogeneous meta-models in order to 

extract relevant information. 
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2.1.2 Modifications and Extensions since the initial DDI concept 

Since the first version of the documented DDI concept, the concept has been evolved in several different 

topic directions, which led to modifications and extensions to the ODE meta-model. This section 

summarizes the different lines of evolution that occurred during the creation of the engineering framework 

for DDI. The general objective of this activity has been to enable semi-automated engineering support for 

the synthesis and integration of DDI. Therefore, the ODE needed to be reviewed for issues, which have 

either not been covered as of ODEv1 or prohibit automation support to be built in. 

Refinement of roles of ODE packages and SACM 

The ODEv1 treated the assurance case expressed in SACM as a conceptual backbone of the DDI. However, 

this was not reflected properly in the technical specification of the ODE, where the SACM packages were 

expressed on the same level as the other dependability aspects. In ODEv2, the roles of SACM and the ODE 

packages have been revised to reflect the conceptual importance of assurance cases as a root in the DDI 

structure (see Figure 3 and Figure 4). Details on this aspect can be found in section 2.2. 

 

Figure 3 - ODEv1 high-level DDI structure 
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Figure 4 - ODEv2 high-level DDI structure 

Identified need to express certification activity models 

In ODEv1, the meta-model packages included product-related model types such as architecture, failure 

logic or hazard models. These describe dependability properties of the system and thus provide a rich basis 

for supporting dependability assurance claims. However, when it comes to semi- or fully automated 

processing of these models to synthesize evidence or integrate assurance cases, the following question 

arises: how do these models have to be processed to achieve the desired result? In order to fill in this gap, 

the ODEv2 contains a package, which allows for the specification of certification activities that should be 

finally performed by a machine to (semi-)automate the dependability engineering and assessment process. 

Conceptual details on this aspect can be found in sections 2.2 and 3.4 and its utilization in concrete 

engineering scenarios is demonstrated in section 4.1 based on the European Train Control System use case 

(ETCS). 

Added package for assessing safety-critical security threats and supporting the satisfaction of security 

requirements, e.g. the general data protection regulations (GDPR) 

Due to the fact that openness and connectivity is a key characteristic of cyber-physical systems, security 

aspects play an important role for assuring their dependability. Thus, DDIs need to contain models for 

expressing and assessing the impact of security threats on system safety. In addition, the general data 

protection regulations (GDPR) make it mandatory to demonstrate classical security properties such as 

privacy or confidentiality. To account for these issues in the DDI concept, a new ODE package for so-called 

Threat and Risk Analysis (TARA) has been added. Conceptual details on this aspect can be found in Section 

3.3.4 and its utilization in concrete engineering scenarios is demonstrated in Sections 4.2 and 4.3. 

Harmonization of ODE package meta-models with commonly used aspect meta-models 

An important requirement of the ODE meta-model is its flexibility with respect to adding new packages or 

replacing certain aspects such as the architecture modelling language, without affecting the core 

functionality of the DDI. Since there exists a variety of different commonly known meta-model languages 

for certain aspects covered by the ODE, initial efforts have been carried out to harmonize the ODE package 
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contents with existing standards (such as OMG SysML) or reference meta-models such as EAST-ADL or 

SafeML. Details on this aspect can be found in Section 3.5.2. 

2.2 Semi-automated Engineering of DDIs 

2.2.1 The challenge 

The focus of the first version of the ODE meta-model was to technically integrate meta-models for 

dependability aspects such as hazard models, failure logic models and architecture models that were 

formerly only loosely or not interrelated at all. This set of meta-model packages is in essence data models 

depicting different dependability aspects of the product (i.e. the system) to be developed. Therefore, these 

models are referred to as product models in the following sections. 

 

Figure 5 - Goal of semi-automated DDI engineering 

Having these formally integrated product models as a structured source for dependability data, the 

question arises how to make use of this data to (semi-)automatically generate/modify/integrate the 

assurance case that is the backbone of the DDI (see Figure 5). Depending on the assurance task to be 

accomplished, different parts of different dependability aspects might be used to synthesize new 

information (e.g. evidence) or to automatically instantiate new assurance case structures based on existing 

dependability models.  

The remainder of this section is structured as follows: In Section 2.2.2 we will illustrate different engineering 

challenges that are enabled by the DDI concept. Afterwards, Section 2.2.3 presents the essential conceptual 

ideas of the new version of the ODE meta-model that help solve the outlined challenge by enabling the 

(semi-)automated support for the engineering tasks. Sections 2.2.4 and 2.2.5 provide more detail regarding 
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the technical solution, i.e. what the interface between product models and the assurance case as well as 

an action language can look like that enables fully automated reasoning based on DDIs. Finally, Section 

2.2.6 discusses the differences between DDI usage at design time versus DDI usage at runtime and 

highlights the specific extension points that will have to be tackled when concepts for runtime 

dependability certification should be enabled. 

2.2.2 Engineering tasks to be supported by DDIs 

In order to be able to identify engineering tasks that are supported by partial or full automation, it is 

required to anticipate a certain development process in which the engineering tasks are embedded. This 

does not only include a sequential order, in which these tasks are carried out, but should also respect typical 

supply chains dictating development interfaces being naturally existent through organizational boundaries. 

 

Figure 6 - Anticipated design time engineering process 

Figure 6 shows an abstract development setting that is representative for domains such as railway or 

automotive. There is an integrator company (referred to as original equipment manufacturer or OEM in 

the automotive domain) that is building a new system by integrating a set of components that are supplied 

by supplier companies. This process involves four steps, in which the DDI concept, together with the (semi-

)automated engineering support, leads to improvement. 

Step 1 – DDI Synthesis @ Integrator 

Step 1 involves the synthesis of component specifications that the supplier company must adhere to. One 

particular challenge of synthesizing this specification is to collect all relevant information that is needed by 

the supplier in order to develop the component in isolation. This is not only necessary for information about 

required functionality, but also for dependability requirements. In this scenario, DDIs can be seen as a 
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container, where all this information can be captured in an integrated and structured way. Thus, 

engineering tool support for this step should focus on helping the engineer to collect the relevant 

information required by the DDI for the specific tasks the supplier should carry out. Such specific tasks could 

be for instance to demonstrate the adequate satisfaction of interface dependability requirements, or to 

check compatibility of the supplier component interface with the interface definition provided by the 

integrator. 

Step 2 – DDI Integration @ Supplier 

Step 2 represents the integration of the specification DDI into the development process of the supplier 

company. This could mean for example that model stubs are automatically generated based on the 

development interface extracted from the imported DDI. Such a development interface typically consists 

of functional or technical data-flow interfaces or dependability requirements allocated to those data-flow 

interfaces. In advanced scenarios, this could also be placeholders for assurance evidence artefacts that are 

to be instantiated by the supplier.  

Step 3 – DDI Synthesis @ Supplier 

After the DDI has been integrated in a (semi-)automated way, the supplier performs the actual 

development work until it is time to deliver the component back to the integrator. In this instance delivery 

means not only the physical component, but also the dependability documentation that is required to build 

a sound assurance case for the integrated system (typically according to one of the commonly known 

standards such as ISO 26262 in the automotive domain or CENELEC EN 50129 in the railway domain). Step 

3 is concerned with synthesizing a DDI containing all relevant information that is needed so that the 

integrator can properly perform the integration task. From a supplier company perspective, all relevant 

information means explicitly not all information and, therefore, engineering support for the supplier should 

focus on identifying and collecting the minimal set of information to be delivered whilst respecting minimal 

intellectual property disclosure.  

In order to generate a DDI from a model created in a specific tool (e.g. safeTbox by Fraunhofer IESE), the 

tool-specific aspect models have to be transformed into a DDI. In the current DDI export implementation, 

the engineer has to manually select the different aspects such as architecture models, failure logic models 

and safety argument models to be put into the DDI (see Figure 7). In the future, the engineer should only 

be required to select the component’s root element (e.g. Trackside component) and the aspects to be 

exported (Functional Interface, Abstract failure propagation between interfaces, argument fragments). 

Afterwards, intelligent automation support collects relevant information and finally produces the DDI with 

the desired properties. 

Automated Evidence Generation 

Another supplier engineering task that shall be supported by DDIs is the partially automated generation of 

evidence for a certain assurance goal. These goals typically come in the shape of interface dependability 

requirements, such as the one illustrated in Figure 10, where the failure rate of a set of supplied functions 

(Trackside Functions) should be demonstrated to be lower than a target value (≤ 0,67 𝑒−09/ℎ). This would 
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be a target value required by the integrator to adequately address system safety goals. The objective of 

this engineering task would be to employ DDIs for automatic generation of evidence based on a sufficient 

formal description of 1) What kind of evidence is required and 2) How the evidence is constructed based 

on aspect models such as failure logic or architecture models.  

 

Figure 7 - User interface for exporting a component DDI 

Step 4 – DDI Integration @ Integrator 

Step 4 is the last step in the development iteration and deals with the integration of a component DDI into 

the overall system. This engineering task typically involves performing compatibility and structural analyses 

as well as behavioural compatibility matching with other components. This task needs to be performed for 

both from both a functional and dependability aspect. Thus, the component dependability documentation 

has to be integrated into the system assurance case in order to demonstrate confidence in the high-level 

dependability claims. Engineering support should focus on the (semi-) automated generation and 

integration of assurance case fragments, i.e. instantiating argument patterns for typical component types 

or the (semi-)automated assessment of claims in system assurance cases.  

Automated Assurance Case Instantiation 

The aforementioned (semi-)automated dependability claim assessment is only feasible on an integrated 

assurance case. Thus, it is necessary beforehand to take the supplied assurance argument fragment, 

including supporting evidence, and integrate it systematically into a predefined placeholder, which is 

created before Step 1 of the development process, where the integrator refined the system specification 

into compatible component specifications. Such placeholders can be assurance case patterns such as the 

one shown in Figure 8, where the instantiation strategy is encoded within the pattern. The logic of the 

instantiation would be in this specific case that for all critical hazards of the system, a goal has to be 
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instantiated for all supplied components which could potentially contribute to those hazards. The 

integrated dependability data models (ODE-conformant product models in Figure 8) serve as a basis to 

extract the relevant data for the assurance case instantiation, while the instantiation activity is encoded in 

the pattern along with a defined logic on how the instantiation should be carried out sequentially.  

The goal of this engineering task is the technical integration of an assurance case fragment into a pre-

defined placeholder in the integrated assurance case. A fundamental property of this integrated assurance 

case is the formal relation between assurance claims on the one hand and the product models on the other 

hand (e.g. architecture, failure logic, hazard models), which served as a source for generating the evidence 

for building confidence in assurance claims. In this way, traceability is maintained from the assurance case, 

as a source for required dependability activities, towards those models showing the confidence in a proper 

activity execution or the quality of its output artefact.  

 

Figure 8 - (Semi-)automated assurance case instantiation with DDIs 

Automated Claim Assessment 

After the integrator has received all DDIs by all component suppliers, a dependability engineering task is to 

assess whether the provided argumentation and evidence yields enough confidence in the validity of 

system level assurance claims. One such claim could be for instance to demonstrate that the system safety 

goals are adequately implemented through the interplay of all supplied components. 

In order to assess the adequacy of evidence and argumentation, with partial or full automation support, 

the engineering support for DDIs shall make use of the aforementioned formal interrelation of assurance 

case models and product models. It is envisioned that DDI engineering tools can perform analyses to assess 

how changes in any of the DDI product models propagate up to the assurance case, and indicate to the 

dependability engineer the impact of the changes on the validity of claims. 
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Step 5 – Iterative development 

As realistic development endeavours do not follow the waterfall process model, but are executed 

iteratively, steps 1-4 are anticipated to be repeated multiple times, thereby refining DDIs gradually. In 

consequence, automation support can for instance be given for identifying repeated integration of the 

same component DDI and offering a summary of changes in order to make impact analyses more efficient.  

2.2.3 How DDIs enable (semi-)automated engineering based on the ODEv2 

Having illustrated in Section 2.2.2 some design time engineering tasks, which greatly benefit from DDIs, the 

upcoming subsections of section 2.2 explain the core principles of the ODE meta-model version 2 enabling 

those benefits. 

In order to realize the vision of automated generation and evaluation of a dynamic assurance case, the 

following four essential ingredients are necessary: 

1. A language that is capable of expressing the assurance case (=the argument and the evidence to 

support the top-level claims) with sufficient level of formalism; 

2. Semantics that describe how the product models representing the evidence artifacts formally 

relate to each other; 

3. Semantics that precisely describe the nature of dependability concepts and associated activities 

that allow for the assessment and generation of argument structures (including evidence), by 

performing defined operations on the interrelated product models; 

4. Means for orchestrating ingredients 1-3 to (semi-)automatically execute the engineering tasks 

associated to assurance case synthesis and integration. 

Figure 9 shows ingredients 1-3 in action for an example assurance claim taken from the European Train 

Control System (ETCS) use case.  

 

Figure 9 - An example DDI: Enriching the assurance case with process and product semantics 
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Ingredient 1 - SACM as assurance case definition language 

The different parts of an assurance case fragment expressed in the Structured Assurance Case Meta-Model 

(SACM) is shown to the left of Figure 9. The argument package describes the argument that typically refines 

top-level claims, in a systematic and understandable way, into sub-claims until such time as a sub-claim can 

be supported by concrete evidence (i.e. one or a set of artefacts). Note that the claim in Figure 9 represents 

a leaf claim and the higher-level argument is omitted for clarity.  

The argument package refers to concrete artefacts organized in the artefact package by using the 

ArtifactReference element. Note that the relations depicted between artefacts represent abstract relations, 

i.e. SACM does not specify semantics for the artefact relation, since it claims to be an exchange format 

leaving the definition of semantics open by design. Artefact elements play the role of placeholders for 

concrete evidence material, which typically occur in very diverse shapes, e.g. documents, reports, process 

descriptions, models, etc.. Therefore, artefacts offer a mechanism to reference the concrete external 

materials to establish traceability.  

The terminology package allows the formalisation of expressions and terms, which are used as ingredients 

to define claims. While expressions are a means to realize structured language (i.e. reusable text blocks) to 

achieve a certain level of conformity, terms additionally incorporate means to reference external material 

such as documents or models referring to a definition of more precise semantics to explain, what the term 

should represent within the claim. More detailed information on SACM as well as the referencing 

mechanisms can be found in sections 2.2.4 and 3.2. 

Ingredient 2 – The ODE product meta-model packages for defining artefact relation semantics 

In order to provide (semi-)automatic engineering support for processing existing evidence artefacts, it is 

crucial to enable the respective algorithms to understand how those artefacts relate to each other. Within 

the DDI, artefacts that relate to the dependability aspects of systems engineering are grouped and 

integrated. Note that the dependability models typically model different aspects of the same system and 

therefore it is important to make the relations between the aspects explicit. An example for the semantical 

relation between different aspects is the relation between a function (behavioural design aspect of a 

system) and a hazard (a state of the system realizing the function potentially leading to an accident). By 

making such relations explicit in the ODE product models, it is possible to programmatically navigate from 

functions to hazards, which can be seen as a very basic requirement to (semi-)automatic reasoning about 

adequate mitigation of hazards. 

As of ODEv2, the ODE product meta-model contains integrated meta-model packages for the following 

aspects: architecture design (ODE::Design, Section 3.3.1), hazard and risk analyses and dependability 

requirements modelling (ODE::HARA, Section 3.3.2), failure logic modelling with fault trees, failure modes 

and effect analyses (FMEA) and Markov chains (ODE::FailureLogic, Section 3.3.3) as well as security-related 

threat and risk analyses (ODE::TARA, Section 3.3.4). Note that the failure logic modelling package also 

incorporates means for security-related attack tree modelling as the structure for both model is similar. 
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Note that the dependability aspects covered by ODEv2 do not cover all possible aspects required to 

instantiate and evaluate a complete assurance case of a cyber-physical system. Therefore, the DDI 

mechanisms have been designed specifically to be open for extension, i.e. for adding new aspects as the 

need for them emerges. It is expected that for dependability assurance of cyber-physical systems (of 

systems), new types of claims will be required to be assured with confidence, in particular those related to 

runtime assurance approaches. Since these are still subject of research, the idea is to react to such new 

emerging claims with new ODE product packages to specifically support the (semi-)automated assurance 

of those new claims. In this way, the DDI contents and capabilities will be able to evolve in line with future 

assurance demands. 

Ingredient 3 – The ODE certification meta-model packages for defining certification activity semantics 

The SACM exchange format, together with the ODE product meta-models, build a solid formal data basis 

for the definition of an assurance case with a formal traceability to evidence produced from dependability 

aspect models. One missing ingredient for enabling (semi-)automated processing of the DDI is the 

specification of what DDI shall be processed, and  in what sequence, to achieve the desired result. The 

desired result is to help the engineer with the generation of useful new information (e.g. the validity of 

claims, instantiated assurance case fragments, …) during the execution of a specific engineering task. 

The ODE certification meta-model aims to provide a suitable means for modelling engineering activities 

that consume artefacts of different dependability aspects (ODE product models), or assurance case 

elements (SACM), and transform them into new information by means of defined techniques and activity 

step descriptions. Such new information can be for instance a Boolean result about the validity of a claim, 

or a new model such as an integrated assurance case fragment. 

Figure 10 exemplifies the interplay of assurance case, certification model and product model by depicting 

an automated claim validity assessment activity for a failure rate demonstration claim.  

 

Figure 10 - Automated claim validity assessment activity 



Engineering Framework for the Generation and Integration of Digital Dependability Identities  
 

 Page 21 of 73 

 

The activity model contains two representations of the desired engineering activity Demonstrate 

FailureRate for Hazard: One describes the processed modelling elements (Hazard, TargetRate, 

(Comparation)Operator “<=”) mapping to certain formalized concepts of the dependability domain, as well 

as the different steps of the activity in natural language. The other representation of the activity is a formal 

one that can be understood and processed by a machine automatically. The intention behind providing 

both representations is twofold: One the one hand, those engineers modelling and reviewing the activities 

must be confident that the formal representation is indeed matching the intention of the activity. Process 

engineers are seldom experts for formal languages and as such, a human understandable format is 

beneficial.  On the other hand, dependability engineers who should be supported by the automation, have 

to effectively understand how the results of the automation are produced in order to judge the adequacy 

of using it in a particular context.  

In fact, the parameters of an engineering activity are referring to either model elements of the product 

models (e.g. Hazard, Function, System in Figure 10), or to steps that are performed on these model 

elements (e.g. navigation, filtering, reading properties, comparing properties with values). While the latter 

ones are expressed in the activity itself (Get all …, where …), the former ones have to be mapped to the 

ODE product package elements explicitly.  

One may ask why this mapping is necessary as the activity parameters are equal to the product model 

elements depicted on the right side. This is due to the fact that certain dependability aspects (such as the 

concept of a hazard or a function) are quite stable across a domain, but its realization within a specific 

product meta-model might differ from company to company, or depend on the modelling language used 

(e.g. SysML vs. UML). To illustrate this, let us look at an example of the most basic difference between 

different meta-model representations of the same domain concept: The name of the meta-model element 

for describing a link between two architectural ports of a system. Still being the same concept, there may 

exist a variety of meta-model element names for it such as Connector, Link, Connection, Propagation, etc. 

Although the example explains the mechanism for a non-dependability concept, it is particularly useful for 

dependability domain concepts, as no commonly accepted meta-modelling languages similar to SysML for 

system design modelling exist for dependability aspects to date. 

To account for this diversity in modelling similar concepts differently across languages and companies, the 

ODE contains a mapping mechanism aiming at decoupling concrete product meta-models from the 

activities operating on them, which should be specified in terms of domain concept placeholders. If new 

modelling languages will emerge known dependability domain concepts differently, already specified 

activities can be easily reused by providing a mapping model relating domain concept placeholders to 

product meta-model elements. Sometimes this process is also referred to as aspect weaving in literature. 

Illustratively spoken, this means the mapping model allows for the weaving of new product model elements 

into the already existing domain-specific activity models without having to remodel the activity. 

As of ODEv2, no concrete language meta-model has been produced or selected that allows modelling of 

activities in the depicted way. However, the required properties of such a language have been outlined and 

the DEIS consortium sees a good fit with the concepts of the Common Assurance and Certification Meta-
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model developed within the European AMASS project1. More details on this aspect can be found in Section 

3.4. 

Ingredient 4 – Means to (semi-)automatically execute engineering activities on DDIs  

Having described the three core parts of the ODE which represent the anatomy of a DDI (see Figure 11), 

there is still one missing piece left to enable the DDI to do useful things for the engineer: A higher-level 

mechanism that is capable of orchestrating the execution of certification activities on a set of DDIs. This 

mechanism might seem similar to the certification activity itself, but the ODE certification packages provide 

means for the definition of activities, while the mechanism described in this section is rather a concrete 

execution environment.  

 

Figure 11 - The Open Dependability Exchange Meta-Model (ODE) v2 

This DDI execution component allows for the (semi-)automatically execution of dependability certification 

activities (defined as activity models conforming to packages in ODE::Certification), which operate on 

dependability aspect models (conforming to packages of ODE::Product) in order to synthesise, integrate or 

assess a dependability assurance case (conforming to OMG SACM).  

Technically, the DDI execution component is envisioned to have an underlying computational model that 

can execute DDI certification activities with different degrees of formalism: This means that, at design time 

a lower level of formalism is required as the human dependability engineer can still serve as backup for 

getting information or decisions that are too difficult to evaluate in a fully automated manner. At runtime 
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however, full formalism will be required as all decisions have to be computed by machines. Some of the 

consortiums initial ideas on what a DDI execution component can look like are elaborated in Section 2.2.5. 

2.2.4 Interfaces of SACM to define artefact and process semantics 

The Structured Assurance Case Metamodel (SACM) is a specification issued by the Object Management 

Group (OMG). SACM is developed by the specifiers of existing system assurance approaches (e.g. GSN and 

CAE), based on the collective knowledge and experiences of safety and/or safety practitioners. SACM 

provides a richer set of features in addition to the features provided by GSN and CAE, such as fine-grained 

modularity, controlled vocabulary, and argument-evidence traceability. 

SACM is organised in five fundamental packages, as shown in Figure 12 below. The Base package provides 

a rich sets of features on atomic model elements of SACM which will be explained later. SACM organises 

Assurance cases in AssuranceCase packages. An AssuranceCase package contains several Argumentation 

packages, Artifact packages and Terminology packages.  

 

Figure 12 – SACM fundamental packages 

Argumentation packages store information about the argumentation part of an assurance case, where 

safety/security claims are broken down into sub claims until they are directly backed by evidence. 

Evidence used in the argument packages can be modelled and organised in artefact packages. For example, 

a hazard analysis model can be recorded in an artefact package, where the user may also specify when the 

analysis is performed, who participated in the analysis process and what techniques are used in the process. 
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Figure 13 - SACM terminology package example 

SACM also provides the mechanisms to create controlled natural languages so that the users can establish 

a finer grade of reference to system models. The Terminology package of SACM provides the mechanism 

to create Expressions, Categories and Terms. An example of controlled language is shown in Figure 13. The 

upper part of the figure is a claim: Hazard H1 is sufficiently mitigated. In this claim, the user can refer to 

expression elements in their terminology packages. For example, Hazard may refer to a Category in the 

terminology package, which in turn points to a hazard log metamodel through its externalReference 

property. In this way, hazard log metamodel provides a definition of what a Hazard is. Then, hazard H1 can 

refer to a Term in the terminology package, which in turn refers to an instance hazard log model (that 

conforms to the hazard log metamodel). The hazard log model may then contain information on how H1 is 

identified, its cases and consequences, etc. The Expression sufficiently mitigated is recorded in the 

terminology package so that it can be reused. The user is also free to add any explanatory information to 

the Expression so that it better explains what sufficiently mitigated means.  

Finally, an overall Expression which references the three previous elements is created. This expression can 

be referenced in the argumentation package (e.g. as a description of a Claim). 
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Figure 14 - SACM argument package segment 

SACM promotes modularity, in the sense that elements are organised in different packages. To refine 

modularity, SACM provides three different types of packages. Figure 14 shows a segment of the meta-

model for the argument package of SACM, illustrating the three types of packages in the argumentation 

package of SACM. ArgumentPackage is the main package in which structured argumentation is stored. The 

users can disclose part of the argumentation externally with the use of ArgumentPackageInterfaces. To do 

this, in ArgumentPackageInterfaces, citation elements need to be created which cite to original elements 

in ArgumentPackages. Figure 15 shows a segment of SACM for the citation mechanism. All SACMElements 

have the capability of citing other SACMElements via the +citedElement reference. If an element cites 

another, it automatically becomes abstract and citation via its +isAbstract and +isCitation features. 

ArgumentPackageInterface only contains citation elements, it should be enforced by constraints on the 

metamodel.  

 

Figure 15 - SACM citation mechanism segment 

Whilst SACM provides traceability features between argumentation and evidence, it does not impose a 

strong traceability link from SACM to other models. This is due to the fact that SACM is a generic assurance 

case metamodel and is not bound to any specific domains. This can be seen from the mechanisms designed 

for the Terminology package where externalReferences for Expressions are only described as Strings. In this 

sense, SACM provides a weak link to external models. However, the link is robust since it does not rely on 

any other metamodels and does not need to evolve with other models if the models referenced in SACM 

change. 
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2.2.5 Initial ideas for an action language to enable automated reasoning based on DDIs 

To this point, the DDI engineering process has focused on design and development of the necessary 

infrastructure for creating, managing and exchanging DDIs. The work towards the release of ODE v1 and v2 

and the initial engineering tools are indicative of this focus.  

To extend the DDI functionality further and introduce increasingly larger degrees of automation as per the 

initial vision, a computational model which evaluates the DDI is needed (refer to section 2.2.3 for a more 

detailed motivation). In this section, we present a preliminary description of such a model, which follows 

directly from the work presented in DEIS so far. Furthermore, the computational model provides a starting 

point for the advancement of the DDI engineering tool concept. 

Under this view, the evaluation of the DDI can be modelled as a Directed Acyclic Graph (DAG); Each node 

of the graph can represent a section of the DDI being parsed by the evaluation process. An example of such 

a model is given in Figure 16. In the figure, the DAG represents the instantiation of an abstract assurance 

claim at the top. In this case the arrows indicate the direction of the support of the claim provided by 

following nodes. Alternative directions and interpretations are also possible, depending on the context of 

the computation. 

Abstract assurance claims can be modelled in SACM. Such claims abstract from the details of the 

argumentation (e.g. what is the subject for which the claim is made), its constituent properties and 

elements etc. Instantiating the claim means replacing the abstract references within the claim with 

concrete ones, requisitioned from the appropriate ODE elements within the rest of the DDI.  

Thus, in the case of Figure 16, the ‘Instantiation Script’ elements attached to each node of the DAG control 

how the abstract references in the descriptions, denoted using the ‘{‘ ‘}’ brackets, are replaced. Specifically, 

in the top node, {X} is replaced with ‘System A’, being the name of the ODE element being referenced. In 

the supporting node, properties of constituent elements of X form an assertion supporting the previous 

claim. The constituent elements can be referenced using a universal quantifier that ranges over the domain 

of constituent elements of X. In practical terms, this can be realized using a programmatic ‘loop’ to iterate 

over the constituent elements of X. 
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Figure 16 - DDI Instantiation as a DAG 

Using this understanding of the DDI evaluation, its support for introducing further automation can be 

explained. We can immediately consider two scenarios based on the use cases found in DEIS so far. 

One scenario is applicable during the development of the Cyber-Physical System (CPS), where an integrator 

requires constituent subsystems to be integrated into a superordinate system. In this case, the suppliers of 

the constituent systems also provide their automatically generated DDIs to the integrator. The integrator 

has designed a DDI for the superordinate system with abstract assurance claims within it, comparable to 

those in Figure 16. To certify the integrated system, all that is required is to merge the DDIs received with 

the superordinate DDI and instantiate the combined abstract assurance claim. If the claim is fully 

instantiated with no errors or missing references, then the integrated system has now been successfully 

argued to be adequately dependable. 

An alternative scenario can be considered where design-time DDIs have been manually created and 

integrated for a given CPS up to completion of development. Now let us assume this CPS is required to 

cooperate with other CPSs in the field, with similarly available DDIs. To certify that their combined operation 

is accepted as adequately dependable (or safe/reliable/secure depending on the context), they need to 

exchange, merge and evaluate their (appropriate parts of their) combined DDIs. This means that the DAG 

presented above would build up increasingly larger DAGs, extending the assurance claim appropriately. 

The two scenarios essentially differ only in the timing of the evaluation, the former having the evaluation 

happen during development and the latter during operation. In both cases, there is a need for a 

computational language which describes the order, the terms and the individual expressions that form each 

step of the DDI evaluation. Fortunately, the SACM metamodel provides within its Terminology package 



Engineering Framework for the Generation and Integration of Digital Dependability Identities  
 

 Page 28 of 73 

 

appropriate structures to model all of the above elements. We are currently researching options for an 

appropriate programming language for executing the computational model. 

2.2.6 Advances regarding runtime dependability assurance 

Although it has not been a principal objective in DEIS so far to conceptualize how runtime DDIs will 

concretely look like, we nevertheless designed the ODE meta-model v2 in a way so that it contains the 

required foundations for runtime DDIs that will be subject of upcoming work. 

Figure 17 is an extension of Figure 6 in that it adds the runtime dimension to the anticipated engineering 

process. It is envisioned that design time DDIs still form an essential foundation for the synthesis of runtime 

DDIs, as only a subset of dependability engineering activities will be carried out in a fully automated manner 

at runtime. Therefore, step 5 in Figure 17 seamlessly continues the design time engineering process by a 

synthesis step that transforms the set of design time models into their runtime representations. 

Afterwards, the human engineers are taken out of the loop and all synthesis (step 6) and integration (step 

7) activities are from now on only performed automatically by system ECUs. 

 

Figure 17 - Transitioning from design time to runtime DDI execution 

The kind of models to be used at runtime will not be just fully formalized representations of the design time 

models such as hazard, failure or architecture models. Instead, runtime scenarios demand different models 

to enable a dependable operation of cyber-physical systems. In particular, runtime models will allow: 

1. to monitor the operational context of the system; 

2. to perform a situation-specific risk assessment; 
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3. to allow context-specific reasoning on dependability properties with the goal to always maintain 

dependable operation on the one hand and to reach an optimal functional performance on the 

other hand; 

4. to execute adaptation scenarios based on the reasoning performed in 3. 

These steps have been already conceptualized in an approach called Dynamic Safety Management (DSM) 

(Trapp, Weiss, & Schneider, 2018), which aims at shifting parts of the safety engineering activities into 

runtime in order to continuously react to changing context in a dependable way. A first step in this direction 

were Conditional Safety Certificates (ConSerts) (Schneider & Trapp, 2013) that modularize safety interfaces 

for configurations including variants of safety guarantees with different levels of required confidence. 

These ConSert models are evaluated at runtime to check, whether a set of configurations of multiple 

systems exists that allows a dependable operation.  

In this way, ConSerts as a first constituent for a dependability runtime model, and Dynamic Safety 

Management as a more sophisticated approach for executing context-dependent dependability reasoning 

in general, will be an excellent basis for conceptualizing runtime DDIs. 

3 The Open Dependability Exchange Meta-model (ODE) v2 
Having introduced the concepts behind the engineering framework for the generation and integration of 

design time DDIs in section 2, this section contains the reference for the open dependability exchange 

meta-model in its second version. Note that the textual description limits itself to the changes that have 

been done since the last ODE meta-model version v1. For the sake of completeness, the contents of all 

currently available ODE packages are presented graphically. 

3.1 The complete ODE meta-model 

Figure 18 presents an overview of the ODE v2, encompassing both the SACM (highlighted in purple) and 

the product meta-models (highlighted in green). The overview indicates that while there has been some 

reduction and simplification, the ODE remains a quite complex metamodel, spanning across a plethora of 

metamodeling elements. 
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Figure 18 - The complete ODE Meta-model v2 
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3.2 Structured Assurance Case Meta-Model (SACM) 2.0 

The Structured Assurance Case Meta-Model (SACM) is a modelling language specified by the Object 

Management Group (OMG) to create model-based assurance cases. SACM supports existing system 

assurance case approaches such as the Goal Structuring Notation (GSN) and Claims-Arguments-Evidence 

(CAE).  

An assurance case is a set of auditable claims, arguments and evidence created to support the claim that a 

defined system/service will satisfy typical requirements such as safety and/or security. An assurance case 

in this context is a machine-readable model that facilitates the exchange of information between various 

systems stakeholders such as suppliers and integrators, and between the operator and regulator, with the 

knowledge related to the safety and security of the system being communicated in a clear and defendable 

way. Each assurance case should communicate the scope of the system, the operational context and the 

safety and/or security arguments, along with the corresponding evidence. 

3.2.1 SACM Assurance Case Component 

In general, the SACM enables the user to create assurance cases by combining structured argument(s) into 

ArgumentPackage(s) with their corresponding evidence defined in ArtifactPackage(s), as well as the 

controlled vocabularies used within the scope of the assurance case with regards to the information of the 

system/service for which the assurance case provides assurance for, in TerminologyPackage(s). The 

structure of SACM AssuranceCase component is shown in Figure 19. 

 

Figure 19 - SACM::AssuranceCase Component 

Considering the possibility of exchanging assurance cases (or simply exchanging system information), the 

SACM provides the notion of Interface. The creator of an assurance case can decide to reveal part of its 

information by using the AssuranceCasePackageInterface. In this sense, systems with SACM-based 

assurance case models can be exchanged at runtime for higher-level engineering requirements. 



Engineering Framework for the Generation and Integration of Digital Dependability Identities  
 

 Page 32 of 73 

 

The design of the SACM also takes into consideration scenarios where systems form a system of systems; 

in such cases, systems with SACM-based assurance case models can determine whether they are 

compatible (by using the AssuranceCasePackageInterface, as previously discussed). When the systems are 

compatible, a binding/contract (which contains the argumentation, if necessary, regarding why the systems 

are compatible and why they satisfy their safety/security requirements) can be created to bind/link 

assurance cases together to form a compound assurance case. For this purpose, the SACM provides the 

notion of binding, which is used to bind two or more interfaces at any given level (a binding also provides 

possible structured argumentations showing the logic underlying the integration). 

3.2.2 SACM Machine-Readable Design 

The SACM takes into consideration that machine-readable assurance cases can be created. The Base 

component (shown in Figure 21) of the SACM provides the necessary means such that not only 

names/descriptions can be described in natural language, they can also be described in computer 

languages (e.g., formal notations) to enable automated argument reasoning in future. 

At the same time, the SACM provides various facilities (subclasses of UtitlityElement in Figure 20) allowing 

the user to define necessary constraints, notes, additional attributes etc. 

 

Figure 20 - SACM::Base Component 

3.2.3 SACM Argumentation Component 

As previously discussed, an assurance case created using the SACM contains a number of argument 

packages which contain structured argumentations. The SACM Argumentation component provides the 

facilities for creating structured argumentations, as shown in Figure 21. The user of the SACM can make a 

number of different types of claims which provide means of assertion, context, assumption and 
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justification. The user can also make use of the Artifact component to refer to corresponding evidence 

(internal/external to the SACM model) to support the claims. There are various types of 

AssertionRelationships to link claims to sub-claims, contexts, assumptions, justifications etc. 

 

Figure 21 - SACM::Argumentation Component 

As previously discussed, SACM provides the possibility for two systems to exchange information with regard 

to their structured argumentations about system assurance, via the ArgumentPackageInterface. In this 

sense, the creator of the structured argumentation can decide what information can be accessed externally 

(e.g., a safety requirement that is asserted to have been fulfilled), so that external users can make use of 

such information. Obviously, the notion of interface leads to the question of trust; the SACM also provides 

facilities for structurally arguing the level of trust embedded in the information provided in the interfaces 

(in the same manner as structured argumentation, via metaClaims). 

With the interface present, systems can integrate and form a compound structured argumentation, by 

using ArgumentPackageBinding. The ArgumentPackageBinding used to integrate systems contains the 

underlying logic (in the form of structured argumentation) of the binding. This provides the possibility for 

systems to integrate at the level of argumentation. 
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3.2.4 SACM Artifact Component 

The SACM provides the means for maintaining the evidence associated with the structured 

argumentations. The SACM Artifact component provides the facilities to maintain evidence such as 

Resource, Artifact as well as Activities, Event, Participant and Technique, as illustrated in Figure 22. SACM 

enables the user to point to external files/URLs of the related artifacts via the use of Property. In this sense, 

the SACM provides the necessary abstraction, as it does not demand the use of models for argumentation 

evidence. This abstraction provides a significant degree of openness regarding its adoption in open systems 

(i.e., Cyber-Physical Systems). However, the SACM does provide the necessary means for the Artifacts to 

be linked to model elements in the sense that constraints (described in model querying languages such as 

the Object Constraint Language) can be embedded into each one of the Artifacts, which, in turn, would be 

executed at runtime and retrieve the value of the referenced model elements. 

 

Figure 22 - SACM::Artifact Component 

With respect to assurance case integration, there is also a need to exchange information at the level of 

evidence. The SACM provides the ArtifactPackageInterface to enable the exchange of Artifacts among 

assurance cases. The user can choose what evidence (inside an ArtifactPackage) can be accessed externally 

in an ArtifactPackageInterface associated with the ArtifactPackage. With the ArtifactPackageInterface, it is 

possible to bind ArtifactPackages by using ArtifactPackageBinding, so that system integration can be 

performed at the level of ArtifactPackage. 

3.2.5 SACM Terminology Component 

Without context, structured argumentation is meaningless. In SACM, the Terminology component provides 

the necessary means for defining controlled vocabularies which in turn link system information to the 

structured argumentation in the ArgumentPackages, as shown in Figure 23. Concerning system 
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information, the user can define Terms, Expressions and Categories, which are the terminologies in the 

system for which the assurance case provides assurance. At this point SACM also provides the necessary 

abstraction so that external system information (such as system models, failure logic models, FMEA models, 

FTA models etc.) can be referenced. Note that the SACM does not demand the use of models to provide 

openness regarding its adoption in open systems (i.e., Cyber-Physical Systems).  

 

Figure 23 - SACM::Terminology Component 

The creator of a TerminologyPackage can also decide to expose system information by using the 

TerminologyPackageInterface for system integration so that system information (e.g., system properties) 

can be accessed externally. 

With TerminologyPackageInterface present, system integration is performed by using 

TerminologyPackageBinding, so systems are integrated at the Terminology level. 

With standardised TerminologyPackages, a typical task to perform is to extend a standardised 

TerminologyPackage to create new standard/non-standard TerminologyPackages. We can, once again, 

make use of the +abstractform of the SACMElement on both the level of the TerminologyPackage and the 

level of the elements contained inside TerminologyPackages. In this sense, a TerminologyPackage can be 

extended. Standardised TerminologyPackages can be stored in publicly accessible repositories for 

reference, which is in line with the DEIS vision of the application of DDIs. 
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3.2.6 Summary 

SACM is a complex metamodel defined by the specifiers of existing system assurance case approaches (i.e. 

GSN and CAE), based on the collective knowledge and experiences of safety and/or security practitioners 

over the period of 20 years. SACM contains more features than GSN and CAE, and is therefore more 

powerful in terms of expressiveness. The full specification of SACM can be found at 

https://www.omg.org/spec/SACM.  

A paper explaining the usage of SACM via examples has also been submitted to the Journal of Systems and 

Software, entitled “Model Based System Assurance Using the Structured Assurance Case Metamodel”.  

3.3 Product meta-models 

3.3.1 Architectural modelling package 

 

Figure 24 - ODE::Design Package 

The ODE::Architecture package has undergone some simplification. Its updated state can be seen in Figure 

24. To begin with, it has been renamed to ‘Design’ and its internal containment element ‘DesignPackage’. 

The System and Function elements’ role has been enhanced, as all other elements within the package 

compose onto or inherit from them. This change shifts the focus onto the structure of the system 

architecture as opposed to its properties.  

https://www.omg.org/spec/SACM
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Another significant change is the association of ODE::FailureLogic::FailureModels with Systems and 

Functions, whereas the more specific ODE::FailureLogic::Failures associate with individual Ports. This 

change clarifies and makes more precise the relationship between the functional/systemic failure analysis 

and individual failure behavior at the level of function/system/component interfaces. 

3.3.2 Hazard and risk analysis (HARA) modelling package 

The ODE::Dependability package remains largely the same from v1. Figure 25, Figure 26, Figure 27 and 

Figure 28, provide an overview of the current version of the package and its sub-packages. The main change 

is the association of a Hazard with zero or more ODE::FailureLogic::Failures, as opposed to the previous 

version’s limit of one. This change simplifies the modeling of Hazards which can be caused by a combination 

of failures. In the previous version, in such situations, an intermediate ODE::FailureLogic::OutputFailure 

caused by a combination of the other failures was required to delegate failure propagation to the Hazard. 

 

Figure 25 - ODE::Dependability Package 
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Figure 26 - ODE::Dependability::Domain Package 

 

Figure 27 - ODE::Dependability::HARA Package 
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Figure 28 - ODE::Dependability::Requirements Package 

3.3.3 Failure logic modelling package 

The ODE::FailureLogic package has undergone significant restructuring and simplification. Figure 29, Figure 

30, Figure 31 and Figure 32 present the current state of the package and its subpackages. Of particular note 

is the reduction of the separate Failure subtypes (InternalFailure, InterfaceFailure, InputFailure, 

OutputFailure) into a single type. The single Failure type maintains the semantics captured by the previous 

subtypes within its properties. For instance, the Failure::originType describes whether the failure is internal 

within a function/system/component or at the interface level.  

Similarly, the FailureMode and CCF (Common Cause Failure) elements have been absorbed within the 

Failure type and represented with its class, isCCF and ccfFailures properties. The latter two denote whether 

the Failure represents a CCF and which are the other Failures that can be caused by the CCF. 

The element MinimalCutSets now accurately describes the synonymous concept without the need to 

employ elements from the ODE::FTA package. In the previous version, complex combinations of minimal 

cut sets needed the ODE::FailureLogic::FTA::Gate element to be represented. 

The SecurityViolation element is a new addition to the FailureLogic package. By inheriting from Failure, it 

enables modeling the direct effect a security ODE::TARA::Attack has on the system (see TARA package 

below). 
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Figure 29 - ODE::FailureLogic Package 

The ODE::FMEA package has undergone some simplification too, see Figure 30. Propagation is now 

represented with the association of each FMEAEntry with a ‘mode’ and ‘effect’ Failure. This change 

contrasts the previous version’s propagation modeling with explicit elements such as FMEAPropagation 

and DiagnosableFailurePropagation, which were deemed redundant. The specialization of the Failure type 

for FMEAs was also removed due to redundancy. 

 

Figure 30 - ODE: FailureLogic::FMEA Package 



Engineering Framework for the Generation and Integration of Digital Dependability Identities  
 

 Page 41 of 73 

 

The ODE::FTA package in Figure 31 has been simplified by reducing the various types of events represented 

in a fault tree down to a generic Cause element. Boolean logic event connectors are represented by the 

Gate element, which, as a subtype of Cause, can be used to chain hierarchies of Causes together into a fault 

tree. 

Note that since generic Causes can reference both Failure and Security Violations as their inherited type, it 

is now possible to represent fault trees from classical dependability analysis as well as security attack trees. 

Furthermore, if a FaultTree is composed of Causes referencing both Failures and Security Violations, hybrid 

safety-security analysis can also be modeled. 

 

Figure 31 - ODE::FailureLogic::FTA Package 

 

Figure 32 - ODE::FailureLogic::Markov Package 
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3.3.4 Threat and risk analysis (TARA) modelling package 

 

Figure 33 - ODE::TARA Package 

The TARA package models the results of a Threat And Risk Analysis for security, seen in Figure 33. 

ThreatAgents are either Human or NonHuman (typically electronic) sources of Attacks. While individual 

Attacks may serve many purposes, ThreatAgents will also feature some higher-level AttackerGoal, 

representing the overall goal of the attacker. The AttackerGoal revolves around negatively impacting the 

Assets being considered for security, often being the system’s operation and its data for example. Attacks 

exploit Vulnerabilities of the system.  

Cumulatively, the above elements contribute towards the SecurityRisk posed by the various threats 

identified during the TARA. To combat these threats and reduce risk, SecurityCapabilities and 

SecurityControls are established. Respectively, these are high-level and low-level security 

safeguards/counter-measures. After applying these measures, risk is reduced accordingly. 

Finally, more detailed analysis of the propagation of effects of Attacks on the system are modeled by linking 

individual Attacks with ODE::FailureLogic::SecurityViolations. This link further enables hybrid security-

safety analysis, as complex ODE::FTA::Causes can be associated with Failures from classical dependability 

analysis. 
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3.4 Certification meta-models 

For project cluster purposes, DEIS reaches out to the AMASS project for the metamodels developed for 

process and certification modelling. 

In the AMASS project, a Common Assurance & Certification Metamodel (CACM) has been developed. CACM 

is a cluster of metamodels that captures concepts in various aspects of system assurance, such as system 

specification, argumentation, evidence, process, standards and the mapping between process and 

standards. The overlap between AMASS and DEIS is quite observable, therefore, it is best practice to re-use 

part of the CACM from AMASS to model process and certification. 

CACM has a subset of metamodels called Compliance Management Metamodel, which contains the 

following aspects: 

• Assurance project definition. It is used to define the assets produced during the development, 

assessment and justification of a safety-critical system; 

• Process Definition. It is used to model general reference processes (e.g., Waterfall Process, Agile 

Process, V-model process), or company-specific processes (e.g., the Thales process to develop 

safety-critical systems). 

• Standard Definition. It is used to model standards (IEC 61508, ISO 2626, DO-178C, EN 50126, etc.) 

and any regulations (either as additional Requirements or model elements in a given model 

representing a standard or a new reference standard). For the implementation another 

metamodel is added, the Baseline Metamodel, to capture what is planned to be done or to be 

compiled with a defined standard, in a concrete assurance project. 

• Vocabulary Definition. It is used to provide a Thesaurus-type vocabulary, which defines and records 

key concepts relevant to safety assurance within the target domains and the relationships 

between them. 

• Mapping Definition. It is used to capture the nature of the vertical and horizontal mappings 

between the different levels of model in the AMASS Framework and between the concepts and 

vocabulary used in these models. There are two types of mapping: equivalence mapping that maps 

process models with models of standards; and process mapping, which maps process models to 

project specific models. 

The compliance management metamodels are helpful for DEIS for their ability to model processes and 

standards (and their relationships using the mapping definition). However, vocabulary definition and 

assurance project definition metamodels are overlapped with SACM. The plan next is to isolate the useful 

metamodels (hopefully they are independently implemented) from CACM and use them in conjunction 

with ODE and SACM.  

3.5 Crosscutting Aspects 

3.5.1 Information abstraction and IP Hiding concept 

There are two main aspects to IP hiding currently featured in the design of the ODE. The first is imported 

from SACM and the second relates to the design of the ODE::FailureLogic package. 
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SACM features a collection of -PackageInterface elements. These elements enable IP hiding by allowing the 

user to only publish parts of the assurance case (including contained artifact models). Most elements in 

SACM inherit SACMElement’s ‘isCitation’ attribute, which is a flag denoting whether the subject element 

cites another one. If the flag is ‘true’ then SACMElement’s ‘citeElement’ attribute provides a reference to 

the cited element. SACM -PackageInterfaces contain citation elements to elements from other packages of 

the same type (except in the case of AssuranceCasePackageInterfaces, they contain other -

PackageInterfaces). For example, a TerminologyPackageInterface contains citations to elements from a 

TerminologyPackage. By sharing the TerminologyPackageInterface rather than the actual package, only the 

elements cited are visible to the receiver, assuming there is no other means of accessing the cited package. 

The ODE::FailureLogic package contains sub-packages which expose in more detail how a system’s 

dependability can be compromised from failures and security violations. These are the FMEA, FTA and 

Markov sub-packages. These sub-packages include information that can directly or indirectly describe the 

failure behavior of the system and/or reveal key elements of its design. To avoid revealing the inner 

workings of the system while still sharing as much information to external parties for evaluation, the 

detailed analyses found in the sub-packages of ODE::FailureLogic, such as ODE::FailureLogic::FTA, are 

separated. Instead, the provider can opt to share only the system’s Minimal Cut Sets, which provide 

describe the minimal combinations of necessary and sufficient causes of system failure. 

3.5.2 Harmonization of the ODE with common meta-modeling languages 

The design of the ODE, while aiming to be reasonably concise and flexible, is focused on addressing the 

requirements drawn from the DEIS project’s use cases. However, neither the DDI nor the ODE concepts 

should be viewed as monolithic constructs but instead, as solutions adaptable to the problem at hand. In 

this section, we aim to highlight the ODE’s flexibility by briefly mentioning the potential for interoperation 

with preexisting, established modeling languages. In doing so, the options for adapting the DDI concept to 

current practice should become clearer. 

We will be discussing interoperability with the SafeML, SysML, EAST-ADL2 and AADL modeling languages. 

The Safety Modeling Language (SafeML) enhances the management of safety information produced during 

the development lifecycle of safety-critical systems (Biggs, Sakamoto, & Kotoku, 2014). The Systems 

Modeling Language (SysML) is a popular choice for defining, analyzing and verifying generic systems and 

features numerous extensions for domain-specific applications such as SafeML. The EAST Architecture 

Description Language (EAST-ADL2) is the 2nd version of the modeling language targeting embedded systems 

for the automotive domain. EAST-ADL2 models feature multiple levels of abstraction, with each level 

addressing different development stages and views. The Architecture Analysis and Design Language (AADL) 

focuses on performance-critical systems development and initially targeted the aerospace domain. 

3.5.2.1 SafeML 

SafeML targets several issues that typically appear during design process. For example, information needs 

to be communicated among different stakeholders with different backgrounds. This typically leads to 

duplication and often to ambiguous and inconsistent artifacts. Moreover, this information tends to be 
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documented in different formats, which makes maintenance difficult and costly whenever changes are 

required.  

SafeML targets the mentioned issues with a model-based solution, in which the safety information is added 

to existing design models. The authors of the initiative offer on their website (Geoffrey Biggs/AIST, 2017) 

profiles for the commercial modeling tools Enterprise Architect and Magic Draw, as well as links to other 

resources like documentation and the Object Management Group (OMG) language specification.  

SafeML is designed to be used in conjunction with SysML (Friedenthal, Moore, & Steiner, 2008). SysML 

provides the diagrams and element types necessary for design modelling, while SafeML provides the 

element types used to add safety information to the model, see Figure 34. 

 

Figure 34 - SafeML usage concept 

The modeling approach is organized in two parts. The first deals with hazards, harms and the context 

necessary for harms to occur. The second deals with safety measures, which in SafeML are targeted at 

preventing the hazardous event necessary for a hazard to lead to harm, or mitigating harm should a 

hazardous event occur. According to the specification, this is the list of modeling elements: 

Table 1 - SafeML to ODE Mapping 

SafeML Modeling 
element 

ODE element Comparison 

Hazard Hazard Concept is understood exactly in the same way 

Harm Accident Similar concepts used to describe physical injuries and damage 
to people. Main difference is in the attributes and usage. An 
Accident in ODE is used in the context of the Hazard and Risk 
analysis and defines only the severity in case of occurrence. 
Harms in SafeML are more global aspects. They include a 
quantification of the overall risk of the harm, including the use 
of measures. 

Harm Context Risk 
assessment 

Both are used to depict how harm might be cause by a hazard. 
Therefore, both include typical parameters for risk assessment 
like occurrence, severity and controllability.  
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ActiveDefence, 
PassiveDefence 

Measure Very similar concept with the difference that in SafeML it is 
distinguished whether a measure (i.e. defence) need to be 
activated explicitly or not to protect against a HarmContext. In 
ODE this will be reflected partially in the design when the 
measure has been made part of it. 

Context Detector NONE It represents the capability to monitor for a hazardous 
situation/event. 

There is no exact matching for this concept, but it could be 
represented in different ways through the ODE depending of 
the interpretation. E.g. by a measure, or a function. 

 

One of the most remarkable aspects of the SafeML approach is that it is a concrete modeling language. It 

defines modeling elements and relationships and, more over it relies on SysML, which is by itself also a 

modeling language. Contrary to SafeML and SysML, ODE does not define how the information is created, 

nor concretely define processes or languages. It primarily defines containers and structure to allocate 

information. The ODE has been conceived in this way having in mind data exchange. It does not place 

constraints or guidelines on how the information is obtained. 

The purpose of SafeML is to extend SysML models with safety information, by focusing on the definition of 

hazards and measures. This covers however just a portion of the actual information needs for dependability 

systems. One could even consider the language as incomplete, since there are no means to perform a 

complete hazard and risk analysis. For instance, there are no means for identifying malfunctions. Therefore, 

this process should basically occur somewhere else and only the resulting hazards will be documented. 

Contrary, ODE has been structured to cover the entire lifecycle and it is therefore far more complete and 

structured. Consider for instance the following aspects: Fault analysis, security concerns, argumentation, 

etc. 

In summary, SafeML does not offer much more to what is already existing in SysML. Nevertheless, models 

created with SafeML will be, as shown before, translatable into ODE models. 

3.5.2.2 SysML, EAST-ADL2, AADL and HiP-HOPS 

For SysML, EAST-ADL2 and AADL, transformations to HiP-HOPS-compatible models have been described in 

past research. These transformations enable us to invoke the HiP-HOPS automated dependability analysis 

and output its results in its standard format. Outputs from HiP-HOPS can be converted to ODE-compliant 

models i.e. DDIs. Therefore, by transitivity, we can extend the transformation process to include models 

from SysML, EAST-ADL2 and AADL, transform and process them via HiP-HOPS and finally transform the 

outputs into DDIs.  

We will briefly summarize the semantic correspondence between key elements of each language and HiP-

HOPS. The mappings from the EAST-ADL2, SysML and AADL metamodels to HiP-HOPS are summarized in 

Table 2, Table 3 and Table 4 respectively. We should note that current tool support only offers 

transformation from external languages to HiP-HOPS and not vice versa. More information on the mappings 
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can be found in (Biehl, Chen, & Torngren, 2010) for EAST-ADL2, in (Mian, Bottaci, Papadopoulos, & Biehl, 

2012) for AADL and (Andrews, Payne, Romanovsky, Dider, & Mota, 2014) for SysML. 

  



Engineering Framework for the Generation and Integration of Digital Dependability Identities  
 

 Page 48 of 73 

 

Table 2 - EAST-ADL2 to HiP-HOPS Mapping 

 

Table 3 - SysML (for COMPASS Artisan Studio) to HiP-HOPS Mapping 

SysML (via COMPASS Artisan Studio) HH 

Fault Analysis Model Model 

SoS System 

Optimisation Parameters Optimisation Parameters 

Objective Objective 

Constituent System 

Implementation Implementation 

Component Component 

Port Port 

Line Line 

Connector Line 

LineEnd Line.Port 

Propagation Logic Line.PortExpression 

FailureClass OutputDeviation.Name (partially) 

BasicEvent BasicEvent 

 

EAST-ADL2 HH 

ErrorModelType System 

ErrorModelType.errorConnector System.Lines 

ErrorModelType.parts System.Component 

ErrorModelPrototype.type.errorPort System.Component.Ports 

ErrorModelPrototype System.Component.Implementation 

ErrorModelPrototype.type. 

errorBehaviorDescription.internalErrorEvent 

System.Component.Implementation. 

FailureData.basicEvent 

ErrorModelPrototype.type. 

errorBehaviorDescription.failureLogic 

System.Component.Implementation. 

FailureData.outputDeviation 

ErrorModelPrototype.type 
System.Component. 

Implementation.System (recursion) 
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Table 4 - AADL to HiP-HOPS Mapping 

AADL HH 

SystemInstance System 

ComponentInstance System.Component.Implementation 

ComponentErrorModelProperty System.Component.Implementation.FailureData 

ComponentInstance.FeatureInstance System.Component.Ports 

ConnectionInstance System.Lines 

In Table 5, the symmetric mapping between HiP-HOPS and the ODE is summarized. Unlike the other 

mappings, the semantics in the latter are defined to enable bi-directional conversion. This means that 

conversion from both HiP-HOPS to ODE models and vice versa is possible. 

Table 5 - HiP-HOPS to ODE Mapping 

HH ODE 

Model Integration::ODEPackage 

Perspective Architecture::ArchitecturePackage 

System Architecture::ArchitecturePackage/System 

Component Architecture::System/Logical/PhysicalComponent 

Implementation Architecture::System/Logical/PhysicalComponent 

FailureData FailureLogic::FailureLogicPackage/FTAPackage 

BasicEvent FTA::BasicEvent 

PotentialCCF FailureLogic::CCF 

OutputDeviation FTA::OutputEvent/FailureLogic::OutputFailure 

Port Architecture::Port 

Line Architecture::Signal 

FMEA FMEA::FMEAPackage 

FMEA-Component-BasicEvent FMEA::FMEAFailure 

FMEA-Component-BasicEvent-Effect FMEA::FMEAFailure 

FMEA-Component-BasicEvent & Effect FMEA::FMEAPropagation 

FaultTree FTA::FTAPackage 

TopNode FTA::OutputEvent 

Gate (And, Or, …) FTA::Gate 

AllCutSets FailureLogic::MinimalCutSets 
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4 Utilization of DDIs in concrete engineering activities of DEIS use cases 

4.1 Utilization of DDIs in an OEM-TIER integration scenario in the context of the ETCS 

4.1.1 Use case overview 

The European Train Control System (ETCS) provides standardised train control in Europe and makes it easier 

to travel by train across the borders of all countries in Europe.  

 

Figure 35 - ERTMS/ETCS Reference Architecture 
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ETCS itself is a system of systems, consisting of an on-board and a trackside sub-system (see Figure 35). In 

the railway domain, the realisation of such a system typically involves different stakeholders in the value 

chain (railway undertaking, OEMs, suppliers etc.). Often a railway company orders an ETCS system from 

one vendor while another one provides the trackside equipment. Moreover, the on-board sub-system must 

interact with the train, which is either built by another department in the same company or by another 

OEM.  

In order to satisfy the laws and regulations in each European country, it must be proven that the overall 

ETCS system is sufficiently safe. Therefore, both sub-systems must fulfil the safety requirements as defined 

in Subset-091 (Safety Requirements for the Technical Interoperability of ETCS in Levels 1 & 2) of the 

ERTMS/ETCS specification (ETCS/ERTMS, 2016). This standard defines specific hazards, and tolerable 

hazard rates are apportioned to each sub-system. Moreover, interoperability between the trackside and 

the on-board systems must be ensured.  

4.1.2 Semi-automated ETCS assurance case instantiation     

The suppliers of the on-board or the trackside part of the ETCS system provide assurance case information 

about the trackside or on-board ETCS sub-system in the form of DDIs.  

During the system integration phase the information provided in the DDIs of the sub-systems are integrated 

to generate an overall assurance case. Hence, an on-board or trackside system can be integrated into an 

existing railway system and interact in a safe manner with the pre-existing systems within the railway 

system.  

In order to enable the (semi-)automated integration of safety case fragments, the modular safety 

arguments (also called fragments here) of the sub-systems have to be combined and additional 

argumentation may be added, taking into account the integration context of the overall system, which was 

only assumed during the development of the sub-systems. Therefore, the content and the structure of the 

safety argumentation must be formalized, so that algorithms can help to perform the integration of the 

fragments in a (semi-)automated way. By enabling semi-automated assurance case instantiation, not only 

the content and structure of the safety argumentation is formalized but also the fulfilment of safety goals 

can be semi-automated. 

For instance, to show that the safety goal defined in the UNISIG Subset-091 (ETCS/ERTMS, 2016) (Failure 

Rate of Trackside Functions („trusted part“) <= 0,67e-09/h  has been demonstrated.) is fulfilled for the ETCS 

trackside equipment, a number of question must be answered (see Figure 36). 
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Figure 36 - Safety goal of the ETCS trackside part as defined in UNISIG Subset-091 

In current industrial practice all the questions shown in Figure 36 are answered by safety experts in a 

manual process of creating the safety case. Moreover, other design artefacts (such as process descriptions, 

safety analyses, hazard lists, specifications) are referenced to provide evidence that the goal is fulfilled. The 

resulting safety argumentation is written in the safety case document using natural language or GSN 

diagram (e.g. as depicted in Figure 37). 

 

Figure 37 - Example GSN diagram of the safety argumentation fragment of the ETCS trackside sub-system 

The ODE extends SACM by adding product- and process-related model semantics to enable (semi-) 

automated assurance case integration/evaluation support. Thereby, SACM provides the foundation of 

formalizing context and structure of the safety argumentation as well as mechanisms to:  

1. link an artifact element to an external resource (e.g. model); 



Engineering Framework for the Generation and Integration of Digital Dependability Identities  
 

 Page 53 of 73 

 

2. link different artifacts together (ArtifactAssetRelationship) to express their relation;  

3. specify structured language as terms/expressions with the possibility to link the terms to 

arbitrary external resources (e.g. elements from ArtifactPackage or completely external). 

Moreover, the process model describes the activities necessary (e.g. described in the safety standard 

EN50129 (CENELEC, 2003)) to show the safety of a specific system in a formal and machine-readable way. 

The product model describes the artifacts of the system as well as their relationship. These elements are 

referenced as artifacts in the SACM argumentation. Since the process model is independent of concrete 

product meta-model, a mapping model is needed which maps standard concepts and process steps to a 

concrete product meta-model (see Figure 38). 

 

Figure 38 - Process / product model and mapping model 

Based on these different parts of the ODE semi-automated assurance case instantiation can be realized as 

depicted in Figure 39. As an input for the semi-automated instantiation the ODE provides: 

1. Product models (e.g. hazards, failure logic propagation, functional model, etc); 

2. Set of GSN/SACM patterns; 

3. Process model describing the activities of safety standards;  

4. Mapping model specifying how to automatically perform activities from the ODE process model 

on ODE-conformant product models.  

Taking these models as input, a SACM AssuranceCasePackage can be generated semi-automatically, in 

which the GSN/SACM patterns are instantiated to generate the SACM ArgumentPackage. Moreover, a 

SACM TerminologyPackage and a SACM ArtifactPackage can be generated based on the ODE product 

model. Thus, interlinking safety argumentation and product model based on the information provided in 

the ODE process model and the mapping model. An example, for a safety argumentation for the ETCS 

trackside sub-system created by this semi-automated assurance case instantiation approach is depicted in 

Figure 40. 
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Figure 39 - Process of the semi-automated assurance case instantiation based in the ODE 

 

 

Figure 40 - DDI in form SACM AssuranceCasePackage for the ETCS trackside part 
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4.1.3 Optimized supplier component selection based on DDI 

 

Figure 41 - Selection of the suppliers based on DDI 

As depicted in Figure 41, attributes of a DDI (such as cost, minimum operation life time, logistic 

requirements etc.) will be utilized, for example, to select suppliers of system components. The criterion is 

that the target values (activity) of all attributes shall be fulfilled. DDI could be seen in this scenario as a 

formalized component datasheet filled with values of aforementioned attributes from suppliers. This 

datasheet will be used by OEM (integrator) to optimize the component selection. The process begins with 

providing suppliers’ DDIs to the OEM. Afterwards, the OEM compares the attributes values of the different 

suppliers’ datasheets (DDIs) and the target requirements stored in the OEM database.  For instance, in the 

ETCS use case, the selection of a Balise sensor could be done by this comparison based on checking the 

attribute values of DDI. 

Additionally, the individual assumptions of the supplier’s failure rate shall be compared with the 

assumption of the target failure rate. In UNISIG Subset-091 (ETCS/ERTMS, 2016) the operational 
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assumptions are related to the drivers’ reactions for certain events. Such requirements shall be considered 

during the decision making. Other operational parameters such as time spent for certain driving mode, 

frequency of radio signal between track and train etc. shall also be taken into account during the attribute 

comparison. 

Figure 41 demonstrates also the decomposition of the overall failure rate into 

subsystem/subfunction/subcomponent failure rates. In this figure, there are 3 subcomponents that are 

working in parallel. This means, there 3 subcomponents are connected by a “or” connector (not visualized 

in the picture). The decomposition will be performed by the integrator (the OEM). After the decomposition, 

the failures rates of the subfunction/subsystem/subcomponent are assigned or calculated based on system 

information such as architecture.  

In addition to the operational assumptions, environment conditions (operational environment in UNISIG 

Subset-091) shall be checked. Such environment conditions are temperature, vibration, electromagnetic 

interference etc (ETCS/ERTMS, 2016). For instance, if we assume the target failure rate is 2 fit at a 

temperature condition of 40 °C, a supplier’s component failure rate of 3 fit at 30 °C will obviously not be 

selected.   

In , the requirement of availability in the sense of MTTF of “OnBoardTransmissionEquipmnt” shall be 

greater than 1000 h for certain environment conditions. The related environment conditions are essential 

to perform the comparison, otherwise this comparison could lead to total wrong decision

 

 

Figure 44 - Environment conditions check for certain MTTF requirements 

.  

A possible workflow of attribute comparison could contain: 

• Checking MTTF; 

• Checking environmental conditions of the corresponding context; 
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• checking driver reaction assumption; 

• comparison of MTTF regarding assumption and condition. 

It is meaningful to observe the dependency between the different operational parameters and the target 

value e.g. for availability analysis. An example usage of DDI is to facilitate the cross references of data 

elements, such as attributes, between documents. The references are defined for example in the ODE 

meta-model of the DDIs. In order to automate data exchange between DDIs, the formalized component 

datasheet (as develop time DDI) will be integrated in the DDI attribute comparison workflow. Through this 

integration, optimization or automation support can be executed. On the integrator side, the selection of 

supplier/s can be made more effective based on the comparison results. Nevertheless, the safety 

argumentation (in form of GSNs represented in the DDI) of the suppliers can be integrated by the ODEM, 

if the suppliers provide own GSN with consideration of same operational assumption and operational 

condition among other attributes. In additional to failure rate check, the overall system goals and 

compatible sub goals, along with different dependability requirements, can be checked regarding their 

fulfillment. 

4.2 Utilization of DDIs in security and safety co-engineering in the context of the 

Physiological Health Monitoring Use Case 

4.2.1 Use case overview 

The Dependable Physiological Monitoring System (DPMS) is an advanced technology applied to a 

connected vehicle and is capable of measuring physiological parameters and evaluating the health 

condition of driver and other occupants. The proposed Single-Photon Avalanche Diode (SPAD) array 

imaging system can identify Heart Rate (HR), Respiration Rate (RR), Heart Rate Variability (HRV), Inter-Beat 

Interval (IBI) and Oxygen-Saturation (SpO2) in real time.  

This brand-new feature contains a comprehensive package of technologies, tools and services that support 

the drive session in evaluating the health status. Being introduced to new generation connected vehicles, 

with (even limited) autonomous capabilities in the case of health emergency condition, it shall process hard 

decision making at run-time and trigger different “actions” to mitigate the risk of vehicle accidents and 

people injuries.  

The vehicle decision mechanism allows the DPMS to take control over autonomous driving features when 

needed, moving the vehicle to the emergency lane or the nearest safety area, or in case of great danger, 

driving the vehicle to the Hospital / First Aid Services. 

The decision-making computation may result in one of three different paths (Figure 42- DPMS decision-

making action paths). 

From a safety perspective, all the possible paths shall evaluate the risk to health. As shown in the model 

(Figure 42), part of the safety argumentation requirements enable different features on the vehicle, for 

example, enabling autonomous driving features, moving the vehicle to the emergency lane / the nearest 
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safe area, or in case of high danger, drive the vehicle to the Hospital / First Aid Services (depending on 

autonomous level capabilities). 

The physiological data (including the streaming video) is sensitive with regards to GDPR, therefore the 

requirements from the recent GDPR regulation need to be implemented. 
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Figure 42- DPMS decision-making action paths 

4.2.2 Addressed challenge in safety-security co-engineering 

In order to integrate the DPMS features with a CPS which already has predefined safety ASIL level and ISO 

standard compliance, the DPMS shall guarantee accuracy and robustness at automotive grade level, like all 

the other vehicle on-board systems.  

The dynamic nature of the CPS introduces the potential for security threats to contribute risks towards 

safety as well. In current practice, safety and security analysis are handled by different methods, 

organizational units and techniques. So, this integration process addresses safety/security co-engineering 

challenges between two or more domains.  
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As per the GM legacy process, the DPMS project has to be verified and validated across different technical 

review boards that have expertise in different competencies, such as Security and Safety. 

On the security side, DMPS requirements have been analysed by a Cybersecurity technical board. After the 

requirements review, the experts identified the criticalities by employing the Threat Assessment and 

Remediation Analysis (TARA) methodology and related Attack Trees models. This approach identified and 

assessed cyber vulnerabilities and selected countermeasures which were effective at mitigating those 

vulnerabilities. 

Figure 43 portrays the interaction of project requirement, threat analysis and identified countermeasure 

in a graphical perspective. 
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Figure 43 - DPMS general security model 

The TARA methodology enables detailed modelling of the potential security threats to the system’s critical 

elements and identifies appropriate requirements and counter-measures to mitigate the cumulative risk.  

Further refinement of the causes that can lead to an attack being successful, and highlight vulnerabilities, 

is performed using an appropriate qualitative analysis technique, such as security attack trees. 
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Figure 44: Attack Tree example 

Attack trees have been used as conceptual diagrams to highlight assets/targets that might be attacked and 

the related safety effect (see engineering stories in the next section). Security attack trees share a similar 

structure with fault trees, differing mainly in the semantics of the base and intermediate causes and their 

effects.  

From this point on, a Safety-Security Hybrid Analysis can qualitatively link to Security Violations and to 

system Failures and safety Hazards.  

AS shown in Figure 44, dangerous vehicle behavior can be caused by either a System malfunction, typical 

RAMS issue (Failure), or a Security Threat (Attack). This can lead to gaining control of vehicle stability 

controller.  

This may also affect the DPMS, where being hijacked, it may produce misleading results and trigger an 

“unexpected action” that causes the vehicle to unexpectedly takes over the control of the vehicle. 

Hybrid analysis enables better communication of issues spanning different dependability domains. 

The new version of the ODE v2 seen on section 3 exploits the similarity seen within attack trees, enhancing 

the definition of fault trees containing both security and safety-related events. This enables security threats 

identified by TARA to be analysed via security attack trees and linked to fault trees, all under the singular 

DDI structure. 

4.2.3 Long cycle times integration processes at development time 

The legacy process requires verification and validation approval from different review boards that have 

expertise in different competencies, such as Security and Safety.  

Each board works as a standalone entity and analyses each project through a legacy process, with different 

levels of (gate) approval. 
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Being two (or more) different company entities with different processes, the integration between these 

competencies (e.g. security and safety), typically results in additional work for the team, who have to 

synchronize the (different) implementation guidelines provided by both boards, and double check the 

potential impact (Figure 45). 

 

Figure 45 - Internal co-engineering process 

This is a very time consuming activity and may result in increased time-to-market. 

The adoption of the DDI methodology at development time shall help the team during the design phase, 

on the following aspects: 

• adopting the security-safety co-engineering by design; 

• helping identifying criticalities and marginalities of the project without the needs to involve 

technical board in early phase; 

• implementing state-of-the-art cybersecurity solution already available on the market. 

The process shall result in faster development time, cutting out intermediate approval loops, allowing the 

team to start work early, and submitting a first “security proof “ design to review board. The boards are still 

responsible for approval at the end of this first design round, because they are still the centre of expertise 

and responsible for the validation. 

4.2.4 Engineering Story 1: Unauthorized Emergency Brake 

In this case, we utilize DDIs to protect against a safety-relevant attack (hijacking), during the development 

lifecycle of the DPMS, and evaluate how the DEIS approach eases the development process in achieving 

the security standard required at production level.  
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The engineering story analyses a condition where the malware threat is intended to corrupt the vehicle 

safety & stability onboard system, activating the automatic breaking features, typically used to prevent 

potential accident. The attack hijacks the algorithm that processes the vehicle stability data coming from 

the sensors, and the effect is the unauthorized activation of the emergency brake mechanism, which in this 

case may cause collision or loss of control of the vehicle (Figure 46). 

 

Figure 46 - Unauthorized Emergency Brake Attack Tree 

From a more generic perspective, an attack against an embedded OS like the one that is running on vehicle 

HMI, is intended to gain control of a privileged (ID=root) process and to act as admin. The hijack allows the 

attacker to perform unauthorised action, for example, stealing private date coming from the vehicle (drive 

profile, scoring system, vehicle position), or tampering with the vehicles’ sensor information which is 

exchanged through the vehicle network (Figure 47).  
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Figure 47 - Linux-Embedded-OS Attack Tree 
The Linux embedded operating system, may also be affected by injection of malicious software (Figure 48) 

and result in a system’s unpredictable behavior, vehicle hijacking, and broken integrity and confidentiality. 
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Figure 48 - Privileged Process Attack Tree 

4.2.5 Engineering Story 2: Vehicle unintended behavior 

The engineering story is supposed to protect against an attack intended to corrupt the emergency manager 

onboard system that takes the control of the vehicle (activating autonomous LV2 features) to prevent a 

potential accident due to the driver’s acute illness condition.  

The attack hijacks the algorithm that processes raw physio parameters of the driver and extracts altered 

health condition, or corrupts raw data (heart rate, breath rate, SpO2) before being processed.  

The effect is the unauthorized activation of features strictly linked to autonomous LV2, used from the 

emergency manager to move the vehicle in safe condition (Figure 49). This may cause collision or loss of 

control of the vehicle. 
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Figure 49 - Vehicle unattended behavior Attack Tree 

4.2.6 ES3: Compromise driver’s privacy 

The engineering story is supposed to deal with a potential attack in the vehicle CPS intended to steal drivers’ 

data, for example:  

• Raw physio parameters (Hear Rate, Breath Rata, SpO2); 

• Health data post processed locally by physio board; 

• Single frame (image) of the face of driver stored in volatile memory used to extract physio 

parameter; 

• GPS date coming from the infotainment system; 

• Drive style data (used for driver score algorithm).  

In this case the privacy aspect is impacted, and personal and sensitive data may be stolen for unauthorized 

usage, both inside and outside the CPS. This implies the DDI shall guarantee the proper application of GDPR 

regulation that specifies the action to be taken in case of data breach inside a system (Figure 50). 
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Figure 50 - Compromise driver’s privacy Attack Tree 

4.3 Utilization of DDIs in applications involving General Data Protection Regulations 

(GDPR) 

4.3.1 Introduction 

The GDPR lays down rules relating to the protection of natural persons with regard to the processing of 

personal data and rules relating to the free movement of personal data. GDPR lays out responsibilities for 

organisations to ensure the privacy and protection of personal data, provides data subjects with certain 

rights, and assigns powers to regulators to ask for demonstrations of accountability or even impose fines 

in cases where an organisation is not complying with GDPR requirements. 

The organisations that need to be EU GDPR compliant are: 

Companies (controllers and processors) established in the EU, regardless of whether or not the processing 

takes place within the EU; 

Companies (controllers and processors) not established in the EU offering goods or services within the EU 

or to EU individuals. 

A ‘Processor’ means a natural or legal person, public authority, agency or other body which processes 

personal data on behalf of the controller. A ‘Controller’ means the natural or legal person, public authority, 

agency or other body which, alone or jointly with others, determines the purposes and means of the 

processing of personal data. ‘Processing’ means any operation or set of operations which is performed on 

personal data or on sets of personal data, whether or not by automated means, such as collection, 

recording, organisation, structuring, storage, adaptation or alteration, retrieval, consultation, use, 
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disclosure by transmission, dissemination or otherwise making available, alignment or combination, 

restriction, erasure or destruction. ‘Personal data’ means any information relating to an identified or 

identifiable natural person (data subject); an identifiable natural person is one who can be identified, 

directly or indirectly, in particular by reference to an identifier such as a name, an identification number, 

location data, an online identifier or to one or more factors specific to the physical, physiological, genetic, 

mental, economic, cultural or social identity of that natural person. ‘Personal data breach’ means a breach 

of security leading to the accidental or unlawful destruction, loss, alteration, unauthorised disclosure of, or 

access to, personal data transmitted, stored or otherwise processed. 

Section 4.3.2 provides the GDPR requirements. Section 4.3.3 provides the means as to how GDPR 

requirements shall be implemented within DDI. 

4.3.2 GDPR Requirements 

The requirements detailed in Table 6 are the GDPR requirements that have been elicited. It is envisaged 

that the number of GDPR requirements will increase and be further refined in upcoming work. 

Table 6 - GDPR requirements (Refined Project Requirements for Semi-automation) 

Requirement (ID and 
Name) 

Category Description 

RQ_034 - Privacy by 
Design  

Non-Functional DDI should incorporate organizational and technical 
mechanisms to protect personal data in the design of 
new systems and processes; that is, privacy and 
protection aspects should be ensured by default. 

RQ_035 - Data breach 
notification  

Functional DDI shall keep track of any personal data breach, to allow 
the regulator and data subject to be informed within 72 
hours from the breach event. 

RQ_036 - Data 
portability identification  

Functional In case of personal data, DDI has the accountability to 
identify and ensure the protection and privacy of 
personal data when that data is being transferred 
outside to a third party and / or other entity. 

RQ_037 - Data 
perimeter  

Functional GDPR Privacy policy are applied considering the origin of 
the personal data (from where data comes, and where 
data has been collected). DDI that manages personal 
data shall keep track about data origin, to facilitate the 
regulator to apply data protection policy properly, 
country by country. 

4.3.3 DDI Implementation of GDPR 

In safety risk management, harm is considered as physical injury or damage to the health of people, or 

damage to property or the environment. However, because harm (in a security sense) can also include 

reduction in effectiveness, or breach of data and systems security, it is appropriate to create a security risk 

management process (as companion to safety risk management process) to allow the organization to assess 
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the additional risks associated with effectiveness and system/data security. If the processes are integrated, 

there could be an inclination to drop the evaluation of those risks that do not lead to harm (in the safety 

sense), which can lead to incomplete or inconsistent security controls. Additionally, security risk assessment 

models typically use assessment factors that are different from safety risk assessment (while safety risk 

involves evaluating the probability and severity of a hazard leading to harm, security risk is based on an 

assessment of the likelihood that a threat will successfully exploit a device vulnerability, an event that could 

lead to an adverse impact due to a compromise of system confidentiality, integrity, and/or availability).  

Furthermore, integrating safety and security risk assessment into a single general risk management process 

may result in major modifications to a well-functioning safety risk management process. The relationship 

between security and safety risks is depicted in Figure 54.  

 

Figure 51 - Relationship between security and safety risks 

Security risks that impact safety, should also be captured in the organization’s safety risk management 

process. A specific risk assessed as “must mitigate” in one model might be assessed as “does not need 

further mitigation” in the other. Risk control measure(s) should be applied to bring the risk into the 

acceptable range in both assessment models. There will be risks managed in the security risk assessment 

that are not propagated to the safety risk management process. An example would be a risk of compromise 

of the confidentiality of protected health information that is not considered harm (in the safety sense), but 

clearly requires mitigation by the security risk management process. There are also business and reputation 

risks associated with a security compromise that are not considered harm in the safety sense.  

A security compromise that leads to harm (in the safety sense) should be managed within the security risk 

management process and propagated for assessment using the organisation’s safety risk management 

process. An example of a security risk that is also a safety risk is a malicious attacker gaining access to a 

medical device’s code, altering that code, and causing the device to malfunction. This malfunction may 

have the potential to cause harm to the patient. 

As the purpose of GDPR is to ensure the privacy and protection of personal data, and provide data subjects 

with certain rights, it is proposed that GDPR requirements are handled by the DDI’s security package 
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(TARA). Any compromise of GDPR requirements that could lead to harm in the safety sense should be 

propagated for assessment in the DDI’s HARA. 

As exemplar, consider the following Portable Medical engineering story: 

Context: Compromise ONCOassist User data 

Description: ONCOassist user data is captured on initial signup to the platform. All details are stored on 

server located in Republic of Ireland. PMT is both a ‘processor’ and ‘controller’ of personal data, and under 

GDPR rules PMT must ensure the privacy and protection of personal data. 

Challenge: Protect against an attack intended to steal client data such as name, address etc. 

DDI implementation: GDPR requires a risk based approach to data security. Article 35 requires companies 

to perform data protection impact assessments (the controller shall, prior to processing, carry out an 

assessment of the impact of the envisaged processing operations on the protection of personal data) to 

assess and identify risks to individuals’ data. In this engineering story the potential for theft of personal 

data is considered a security risk and will be dealt with using the TARA which assesses the likelihood of a 

successful attack, in addition to its impact. If the result of this assessment warrants threat mitigation then 

controls that ONCOassist consider include data minimisation, pseudonymisation etc. 

A guide to assessing an organisations compliance with GDPR is included in Appendix A. 
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5 Summary and Outlook 
This document presented our approach to conceptualizing and designing the engineering framework for 

the semi-automated generation and integration of design time DDIs.  

To this end, section 2 first described a set of representative engineering scenarios that exemplify, at which 

points in the engineering lifecycle DDIs can support which specific engineering activities that are either 

inefficient or not achievable without the use of DDIs. Afterwards, the fundamental concept for realizing the 

engineering activities by (semi-) automated DDI execution is described along with the following four 

technical building blocks: 1. SACM-conformant assurance case; 2. the ODE product meta-model describing 

meta-model packages for different dependability aspects such as hazard, failure logic, architecture or 

security-related models; 3. The ODE certification meta-model describing a meta-model for modeling 

engineering activities with variable degree of formalism; 4. A DDI execution component that allows for 

(semi-)automatically executing dependability certification activities (conforming to packages in 

ODE::Certification), which operate on dependability aspect models (conforming to packages of 

ODE::Product) to synthesize, integrate or assess a dependability assurance case (conforming to OMG 

SACM). 

Section 3 presented the reference for the second version of the Open Dependability Exchange (ODE) Meta-

model by depicting all existing meta-model packages graphically along with textual description about 

changes to ODE v1. In addition, the harmonization with other commonly used meta-modeling languages 

such as SysML or EAST-ADL(2) was described.  

The abstract engineering tasks that have been used in Section 2 for exemplifying DDI usage were 

concretized in Section 4 in the context of the DEIS use cases. For the European Train Control System (ETCS), 

an OEM-Tier integration scenario has been examined. For the Physiological Health Monitoring use case, 

security and safety co-engineering aspects have been considered. In addition, thoughts have been 

described on the utilization of DDI in applications, where general data protection regulations (GDPR) are 

relevant. 

The DDI engineering framework concept described in this document is the follow up from the initial DDI 

concept, and its operationalization through the ODE meta-model, that have been presented in an earlier 

stage of the project. It builds the basis for using DDIs to automate engineering tasks at design time. The 

most notable innovations described in this document have been the creation of a package to formally 

model certification activities and a package to address security aspects such as threat and risk analyses or 

attack tree modeling. Moreover, the engineering framework has been developed with the upcoming step 

towards runtime dependability assurance in mind.  

Upcoming work in the concept work package will focus on: 1. the concretization of the certification activity 

meta-model; 2. the refinement of the DDI execution component specification; 3. the conceptualization of 

runtime DDIs. Apart from conceptual research, the concepts of this document will be implemented in the 

dependability collaboration workspace (safeTbox, HiP-HOPS, ComposR and ACME as the dependability 

tools considered within DEIS) to demonstrate technical feasibility of the DDI engineering framework. 
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Appendix A 
The following questions provide a guide to assessing an organisations compliance with GDPR 

1. Are both the legal basis and the purpose for each processing activity documented? 

2. Will the personal data be processed for a purpose other than what was intended at the time of 

collection? 

3. Do consent-collecting mechanisms require some action (e.g., ticking a box) or affirmative 

statement by the data subject? 

4. If the legal basis for collecting data is consent, is explicit consent obtained? 

5. Has a representative within the European Union been designated (for organisations outside the 

EU)? 

6. Do contracts with third parties specify that the third party must have data protection and security 

protection clauses/annexes in place? 

7. Are records kept of all processing activities your company engages in? 

8. Are all data transfers documented, including cross-border transfers? 

9. Is a Privacy Notice provided to data subjects at every point of data collection? 

10. If data is to be processed for a secondary purpose, are data subjects notified of the new purpose 

prior to processing? 

11. Does the Privacy Notice clearly specify how data subjects can exercise their rights under the GDPR? 

12. Are internal policies in place defining what is considered to be a data breach and when and if 

notification to data subjects or Supervisory Authorities is required? 

13. Do agreements/contracts with third parties specify that the third party has to notify you (the 

controller) without undue delay after becoming aware of a data breach or potential data breach 

involving personal data? 

14. Is a log kept of all data breaches that occur, along with the effects and remedial actions taken? 

15. Are assessments of processing activities conducted by the relevant personnel to determine the 

data protection measures that should be in place, proportionate to the risks involved with the 

processing activity? 

16. Is privacy assessed at the beginning stages of development of any processing activity? 

17. Are measures such as data minimisation and pseudonymisation implemented across all applicable 

organisational units? 

18. Are Data Protection Impact Assessments (DPIAs) completed for processing activities involving 

special categories of information, automated decision making, or profiling? 

19. Are DPIAs completed prior to implementing new technologies, processes, or projects? 

20. Are there processes in place for  

a. responding to a data subject’s request for access to information? 

b. rectifying/deleting information about a data subject? 

c. communicating updates of personal data to third parties who have received the data? 

d. allowing a data subject to revoke consent for a particular processing activity at any time?  
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e. ensuring processing is stopped, including any processing by third parties when consent is 

revoked? 

f. complying  with requests to restrict the processing of data if requested by a data subject? 

g. complying with requests from a data subject to have their personal data transferred 

directly to another controller? 

h. stopping processing for direct marketing purposes when an objection is received? 

i. allowing a data subject to request a manual review of the decision or profiling activity (in 

the case of automated decision making)? 

j. transferring personal data to a third country or international organisation? 

k. ensuring  the appropriate Supervisory Authority is notified within 72 hours of a confirmed 

data breach? 


