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ABSTRACT 

 

Lakes and reservoirs are under increasing pressure from urbanisation, agricultural 

intensification, and directional climate change, including an increasing occurrence of 

extreme climatic events. These pressures can reduce water quality by promoting the 

occurrence of nuisance algal blooms and higher levels of dissolved organic carbon 

(DOC), two issues that can cause substantial problems for water treatment, aquatic 

ecology and recreational users. Thus, there is a need to develop a modelling framework 

that is flexible, adaptable and provides information that can be utilised to mitigate 

potential risks to lakes and reservoirs. This thesis describes three specific pieces of work 

which in combination, further the use of hydrodynamic models for adaptive 

management. Firstly, the suitability of different meteorological datasets for forcing one-

dimensional hydrodynamic models and accurately simulating water temperatures was 

examined. The European Centre for Medium-Range Weather Forecasts produces freely 

available gridded meteorological datasets: ERA-Interim, ERA5 and EWEMBI. Lake 

temperature simulations produced using these three datasets were compared to those 

based on local meteorological data. Simulations with ERA5 and ERA-Interim simulated 

water temperatures to a similar degree of accuracy as those forced with local measured 

data. This highlighted how gridded meteorological datasets can be used to simulate lake 

thermodynamics in areas where there is no locally measured meteorological data. 

Secondly, the improvement in short-term model performance when assimilating 

observed water temperature profile data into model simulations was assessed. Single 

profiles were inserted into simulations for three lakes that reflected potential monitoring 

programmes of different temporal frequencies. These monitoring data were compiled by 

subsetting high frequency data from the sites. Assimilating measured temperature 

profiles of up to one month prior to the forecast, greatly reduced forecast error. This will 

allow for short-term forecasting frameworks to be developed for low-frequency 

monitoring programmes. In the last results section, the effects of different future climate 

change scenarios on water temperature for a global set of lakes were characterised, using 

an ensemble of lake models forced with an ensemble of General Circulation Models. The 

responses in lake temperature and in functional characteristics such as the strength and 

length of stratification were shown to be highly variable across 46 lakes of varying 

morphometries. Comprehensively, there was an unequivocal warming of lake water 

temperature throughout the water column and an extension of the duration of 
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stratification. Such increases in water temperature, heighten the risk of anoxia and the 

occurrence of algal blooms which are water quality issues which can be actively 

managed. Overall, this study has found that lake forecasting frameworks (short and long 

term) can be setup using open access software and data, for sites with low-frequency 

monitoring data, forced with freely available meteorological data and produce high 

quality forecasts. These finding will be of increasing importance as we seek to simulate 

our freshwater ecosystems in a rapidly changing climate to aid in their management. 
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CHAPTER 1.  INTRODUCTION 

 

1.1. Background  

 

Lakes and other inland water bodies are critically important to sustain food production 

(Foley et al., 2011), provide drinking water (Delpla et al., 2009), and a range of other 

ecosystem services (Schallenberg et al., 2013). The structure, functioning and stability 

of lake ecosystems are, however, under increasing pressure from climate change and 

other human-related pressures including the intensification of agriculture and increased 

urbanisation (Blois et al., 2013; Isaac and Williams, 2013; Bunting et al., 2016; Hundey 

et al., 2016). There is a clear need to monitor and project the impacts of climate change, 

which are already having large effects on lakes globally (Reilly et al., 2003). A 

significant decrease in the duration of lake ice cover (Benson et al., 2012), and changes 

in the duration and nature of thermal stratification in lakes have already been reported 

(Woolway et al., 2016). These changes have subsequent effects on lake chemistry and 

biology, impacting the ecosystem services provided by lakes, including water aesthetics, 

recreational use, fisheries, water treatment processes and drinking water quality (Delpla 

et al., 2009; Whitehead et al., 2009). All of these water quality issues occur throughout 

Europe (Sanseverino et al., 2016) and in Ireland (Irvine et al., 2011), and can affect water 

quality status as defined by the EU Water Framework Directive (WFD) (European 

Council, 2000).  

The overarching goal of environmental monitoring is the development of a causal 

and mechanistic understanding of processes (Stow et al., 1998). Many ecological 

processes occur at varying temporal and spatial scales and without monitoring for long-

time periods, the ability to actively manage ecosystems is reduced (Magnuson, 1990). In 

the context of lakes, collecting in-situ data allows the state of the lake to be assessed and, 

when carried out over long periods of time, it can be used to monitor changes in the lake’s 

state. However, such monitoring is resource intensive, and only a very small proportion 

of global lakes are actively monitored (Toming et al., 2016). Remote sensing can now 

be used to fill some of the spatial and temporal gaps in lake monitoring programs by 

providing snapshots of water quality at global and regional spatial scales that were 

previously impossible (Mantzouki et al., 2018). In addition, there has been an increase 

in the number of lake sites worldwide which are being monitored using high frequency 
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monitoring equipment on moored buoys within lakes (Hanson et al., 2016). This has led 

to improvements in our understanding of the hydrodynamics and aquatic ecology of lakes 

at very fine temporal scales, and has also contributed to the development of aquatic 

ecosystem models (Hipsey et al., 2019). Monitoring provides data for calibrating and 

validating model behaviour which is fundamental to any modelling development 

(Hamilton et al., 2015). Numerical lake models combined with monitoring data have 

been shown to have the potential to be used for the optimisation of water quality 

management through scenario testing and forecasting (Imberger et al., 2017; Tranmer et 

al., 2020). 

Modelling of lake ecosystems involves using numerical models to represent 

dynamic in-lake processes. The development of such models serves two main purposes. 

First, models can be used to test a hypothesis or theory related to an ecosystem process 

or functioning. Several iterations of this process have led to the advancement of our 

knowledge within physical limnology (Fischer et al., 1979; Imberger and Patterson, 

1989; Wüest et al., 2000; Goudsmit et al., 2002; Mironov, 2008; Dutra et al., 2010; Hu 

et al., 2016). Secondly, they are used to provide information on the future state of the 

lake ecosystem (Peng et al., 2019). This can provide short-term prediction, on the scale 

of one day to one year, referred to as forecasts, or long-term future states on decadal to 

centennial time scales, referred to as projections. Significant advances in computing 

power and data collection has greatly accelerated the use of process-based modelling in 

ecology (Hallgren et al., 2016; Farley et al., 2018). A wide range of numerical models 

have been developed that simulate differing aspects of lake systems with varying degrees 

of complexity (Stepanenko et al., 2010). These include many widely used models of lake 

hydrodynamics, which are fundamental to any simulations of ecosystems responses in 

lakes. Coupling these lake hydrodynamic models with biogeochemical models can 

provide crucial information to lake managers as they seek to mitigate the effects of 

climate on these crucial ecosystems (Bruggeman and Bolding, 2014). 

Active management is required to deal with the many pressures lake face, 

whether it is water security (Tzabiras et al., 2016), nutrient limitation (Maberly et al., 

2020a) or hydropower (Jahandideh-Tehrani et al., 2014). Decision making in these 

circumstance needs to be informed with sound scientific evidence. Tools for analysis and 

aiding decision making are constantly being developed for environmental purposes 

(Dorner et al., 2007; McIntosh et al., 2011). Environmental models can sometimes carry 

large risks if the uncertainty is not quantified and communicated effectively (Uusitalo et 
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al., 2015). Hydrodynamic models have been applied for management scenarios focused 

on reducing the occurrence of cyanobacteria blooms (Ladwig et al., 2018) and 

controlling the lake mixing regime (Mi et al., 2019). A real-time adaptive management 

system which would utilise available monitoring data with numerical modelling would 

provide up-to-date pro-active management steps which could be carried out as needed to 

aid in lake management (Imberger et al., 2017). 

 

1.2. Research objective 

 

The primary aim of the research undertaken for this dissertation was to examine the 

application of hydrodynamic models to provide accurate information on lake thermal 

structure, over both short term (forecasts) and long term (future projections) timescales.  

 

The overall objectives of this PhD thesis are to: 

1. Investigate the ability of gridded climate reanalysis datasets to accurately force lake 

models when compared to locally measured meteorological data. 

2. Assess the potential for assimilating measured lake temperature profiles into model 

runs to produce short-term water temperature forecasts using data from three lakes 

with differing local climates and morphologies. 

3. Design a modelling framework for assessing projected climate change impacts on 

lake thermal dynamics and quantify these impacts for three different future emission 

scenarios, across 46 different lakes using an ensemble of climate and lake models. 

 

Together, the work described in this thesis addresses some of the key issues 

associated with implementing automated lake modelling workflows, including 

efficiency, coverage, uncertainty and accuracy. By adapting lake models for forecasting 

for existing monitoring systems (objective 2), expanding their use to sites that do not 

have measured met data (objective 1) and developing a modelling framework to 

understand the threats posed to these systems by future changes in the climate (objective 

3), this work significantly contributes to the use of lake models as a tool for managing 

lake ecosystems. 
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1.3. Synergies 

 

The work described here was linked to both the PROGNOS project (Predicting in lake 

responses to change using near real time models) (PROGNOS, 2020) and the WateXr 

project (WateXr, 2020). PROGNOS was a Water JPI funded project which focused on 

developing a modelling framework that could predict changes in the water quality of 

lakes and reservoirs in the short-term i.e. 5-7 days. The modelling frameworks adopted 

within PROGNOS included coupling a lake physical model with a lake biogeochemical 

model and using local meteorological forecast data to drive the coupled lake model. 

Chapters 4 and 5 describes some of the work that went into developing that framework. 

WateXr is focused on co-developing tools for water resource managers which integrate 

seasonal weather forecasts and future climate projections with impact models for lake 

and reservoirs. The PROGNOS modelling framework is currently being utilised and 

developed further within WateXr. It is envisaged that the WateXr modelling frameworks 

will be used to inform water resource management and support the decisions making 

process to safeguard the ecosystem services the lake provides such as drinking water or 

recreational uses. Within WateXr, project members also contributed to the  development 

of a new sector of impact models (Lake Sector) within the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP) (ISIMIP, 2020). One of the aims of ISIMIP is to 

quantify the impacts of an increase of 1.5 °C in global air temperature, following the 

agreement of the Conference of the Parties (COP) in Paris, France in December 2015 

(UNFCCC, 2015; Frieler et al., 2017). Knowledge acquired during both the PROGNOS 

and WateXr projects allowed the timely development of the lake modelling framework 

for ISIMIP. 

 

1.4. Thesis outline 

 

This thesis is arranged into seven chapters (Figure 1.1). This introduction is followed by 

a comprehensive review of the literature with a focus on the areas relevant to lake 

physics, monitoring, modelling and the impacts of climate change on thermal dynamics 

in lakes and reservoirs (chapter 2). The lake study sites used in chapters 4 and 5 are 
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described in chapter 3. Chapters 4-6 are three draft articles related to each of the three 

objectives outlined above. Chapters 4 and 5 have an introduction, materials and methods, 

results, discussion and conclusions. Chapter 6 has an introduction, a description of data 

sources and simulation protocol for the ISIMIP Lake sector, results, discussion and 

conclusion. There is a synthesis of the overall findings, outlining of future areas for 

research and describing the potential application of the described framework in an Irish 

context in chapter 7. 

 

Figure 1.1 Overview of thesis.  
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CHAPTER 2.  LITERATURE REVIEW 

 

2.1. Lake physics 

 

Thermal structure of lakes 

 

The thermal structure of lakes controls many aspects of chemical and biological lake 

functioning (Wetzel, 2001; Reilly et al., 2003; Cantin et al., 2011). Most aquatic 

organisms are ectotherms, relying on the temperature of the local environment to control 

their biological activity (Bullock, 1955; Goldman, 1974). Water temperature also 

influences water chemistry. At higher temperatures reactions occur more quickly and this 

is a major controlling factor for chemical and biological activity, including in lakes 

(Butterwick et al., 2005). Dissolved oxygen is one of the main chemical elements in 

water that is affected by temperature as at higher temperatures the water holds less 

oxygen so while the water could be saturated with oxygen at very high temperatures, it 

still may not have enough to support aquatic life (Downing and Truesdale, 1955). 

Within lakes, the main source of heat is from incoming solar radiation 

(Henderson-Sellers, 1986). Water has a high specific heat capacity and when the light 

enters the water, it dissipates in the form of heat energy (Mikulski, 1973; Wetzel, 2001). 

Heat can also be transferred by conduction with the air (McCombie, 1959) and by the 

addition of heat from the sediment (Tsay et al., 1992). Heat is lost from the lake by 

thermal radiation (Saur and Anderson, 1956), conduction (Williams, 1963), evaporation 

(Dake, 1972) and through the outflows (Saur and Anderson, 1956) (Figure 2.1) . Wind 

is the main force which controls the vertical distribution of heat within a lake (Peeters et 

al., 2002). Wind stress on the surface of the lake generates turbulence which causes 

mixing of heat energy from the upper layers to the lower layers (Imberger, 1985; Boehrer 

and Schultze, 2008; Branco and Torgersen, 2009). When the lake is isothermal there is a 

similar temperature throughout the lake water column. In this isothermal state, mixing 

occurs even with a small amount of wind energy (Smith, 1979). 
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Figure 2.1 Major heat exchange processes operating in an enclosed water body (Adapted 

from Saur and Anderson, 1956). 

During the spring, when solar radiation begins to increase, there is generally an 

increase in the water temperature at the surface of a lake (Imberger, 1985; Kirk, 1988). 

This warmer water becomes less dense, and a density difference forms between the 

surface and bottom which prevents the whole water column from mixing and the lake is 

stratified (Boehrer and Schultze, 2008). A lake is referred to as thermally stratified when 

there is a temperature gradient greater than 1 °C m-1 (Stefan et al., 1996; Wetzel, 2001; 

Foley et al., 2012). The occurrence of stratification in lakes does not happen suddenly, 

generally it occurs over a period of time (Stainsby et al., 2011). There is no universal 

definition of stratification with variations such as a temperature difference of 1 °C 

between top and bottom (Stefan et al., 1996; Read et al., 2014; Woolway et al., 2014), a 

density difference between top and bottom of 0.025 – 0.07 kg m-3 (Staehr et al., 2012; 

Woolway et al., 2017b) or a consistent stability threshold related to Schmidt stability 

(e.g. >30 J m-2 Read et al., 2011). As the summer progresses, temperatures generally 

increase in the upper layers of the water column, leading to the creation of three layers 

in the water column which are refer to as the epilimnion, the metalimnion and the 

hypolimnion. The epilimnion is the upper layer which generally has a uniform warm 

temperature and in which the water is circulating (Hutchinson and Loffler, 1956). The 

metalimnion is the water layer with a steep thermal gradient. The thermocline occurs 

within the metalimnion and it is the plane of the maximum rate of decrease in temperature 

with respect to depth, usually >1°C m-1 (Balon and Coche, 1974). The hypolimnion is 
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the region below the metalimnion which is distinctly colder than the epilimnion and 

usually has a relatively uniform water temperature (Wetzel, 2001). 

Heat is transferred to lower depths in a lake by incoming light radiation, 

convection currents, diffusion and turbulence (Dake and Harleman, 1969). The depth to 

which light can penetrate into the water column is controlled by light attenuation (Wetzel, 

2001). Light attenuation is the exponential decrease of light intensity with depth 

according to Beer-Lambert Law (Swinehart, 1962). Factors which affect light attenuation 

include concentration of chlorophyll-a (Sánchez et al., 2017), dissolved organic matter 

(DOM) (Watras et al., 2015) and suspended solids. (James et al., 2004). In high 

concentrations, these can increase the turbidity of the water and reduce the depth to which 

light can penetrate. Thermocline depth has been shown to be positively correlated with 

water transparency in Arctic lakes (Fortino et al., 2014). 

Turbulence within the epilimnion can carry heat energy into the metalimnion and 

further into the hypolimnion (Imberger and Patterson, 1989). In temperate climates, 

throughout the summer season, as the lake gets more heat energy, the epilimnion and 

metalimnion deepen down into the hypolimnion as the lake stores more heat energy 

(Wetzel, 2001). During the period of stratification, the lake is referred to as stable. This 

stability is defined mathematically as the amount of energy required to mix the entire 

volume of the lake without the addition or subtraction of heat energy (Schmidt, 1928; 

Hutchinson, 1957; Idso, 1973). It is a way of quantifying the resistance of the lake to 

mixing forced by the wind due to the potential energy inherent within the water column. 

Towards the end of the summer season the amount of heat energy coming into 

the lake is generally reduced and the lake begins to cool. Autumn turnover is the period 

when the summer stratification breaks down and the lake mixes (Boehrer and Schultze, 

2008). This breakdown can occur over a couple of weeks (Lake Mendota, WI, US) or in 

a few hours (Lake Wingra, WI, US) (Jenkin, 1942; Coulter, 1963; Reynolds, 1980; 

Magee and Wu, 2017). The main drivers of this breakdown are usually higher wind 

speeds coupled with heat losses. Monomictic lakes then return to an isothermal state until 

the onset of stratification in the following spring or early summer (Boehrer and Schultze, 

2008). River inflows and outflows can also influence lake stratification as depending on 

the density they will entrain at different depths (Cortés et al., 2014). Inflows affect the 

depth of the thermocline, surface temperature in summer, hypolimnion temperature, 

surface temperature in winter and the rate of heating and cooling within the water column 
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(Fenocchi et al., 2017). Nutrients within the inflows enter at the intrusion depth of the 

inflow and only become mixed when a mixing event occurs within the lake (Marti et al., 

2011).  

Lakes can be classified according to their mixing regime with the three most 

common types of lakes being monomictic, dimictic and polymictic (Lewis, 1983). 

Monomictic lakes are lakes which undergo mixing once a year, usually in the autumn 

period. Di mictic lakes have two mixing periods per year, one following summer 

stratification and another following ice cover and inverse stratification in winter. 

Polymictic lakes are lakes which stratify and mix multiple times a year. 

Stratification can control the distribution of dissolved and suspended materials 

(Etemad-Shahidi and Imberger, 2001) and allow them to concentrate above and below 

the thermocline (Elçi, 2008). The materials tend to concentrate near the thermocline and 

in a layer just above the sediment water interface (Harrsch and Rea, 1982). The 

thermocline plays a role in regulating the vertical distribution of bacterial community 

composition, but this is due to its control of water quality parameters such as dissolved 

oxygen, conductivity, and nutrients (Yu et al., 2014; Zhang et al., 2015). The thermocline 

can also act as a barrier to dissolved oxygen and increase the probability of anoxia 

occurring in the hypolimnion (Elçi, 2008). It also plays an important role in zooplankton 

and phytoplankton biomass and composition. Deepening of the thermocline as a result 

of increased mixing has been shown to increase zooplankton biomass (Sastri et al., 2014) 

and dominance by smaller fish-evasive species (Gauthier et al., 2014). Phytoplankton 

has exhibited greater production in the epilimnion in response to deepening thermocline 

(Cantin et al., 2011). 

 

2.1.1.1. Heat Fluxes 

 

Lakes have a dynamic interaction with the atmosphere with regards energy, mass and 

momentum fluxes (Samuelsson et al., 2010). They integrate climate signals and respond 

quickly to local changes in meteorology (Adrian et al., 2009; Jennings et al., 2012). This 

interaction at the air-water interface has been well researched in the context of 

oceanography for gas exchange (Hasse and Liss, 1980), biogeochemistry interactions 

(Haese, 2006) and heat and mass exchanges (Kondo, 1975; Liu et al., 1979; Fairall et al., 
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1996) where the same principles can be applied for lakes. Heat fluxes can affect lake 

stratification and ice cover duration (Anderson et al., 1996). Lake surface heat fluxes, 

are influenced by the surface area and the latitudinal position, where larger lakes and 

those at low latitudes have a higher rates of heat loss (Woolway et al., 2018). 

 

Turbulence 

 

Within lakes there are two main types of flow: laminar flow and turbulent flow (Wetzel, 

2001). Laminar flow occurs at slow speeds where water moves in straight lines with no 

interaction (Smith, 1979; Saggio and Imberger, 2001). Turbulent flow occurs when the 

water reaches a critical velocity or when there is opposing horizontal movement between 

layers of water of different densities (Wetzel, 2001). Turbulent flow is the main flow that 

is found within lakes. Wind is the main driver of turbulence, particularly at the surface 

boundary layer (Kocsis et al., 1999; Wüest et al., 2000). Turbulent flow allows for the 

exchange of heat energy within a lake. Turbulent kinetic energy (TKE) is the mean 

kinetic energy per unit mass associated with eddies in turbulent flow (Pope, 2000). The 

transfer of heat energy across a thermal gradient can be used to approximate how much 

turbulent transport is present. The coefficient of eddy diffusivity (Kz) is a measure of the 

rate of exchange of mixing across the plume. This also allows the estimation of 

turbulence from changes in temperature. Hondzo and Haider (2004) found that within 

small stratified lakes, a turbulent boundary layer develops. The thickness of this layer is 

dependent on 1) the dissipation of TKE, 2) the strength of stratification, 3) the length of 

the sloping boundary and 4) the angle of inclination of the sloping boundary. When a 

lake has gently sloping boundaries, it reduces the energy from internal waves. In shallow 

lakes, the occurrence of submerged macrophytes also increases the dissipation of TKE 

and attenuates wind-induced vertical mixing (Herb and Stefan, 2004). 

The irregular, diffusive, dissipative flow of water with no velocity direction 

causes changes in water column turbulence (Tennekes and Lumley, 1972). Diapycnal 

mixing, that is mixing across surfaces of equal density, is a hugely important physical 

process within lakes. It plays a role in the vertical distribution of chemical and biological 

constituents (Goudsmit et al., 1997). Diapycnal fluxes are mainly determined by mixing 

which occurs in the bottom boundary layer (Goudsmit et al., 1997). 
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Eddy diffusion coefficients of turbulence depend on the degree of stratification 

in lakes (Hondzo and Stefan, 1993). Vertical eddy diffusivity is the main process which 

determines heat transfer at lower depths within lakes (McCormick and Scavia, 1981). 

Vertical eddy diffusivity within the water column is ten times less than that at the lake-

atmosphere boundary layer (Etemad-Shahidi and Imberger, 2001). Boundary mixing that 

occurs at the thermocline plays an important role in propagating internal waves 

throughout the lake. This transfers energy between different zones within the lake (Lorke, 

2007). High frequency internal waves have a large contribution to temperature and 

current velocity in the littoral zone. They can cause large fluctuations and the period of 

these fluctuations is directly related to the buoyancy frequency (Lorke et al., 2006). 

Turbulent kinetic energy is supplied by wind shear. This can be calculated using 

data on the lake surface area and shear velocity (Hondzo and Stefan, 1993). The vertical 

transfer of thermal energy is primarily driven by turbulent mechanisms, even below the 

epilimnion (Jassby and Powell, 1975). Horizontal turbulence is generated by shear at the 

surface, while towards the bottom of the lake it is generated by inertial subrange 

diffusion. Shear is of critical importance because it is highly correlated with wind forcing 

and diffusion coefficients during events where there is high wind speeds (Lemmin, 

1989). 

Lake thermodynamics are driven by exchanges of energy between the lake water 

and the atmosphere. When air temperature increases, surface water temperatures increase 

concurrently (Rempfer et al., 2010). Studies to date indicate that surface waters and lake 

stability will increase across lakes because of warmer air temperatures in response to 

increased greenhouse gas emissions (O’Reilly et al., 2015; Sahoo et al., 2016; Woolway 

and Merchant, 2019). Lake surface temperatures are projected to increase by 70 – 85 % 

of air temperature increases in the coming decades (Schmid et al., 2014), leading to 

longer stratification periods (Palmer et al., 2008; Adrian et al., 2009; Vincent, 2009; 

Sahoo et al., 2016). The response of bottom temperatures in lakes to higher temperatures 

is more complex and variable because of its dependence on mixing and other energy 

inputs (Kraemer et al., 2015). Under projections of increased air temperature, deep lakes 

are likely be more resistant to thermal changes, while in northern lakes it is predicted that 

there will be a reduction in the length of ice cover during winter (Butcher et al., 2015). 

This effect of climate warming could possibly be reduced and maybe even reversed by 

the associated changes in river discharge regimes as a result of climate change (Zhang et 

al., 2014; Fenocchi et al., 2017). Råman Vinnå et al. (2017) found that the river water 
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temperature had to be lower than that of the lake to have a cooling effect to counteract 

warming by climate change. They also concluded that the tributaries can have an 

influence on the whole lake system in lakes with a residence time of less than 1000 days. 

Within lakes there are different types of mixing: buoyant convection (Carmack 

and Weiss, 1991), wind-driven eddy diffusivity (Jassby and Powell, 1975) and molecular 

diffusivity (Imboden and Wüest, 1995). One-dimensional lake models capture these 

processes by parameterizing the mechanical energy balance or with turbulence and 

diffusion equations (McCormick and Scavia, 1981). They parameterise the boundary 

effects of lake bathymetry and lake surface exchanges with the atmosphere.  

 

Mass Transport 

 

There are two main types of mass transport in lakes: diffusive mass transport and 

advective mass transport. Diffusive mass transport occurs via two processes: molecular 

diffusion, which is slow, and turbulence diffusion, which is much faster (Auer et al., 

2013). The onset of stratification is a product of this type of mass transport. In large lakes, 

water can heat up close to the shore and lead to the creation of a horizontal density 

gradient between shallow waters and deeper waters. Water moves towards the density 

gradient from both sides and sinks at the gradient creating convective cells (Rao et al., 

2004). This region of a density gradient is called a thermal bar and it can trap suspended 

sediment near the shorelines of the lake. It disappears as water temperature begins to 

increase and the bar moves outwards into deeper regions of the lake (Schertzer et al., 

1987; Holland and Kay, 2003). 

Advective mass transport is when the transport is unidirectional and the identity 

of the substance being transported remains the same (Auer et al., 2013). Exchanges occur 

between the pelagic and littoral zones and these occur when there are horizontal 

differences in density (MacIntyre and Melack, 1995). This includes current and 

temperature gradients, Coriolis force in large lakes, seiche movements and river plumes. 

Currents are driven by temperature and wind interacting with the bathymetry of the lake 

(Bennington, et al, 2010). The Coriolis force is noticeable in deep large lakes such as the 

Great Lakes (Tsvetova, 1998) or long deep lakes in Italy (Pilotti et al., 2018; Piccolroaz 

et al., 2019). Seiche movement in a lake is when a strong wind force pushes the lake 
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water mass towards one shore. When the wind force then drops, the water returns in the 

form of a wave (Trebitz, 2006). Seiches can occur at regular intervals with a lake, with 

periods of 2-14 hours, and this creates internal waves. This is particularly evident when 

the lake is stratified, and it can lead to oscillation of the thermocline and drive mixing, 

thus deepening the surface mixed layer (Antenucci et al., 2000; Saggio and Imberger, 

2001). It influences the spatial heterogeneity and horizontal differences in production of 

phytoplankton (Hingsamer et al., 2014). It usually occurs along the long-axes of the lake 

and lake morphometry and bathymetry also play an important role in how this wave 

propagates through the basin (Auer et al., 2013). Valerio et al. (2012) used the presence 

of an island in Lake Iseo to analyse the effect of lake bathymetry by comparing models 

of the internal wave in the lake with and without the island. The island disrupted the 

symmetry of the wave and amplified the vertical displacement in the area around the 

island. 

Rivers and withdrawals can transport heat, nutrients and suspended sediment into 

and out of lakes. The transport of these within the lake is mainly controlled by density 

differences (Fischer et al., 1979). River and stream inflows are key to heating parts of 

the lake which are not reached by sunlight such as areas across the thermocline and also 

within the hypolimnion by aiding convective mixing (Fenocchi et al., 2017). The rate 

and size of the inflows are one of the controlling factors in the distribution of water 

masses within the lake. The circulation driven by rivers depends on the rate of the inflow 

and also the temperature of the lake relative to the temperature of the inflow (Carmack 

et al., 1986). Carmack (1979) showed that, for Kamloops Lake in Canada, the riverine 

flow-controlled lake-wide circulation patterns particularly prior to spring overturn. 

Depending on the residence time of the lake, the overall contribution of inflows to the 

lake’s thermal budget is dependent on the inflow mass but in comparison to the 

contribution of atmospheric fluxes, it is generally quite low (Peeters et al., 2002). 

 

2.2. Limnological monitoring 

 

Monitoring of lakes allows for further understanding of the complexities of processes 

occurring within the lake. In addition to the rate at which these processes occur, there are 

strong physical, chemical and biological interactions occurring between differing 

processes. Lakes have been referred to as sentinels of climate change because they are 
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known to integrate long-term climatic signals (Adrian et al., 2009) and can respond 

quickly to local meteorological perturbations (Maberly, 1996; MacIntyre et al., 1999; 

Woolway et al., 2015). Long-term studies of lake surface temperature have been used as 

indicators of the varying effects of climate change globally during summer (Peeters et 

al., 2002; Livingstone, 2003; Coats et al., 2006; O’Reilly et al., 2015; Sahoo et al., 2016). 

The temporal resolution of traditional monitoring would be weekly to monthly time 

scales using handheld sensors, but these do not capture sub-daily changes in lake 

function. To capture short-term changes within lakes, moored buoys with suites of high 

frequency sensors have been deployed in lakes which measure water temperature 

throughout the depth profile, meteorological conditions above the lake, and an array of 

chemical parameters using a selectionof sondes (Daly et al., 2004; Porter et al., 2009; 

Marcé et al., 2016).  Lake water temperature profiles are generally one of the commonly 

measured parameters (Jennings et al., 2017). 

Monitoring of lakes is often supplemented with numerical modelling. Models are 

crucial tools used to test hypotheses and to gain further understanding of how systems 

behave. Furthermore, long-term monitoring data provided the basis for calibrating such 

models (Gal et al., 2009; Arhonditsis et al., 2017; Luo et al., 2018; Ayala et al., 2019; 

Moras et al., 2019).  

 

2.3. Lake and reservoir modelling 

 

Hydrodynamic models 

 

Changes in lake thermodynamic structure profoundly influence lake functioning, 

including biological activity. These physical changes include the timing of autumn 

overturn, the onset and offset of winter ice-cover, the earlier occurrence of stratification 

in spring, the development of a stronger gradient in the thermocline and a general 

warming of the entire water column (Perroud et al., 2009). There are two main types of 

lake models: empirical models where the structure is based on the observational 

relationship among experimental data, and mechanistic models which represent physical, 

chemical and biological processes within a lake. A mechanistic model is a model that 

uses differential equations and changes with reference to time and represents behaviour 
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(Dowd, 2006). Models of lake physical structure help to summarise and integrate current 

knowledge of lake dynamics and the various factors which influence water quality 

(Stepanenko et al., 2010). They also help to increase understanding of how a lake 

responds under specific environmental conditions. Lake models are a tool that allows 

water resource managers to evaluate different in-lake scenarios at a moderate cost to 

more expensive monitoring practices (Hamilton and Schladow, 1997; Omlin et al., 

2001). There have been recent developments of a hybrid model, “air2water”, which 

simulates surface temperature based on both a mechanistic model and an empirical model 

(Piccolroaz, 2016; Piccolroaz et al., 2018).  

Lake hydrodynamics can be modelled in two different ways: finite difference 

models and bulk-lake models (Stepanenko et al., 2010). Finite-difference models use a 

down-gradient approximation for heat transfer equations to parameterize turbulent fluxes 

of heat using finite difference methods (Cheng et al., 1976). The k-epsilon (k-ε) 

turbulence model is the most common model used in computational fluid dynamics to 

simulate mean flow characteristics for turbulent flow conditions (Versteeg and 

Malalasekera, 1995). It is a two-equation model which gives a general description of 

turbulence by means of two transport equations. The two equations allow it to account 

for historical effects from convection and diffusion (Bardina et al., 1997). K-epsilon 

parameterisation is a more sophisticated way of calculating turbulence fluxes.  

Bulk lake models are generally applied in atmospheric or numerical weather 

prediction models to calculate the lower boundary condition of surface temperature and 

moisture needed to compute turbulent fluxes at the lake–atmosphere interface (Hodges 

et al., 2000a; Mironov, 2008; Wang et al., 2015). They are mostly used to model surface 

lake temperature (Stepanenko et al., 2010). There is no single lake model that can be 

used to model lakes across a wide variety of climate scenarios and different physical 

types of lakes (Mooij et al., 2010; Stepanenko et al., 2010). Turbulence models, however, 

are usually computationally expensive, and they generally require extensive lake-specific 

data which is one of the reasons they have not yet been used in any climate models (Subin 

et al., 2012). 
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Modelling in different dimensions 

 

Lake models can differ in their spatial dimension and the choice of dimension to use is 

dependent on the application of the model. One dimensional (1D) modelling requires that 

variables change predominantly in one defined direction and within lakes the vertical 

gradient is where the most change is. When modelling lake physics, and where there is 

no focus on horizontal variability, then 1D modelling is the best option (Hipsey et al., 

2014). 

Two-dimensional (2D) models have been used to model basin currents in large 

lakes (Boegman et al., 2001), lake level fluctuations (Schwab et al., 1981; Paul et al., 

2019) and eutrophication dynamics (Li-kun et al., 2017). These work well when 

predicting horizontal variability in lakes but  they tend to poorly replicate the vertical 

variability with a high enough level of accuracy to simulate the thermal structures and 

fluxes correctly (Swayne et al., 2005). 

 Three dimensional (3D) modelling of lakes is more advantageous than 1D or 2D 

modelling because it allows for modelling of internal waves, mixing, spatial gradients 

and higher resolution (Hodges et al., 2000b). The main drawbacks of 3-D modelling are 

that it requires high computational power and memory, higher data requirements and 

higher level of expertise (Castelletti et al., 2009; Acosta et al., 2015). 

Generally 3D models are used mainly for large lakes and are often coupled with 

climate models for global and regional climate studies (Swayne et al., 2005) and 

incorporated into atmospheric forecast models (Huang et al., 2010). One dimensional 

models are more frequently used for characterisation of lake physics within a target lake 

(Kirillin, 2003; Kara et al., 2012; Read and Rose, 2013; Rose et al., 2016a) or on a 

regional scale (Read et al., 2014; Le Moigne et al., 2016; Woolway et al., 2019). They 

have also been coupled with biogeochemical models to assess, for example, nutrient 

cycling within a lake (Mukherjee et al., 2008), phytoplankton abundance (Zwart et al., 

2015) or the impact of macrophytes on water quality (Hilt et al., 2010). A study on two 

reservoirs in Australia which combined 1D and 3D hydrodynamic models with one 

biogeochemical model found that this approach provided much more insight into 

simulating biogeochemical fluxes and a more accurate representation of ecological 

processes (Romero et al., 2004). 
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Finite-difference models 

 

Eddy diffusion models are finite-difference models where the diffusion of energy within 

a lake is mixed by eddy motion. Turbulence-based models calculate the amount of 

turbulent kinetic energy that is available, parameterise the vertical transport by eddies, 

and include functions for the dissipation of energy (Imberger et al., 1978; Burchard and 

Baumert, 1995).  

The structure of 1D models varies but the two most common structures are 

Lagrangian and Eulerian. Lagrangian models divide the lake into horizontal layers with 

uniform properties but wherein the layers can get larger, smaller, and even merge with 

other layers in accordance with how the mixing equations have been parameterised 

(Imberger and Patterson, 1981; Hipsey et al., 2019). The General Lake Model (GLM) 

and the Dynamics Reservoir Simulation Model (DYRESM) are examples of Lagrangian 

models. Eulerian models are oriented on a fixed grid structure with fluxes occurring 

between the different grids. The General Ocean Turbulence model, Simstrat and the 

multi-year lake simulation model (MyLake) are examples of models that use a Eulerian 

grid (Goudsmit et al., 2002; Burchard et al., 2006; Saloranta and Andersen, 2007). 

 

Coupling a physical model with a biogeochemical model 

 

Numerous biogeochemical models have been developed of varying degrees of 

complexity with process-specific modules. The Framework for Aquatic Biogeochemical 

Models (FABM) is a very powerful tool as it allows the user to dynamically couple 

biogeochemical models to physical models and to select different modules from different 

biogeochemical models. At runtime modules from different models can be combined to 

create custom-tailored models to adapt the model to the needs of different lakes 

(Bruggeman and Bolding, 2014). While such coupling is not part of the current study, 

the modelling work described here forms the basis for coupled physical-biogeochemical 

modelling using FABM in the wider PROGNOS project. 

 



  

20 

 

Widely used lake models 

 

There are many 1D hydrodynamic models in the literature that have been developed for 

different applications and purposes. Here, we briefly introduce and describe the 

similarities, differences of each of the models. The most popularly used models are 

presented. 

The Freshwater Lake model (FLake) is a bulk fresh-water lake model (Mironov, 

2008) (Table 2.1). It is based on a two-layer parametric representation of the evolving 

temperature profile and on the integral budget of energy for the layers in question. The 

two layers are a mixed layer and a layer below this which is separated from the mixed 

layer by the mathematically calculated mixed layer depth. It calculates the mixed layer 

depth based on temperature. The depth of the thermocline is a function of non-

dimensional depth. This model has been embedded in a number of land surface models 

and climate models (Mironov et al., 2010; Stepanenko et al., 2014; Le Moigne et al., 

2016). It has been used for regional and global studies due to its computational speed and 

relative accuracy in simulating surface temperatures (Woolway et al., 2017b; Shatwell 

et al., 2019; Woolway and Merchant, 2019) and integrated in numerical weather 

prediction to improve weather forecasts (Mironov et al., 2010, 2012) and regional 

climate models to account for flux exchange between the atmosphere and lakes 

(Bogomolov et al., 2016). 

The Freshwater Lake model (FLake) was developed by Mironov (2008) and uses 

the concept of a self-similarity curve to simulate lake-atmosphere exchanges, mixed layer 

depth and surface and bottom temperatures. FLake does not require detailed lake 

bathymetry information, beyond lake mean depth. This is known to be a parameter within 

FLake where small changes can noticeably alter the simulated mixed layer depth 

(Samuelsson et al., 2010). This model has been integrated into numerical weather 

prediction models to improve weather forecasts by accounting for the influence of 

surface fluxes from lakes (Mironov et al., 2010). It has also been used in  large regional 

scale modelling studies due to its computational efficiency (Shatwell et al., 2019; 

Woolway et al., 2019) and for analysis of lake surface energy fluxes and stratification 

(Stepanenko et al., 2014). 

Simstrat is a one-dimensional model that is capable of modelling thermal 

stratification and mixing of deep lakes (Goudsmit et al., 2002) (Table 2.1). It has the 
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potential to be coupled with biogeochemical models such as the Aquatic Ecosystems 

Dynamics library (AED) (Hipsey et al., 2013) through the Framework of Aquatic 

Biogeochemical Models (FABM) (Bruggeman and Bolding, 2014). It is a k-ε model 

which accounts for turbulent mixing and has been developed to account for mixing by 

calculating internal seiches. This model has the flexibility for inflows to be added in at 

different depths or with intrusions based on their density (Goudsmit et al., 2002). It has 

been used in several case studies quantifying the impact of inflows (Råman Vinnå et al., 

2017) and solar brightening (Schmid and Koster, 2016) on lake thermal dynamic, 

parametrising seiches and deep mixing (Gaudard et al., 2017) and interfaced with an 

atmospheric model (Goyette and Perroud, 2012). 

The General Lake Model (GLM) is a one-dimensional hydrodynamic model 

which combines energy and mass fluxes to simulate water column temperatures  (Hipsey 

et al., 2012, 2014, 2019) (Table 2.1). It uses a Lagrangian layer structure which changes 

over time in correspondence to the changes in density. The thickness of the layers can 

increase or decrease over time. When there are density instabilities or when the turbulent 

kinetic energy between layers exceeds the potential energy threshold, the layers merge 

accounting for the mixing process. This process allows for thinner layers when 

calculating mixing in areas where there are strong density gradients and thicker layers 

where there are weak density gradients (Figure 2.2). This is a computational advantage 

and increases the model’s flexibility to resolve mixing and more accurately replicate the 

structure of fine-scale mixing processes around the metalimnion, where large density 

jumps might occur over abrupt depth intervals. It uses heat transfer and mixing 

algorithms summarised by Hamilton and Schladow (1997) to calculate the transfer of 

heat in the water column. It can be coupled with either the Aquatic Ecodynamics (AED) 

library or the FABM framework (Bruggeman and Bolding, 2014) to simulate 

biogeochemistry within the lake. Some of the key mixing algorithms for GLM were 

inherited and inspired by both the Dynamic Reservoir and Lake Model (DYRESM) 

(Imberger and Patterson, 1981; Hamilton and Schladow, 1997) and the Dynamic Lake 

Model (DLM) (Chung et al., 2008) but have been further developed. It has been 

rigorously tested across lakes of differing morphometries within different climatic zones 

and has demonstrated a remarkable ability to simulate water profile temperatures (Bruce 

et al., 2018; Bueche et al., 2017; Bueche and Vetter, 2014; Fenocchi et al., 2018; 

Fenocchi et al., 2017).  
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Figure 2.2 Example of the flexible Lagrangian layer structure within the General Lake 

Model for Langtjern, Norway, with example temperature profiles from April, June and 

September. Note that the layer thickness decreases around the thermocline when it 

develops in summertime. 
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The General Ocean Turbulence Model (GOTM) is a one-dimensional water 

column model that parameterises key hydrodynamical processes related to vertical 

mixing in water (Burchard et al. 1999; Umlauf et al. 2005) (Table 2.1). It was initially 

developed for modelling turbulence in the oceans, but it has been recently adapted for 

use in hydrodynamic modelling in lakes (Enstad et al., 2008; Sachse et al., 2014). It 

provides the option of using different turbulence closure parameterisations to model the 

interaction between mixing and stratification (Burchard et al., 2006). GOTM is usually 

used for investigating physical processes in natural waters but it can also be dynamically 

coupled to a biogeochemical model using the Framework for Aquatic Biogeochemical 

Models (FABM) (Bruggeman and Bolding, 2014). GOTM has been used to model the 

dissolution of CO2 in lakes (Enstad et al., 2008), extreme events in a eutrophic marine 

system (Ciglenečki et al., 2014), impact of macrophytes on water quality (Sachse et al., 

2014) and hindcasting and future climate change projections (Ayala et al., 2019; Moras 

et al., 2019). 

The Dynamic Reservoir Model (DYRESM) was designed to predict the vertical 

distribution of salinity, temperature and density within lakes and reservoirs (Imberger 

and Patterson, 1981) (Table 2.1). It is a process-based model that uses a Lagrangian layer 

scheme which then allows layers to mix when the turbulent kinetic energy in the top layer 

exceeds the potential energy threshold between that layer and the lower layer. It can be 

run on its own to investigate hydrodynamics of the water body or it can be easily coupled 

to an aquatic ecological model, the Computational Aquatic Ecosystem Dynamics Model 

(CAEDYM) (Hipsey and Hamilton, 2008). It has been used to model the effects of 

climate change on case study lakes (Tanentzap et al., 2007; Weinberger and Vetter, 2012; 

Hetherington et al., 2015; Takkouk and Casamitjana, 2015), effects of using an air-

bubbler in a reservoir (Helfer et al., 2011) and changes in ice cover and thermal 

stratification  (Magee and Wu, 2017a, 2017b). 
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Table 2.1 Characteristics of the five lake models, the General Lake Model (GLM), the General Ocean Turbulence Model (GOTM), the Freshwater Lake 

model (FLake), Simstrat and Dynamic Reservoir Model (DYRESM). 

Model GLM GOTM FLake Simstrat DYRESM 

Met forcing data Downwelling short-wave, 

downwelling long-wave, 

cloud cover, air 

temperature, relative 

humidity, wind speed, 

rainfall, snowfall 

Downwelling short-wave, 

air pressure, cloud cover, 

air temperature, relative 

humidity, wind speed, 

precipitation 

Downwelling short-wave, air 

temperature, humidity, wind 

speed, cloud cover, 

downwelling long-wave 

Wind speed, air temperature, 

downwelling shortwave, 

vapour pressure, 

downwelling long-wave 

Downwelling short-wave, 

downwelling long-wave, 

cloud cover, air temperature, 

relative humidity, wind 

speed, rainfall, snowfall 

Sub daily integration ✔ ✔ ✔ ✔ ✔ 

Type Energy balance k-ε turbulence Bulk  k-ε turbulence Energy balance 

Hypsograph used ✔ ✔ X ✔ ✔ 

Model version 3.0.0 beta 12 5.1.0 (lake – branch) 

 

 

- 

 

2.2 - 



  

25 

 

 

Website http://aed.see.uwa.edu.au/r

esearch/models/GLM/ 

 

https://gotm.net/ 

 

http://www.flake.igb-

berlin.de/ 

https://www.eawag.ch/en/dep

artment/surf/projects/simstrat

/ 

- 

Code Availability https://github.com/Aquatic

EcoDynamics/GLM 

https://github.com/gotm-

model/code 

http://www.flake.igb-

berlin.de/site/download 

https://github.com/Eawag-

AppliedSystemAnalysis/Sims

trat/ 

 

NA 

Reference Hipsey et al., 2019 Burchard et al., 2006; 

Burchard et al., 1999 

Mironov, 2008 Goudsmit, 2002 Imberger and Patterson, 1981 

 

 

http://www.flake.igb-berlin.de/
http://www.flake.igb-berlin.de/
https://www.eawag.ch/en/department/surf/projects/simstrat/
https://www.eawag.ch/en/department/surf/projects/simstrat/
https://www.eawag.ch/en/department/surf/projects/simstrat/
https://github.com/AquaticEcoDynamics/GLM
https://github.com/AquaticEcoDynamics/GLM
https://github.com/gotm-model/code
https://github.com/gotm-model/code
http://www.flake.igb-berlin.de/site/download
http://www.flake.igb-berlin.de/site/download
https://github.com/Eawag-AppliedSystemAnalysis/Simstrat/
https://github.com/Eawag-AppliedSystemAnalysis/Simstrat/
https://github.com/Eawag-AppliedSystemAnalysis/Simstrat/
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2.4. Model parameterisation 

 

Although these models have been rigorously tested during development with regards 

parameterisation of the different model equations for momentum, heat, turbulent kinetic 

energy and turbulent dissipation. However, due to the reductions in dimensionality (i.e. 

1D models), these equations do not universally apply to each lake. Initially the DYRESM 

model claimed to be “calibration free”, that the hydrodynamics were well parameterised 

and tested on many lakes and reservoirs (Imberger et al., 1978; Hamilton and Schladow, 

1997). Following further investigation and wider usage across lakes of different 

morphometry, in different climatic zones further parameter adjustment and calibration 

was needed to improve simulation accuracy (Weinberger and Vetter, 2012; Hetherington 

et al., 2015; Magee and Wu, 2017a). Parameter optimisation is a methodology used to 

improve the accuracy of the model. However, model parameterisation is generally 

required on a site-by-site basis as often to account for biases and uncertainty in the 

meteorological data, as it is measured directly on the lake (Bueche and Vetter, 2014; 

Thiery, Martynov, et al., 2014). Consequently, uncertainty in measured values, for 

example, the light extinction coefficient (Perroud et al., 2009; Bruce et al., 2018) leads 

to an underestimation of mixing parameters (Subin et al., 2012; Deng et al., 2013; Dong 

et al., 2020). 

These examples illustrate that across different models and different types of lakes, 

there can be wide variations in the model results. If different lake models are applied to 

the same lake with the same meteorological data, the results will be different. This is due 

to the different models being based on different physical concepts (Perroud et al., 2009). 

 

Sensitivity analysis 

 

Sensitivity analysis is used in modelling to identify which parameters and forcing data 

variables a model is most sensitive to (Pianosi et al., 2016). This procedure is beneficial 

because it helps in the understanding of how the model works and aids in the 

interpretation of results (Pannell, 1997). Prior to the use of any environmental model, it 

has been stated that it is highly important that a parameter sensitivity analysis, calibration 

and validation are carried out (Jørgensen, 1995; Refsgaard et al., 2007). For example, 
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Bueche and Vetter (2014) carried out a sensitivity analysis on the meteorological input 

data on DYRESM. From this they were able to identify errors in the modelled water 

temperature and hypothesise why the errors occurred based on the sensitivity analysis. 

Understanding the sensitivity of model outputs to changes in model parameters can 

inform the selection of a range of parameters for use in calibration to improve the model 

performance. A sensitivity analysis has been used to assess whether a model is 

generalizable and can be applied to other ecosystems through identification of parameters 

which are site specific (Mieleitner and Reichert, 2006). Shatwell et al. (2019) found that 

changes in lake water temperature were moderately sensitive to changes in water 

transparency by running simulations with different light extinction coefficients. 

Patterns seen within the sensitivity analysis were used to show which types of 

lakes exhibited similar behaviours, for example lakes with high transparency had deeper 

thermocline depths (Bruce et al., 2018). Analysing model sensitivity to changes in 

meteorological forcing data allows the identification of in-lake variations as a result of 

meteorological changes and also it gives an insight to the possible source of error within 

the model as a result of inaccurate measurements of the meteorological parameters 

(Bueche and Vetter, 2014). When calibrating DYRESM, for example, for a high alpine 

lake, a sensitivity analysis determined that the two model parameters which were most 

sensitive were maximum layer thickness in the model and the mixing coefficient (Valerio 

et al., 2015). The model was tested by comparing different scenarios such as with and 

without inflows, and with increases and decreases in wind speed of 25 %. A sensitivity 

analysis was carried out for GLM by Bruce et al. (2018) across many different lakes with 

a focus on analysing the different stresses within the different lakes. The surface 

boundary layer of the lakes was found to plays a dominant role in balancing the thermal 

budget of the lakes in this study (Arritt, 1987; Wüest and Lorke, 2003; Verburg and 

Antenucci, 2010). 

Sensitivity analysis of the model parameters helps to understand the changes that 

will result from changes in model parameters during calibration. It helps to inform 

parameter selection for calibration and can be used to characterise uncertainty within 

model results. It is used consistently in modelling both physical and biogeochemical lake 

models (Arhonditsis and Brett, 2005; Luo et al., 2018; Bhagowati and Ahamad, 2019). 

The process of determining which parameters are most sensitive to change allows the 

calibration effort to be focused on these parameters and for ranges to be determined for 

each parameter. The sensitivity of the model to a parameter is usually measured by 
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measuring responses in one of the main variables, for example, water temperature 

profiles relative to changes in the parameter  (Fasham et al., 1990; Schladow and 

Hamilton, 1997; Bueche and Vetter, 2014; Bruce et al., 2018).  

 

Uncertainty, calibration and validation 

 

Uncertainty is an area that has been extensively studied in recent years as global emphasis 

has shifted to quantification of future conditions using impact models across many 

sectors such as hydrology (Bastola et al., 2011; Broderick et al., 2016), fisheries (Cheung 

et al., 2016), forestry (Herr et al., 2016; Daniel et al., 2017) and aquatic ecosystem 

modelling (Jia et al., 2018; Robson et al., 2018). There have been studies examining how 

uncertainty can be incorporated and the information utilised within the decision making 

framework (Refsgaard et al., 2007; Ascough II et al., 2008; Durbach and Stewart, 2012). 

General areas within models which have been the focus of this thesis include uncertainty 

in model input data, model parameters and model structure (Maier et al., 2016). 

If a model is to be expected to replicate real world conditions then 

parameterisation of the model is necessary. Some model parameters are included within 

a model to allow for differences between measured meteorological data and actual 

meteorological conditions on the lake. For example, wind speed is sometimes not 

measured directly on the lake, and the data might come from a nearby meteorological 

station. In such circumstances a scaling parameter is used within many models to allow 

for differences between the windspeed at differing locations. However, unless some data 

are available at both sites, these scaling factors cannot be validated. Other parameters 

used within the model structure will be constants that are not directly measured but can 

be assumed based on previous studies or approximated through automated calibration 

such as minimum TKE (Ayala et al., 2019), diffusivity (Deng et al., 2013) and minimum 

buoyancy frequency (Saloranta and Andersen, 2007). Traditionally this was achieved by 

a process of trial and error which was a slow process that required model expertise and 

prone to subjective results (Fabio et al., 2010; Afshar et al., 2011). Many tools and 

programs have been developed to faciliatate automatic calibration for lake models 

(Gaudard et al., 2017; Luo et al., 2018). Automated calibration algorithms tend to use 

one cost function and minimise the errors between modelled and observed. This has been 

shown to be have limitations due to the possibility of there being more than one 
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“optimum” parameter set (Beven, 2006). This is known as equifinality and tends to occur 

in open systems. Reducing the number of calibrated parameters or including strong prior 

assumptions for the parameters are potential ways to tackle this problem (Beven, 2012). 

Split sample testing has been an approach to model calibration and validation that 

has been adopted in hydrology since the 1980s and has been widely adapted in 

environmental modelling (Klemeš, 1986). This philosophy is based on the premise that 

the model should be tested to show that it can simulate the conditions it was designed to. 

This is carried out by splitting the available observational data into a calibration and 

validation period. This has also been a rigorous philosophy applied within limnological 

modelling (Jørgensen, 1995; Refsgaard et al., 2007; Bueche and Vetter, 2014; Ladwig et 

al., 2018; Feldbauer et al., 2020). The reasoning behind this is to prevent model bias 

towards the data available for the calibration period. The effects of using sparse data and 

warm or cold years for calibration of a lake model were rigorously tested and the model 

simulated lake temperature accurately (median RMSE of 1.65 °C across 68 lakes (Read 

et al., 2019). 

On the other hand, Oreskes et al. (1994) highlighted the inherent knowledge 

(epistemic) error that is present within environmental models renders the validation of 

numerical models impossible. They noted that environmental models are only heuristic, 

and that the terms used such as ‘verify’ or ‘validate’ are affirmative terms while model 

confirmation is always a matter of degree. When a model has a better performance in the 

validation period compared to the observed dataset it makes it difficult to justify this 

behaviour so using the entire dataset for calibration is sometimes preferred (Ledesma and 

Futter, 2017). The robustness in parameter estimation was shown to increase with the 

longer the time period used for calibration (Larssen et al., 2007). The reasoning behind 

this is that it allows the calibration to be more balanced across a wider range of 

environmental conditions. 
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2.5. Lake Model Applications 

 

Models can inform management programmes by allowing water managers to take 

proactive measures to preserve water quality in their water body (Langsdale et al., 2013). 

For example, Tanentzap. et al. (2008) investigated decreasing lake water temperature in 

Canada despite a general trend in increasing air temperatures. They attributed the 28-

year decrease in water temperature to a 35 % reduction in wind speeds as a result of tree 

felling around and near the lake. The 1D lake model, DYRESM, was used to calculate 

this. Models have also been used to simulate the effects of reducing nutrient loads 

(Lindim et al., 2015), altered management and land use (Hanh et al., 2017). These 

techniques can be very informative as Lindim et al., (2015) found that the internal loads 

of phosphorus in the Lower Havel were the main drivers of chlorophyll-a as when they 

modelled reduced external loads of N it had no impacts on the ecosytem. Three-

dimensional lake models have been used to to understand how current speed and 

direction within a lake affects nutrient concentrations in different parts of the lake (Zhang 

et al., 2013).A cyanobacterial bloom forecast system was developed for western Lake 

Erie which issued bulletins to subscribers informing the of the bloom status in the lake 

on a weekly basis (Wynne et al., 2013). Some species of cyanobacteria, such as 

Anabaena circinalis, are known to be toxic to humans, damaging the liver and gastro-

intestinal tract (Falconer, 1996). A forecasting framework was developed for Lake 

Chaohu in China, which gives real-time forecasts and it is used to forecast exceedance 

in water quality variable such as dissolved oxygen, total nitrogen and total phosphorus 

(Peng et al., 2019). Empirical models have been developed to predict changes in ice cover 

for a range of lakes in Canada (Shuter et al., 2013). 

 

2.6. Forecasting 

 

Ecological forecasting is a growing field of science due to improvements in systems 

understanding, ecological model development and statistical methodologies, faster 

computers and high frequency data monitoring (Luo et al., 2011). This allows a 

framework to be setup where historical data can be used to build a model based on a 

hypothesised relationship between observed variables. This model can then be driven by 

forecasts of driving data to predict model states into the future. With observations in near 
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real time, this model can then be validated or invalidated on shorter time scales allowing 

for the hypothesis and experimental design to be continuously improved to gain a better 

systems understanding (Dietze, 2017). There is a growing requirement for ecological 

forecasting as we adapt to a wide range of societal pressures that include climate change 

(Otto et al., 2017), challenges to public health such as infectious diseases (Bloom and 

Cadarette, 2019) and reduction in local environment quality for air and water quality 

(Balvanera, 2019; Han et al., 2019; Stone et al., 2019). Forecasting allows proactive 

management of such challenges and can be used to reduce the financial and 

environmental costs (Bakker et al., 2013; Ho et al., 2019). This is particularly true with 

regards to responding to rapid and sudden extreme events. In Ireland, for example, there 

has been a number of large storms in recent years which have caused coastal damage and 

large areas of flooding (Guisado-Pintado and Jackson, 2018, 2019; Andersen et al., 2020) 

with an increased probability of such events due to anthropogenic-induced climate 

change (Matthews et al., 2018). Building a comprehensive forecasting system requires 

not just the ability to predict atmospheric changes but also how these changes will affect 

freshwater systems, including the hydrology, lake thermodynamics, nutrient fluxes and 

biological responses on a catchment-scale. Water quality forecast can improve how safe 

a drinking water supply is (Peng et al., 2019). For reservoirs used for power generation, 

short-term forecasts allow management to respond by optimising water levels in 

anticipation of large flood events (Raso et al., 2014). Forecasting key lake phenology 

events, such as autumn overturn, allows resource managers of reservoirs to actively 

control releases to improve water quality (Nandalal et al., 2010). 

Statistical models have historically been used for water quality forecasting due to 

their relative simplicity (Cohn et al., 1992). Common examples of such models would 

include regression models and artificial neural networks (Liu et al., 2010; Avila et al., 

2018). The problem with these models is that they require long-extensive datasets and 

do not accurately represent the actual processes potentially limiting their ability to 

capture out of range events (Saber et al., 2019).  

 

2.7. Data Assimilation 

 

Data assimilation is a method used to bridge the gap between model simulations and 

observations in an optimal manner (Reich, 2019). It is an invaluable tool when modelling 



  

32 

 

and particularly forecasting as it allows model states to be updated with observed values. 

It is used in numerical weather prediction (Rontu et al., 2012; Hatfield et al., 2018) and 

within global meteorological reanalysis datasets (Dee et al., 2011; Laloyaux et al., 2016). 

This has greatly enhanced the effectiveness of these products by constraining the error 

(Slivinski et al., 2019). There are many different methods to implement the assimilation 

of measured data but the most widely used one is the Ensemble Kalman Filter (EnKF) 

(Luo et al., 2011; Bauer et al., 2015; Zwart et al., 2019). It has been used in ocean, 

hydrological and meteorological modelling and is known to work well within a non-

linear framework in comparison to other methods of assimilation (Vrugt and Robinson, 

2007). This subject is described in further detail within the introduction of chapter 5. 

 

2.8. Climate change  

 

Lakes integrate long-term climatic signals due to the interaction they have with the 

atmosphere and are known to respond to sudden changes and capture long-term changes 

within a catchment. For this reason they are regarded as sentinels of climate change 

(Adrian et al., 2009). Lake summer surface temperatures have increased globally but the 

rate at which this is occurring is highly variable and has a weak regional coherency 

(O’Reilly et al., 2015). Focusing on seasonal patterns and changes can potentially 

overlook changes occurring on smaller time scales such as monthly changes as they can 

influence key lake phenology events such as stratification in summer and ice-cover in 

winter which are strong controllers of lake physical responses (Winslow et al., 2017a). 

Changes in lake stratification are not strongly linked to changes in water temperature, 

they are more influenced by lake morphometric characteristics such as mean depth 

(Kraemer et al., 2015), light attenuation (McCullough et al., 2019) and inflows (Fenocchi 

et al., 2017). Under various climate change projections, lake mixing regimes have been 

projected to change (e.g. warm monomictic to meromictic, dimictic to warm 

monomictic) by 2080-2100 (Woolway and Merchant, 2019). Further impacts of climate 

change on lake ecosystems is discussed in further detail in the introduction for chapter 5. 

Lakes and reservoirs are under continuous pressure from urbanization and 

agricultural intensification, and from changes in climate. Directional climate change can 

result in a wide range of pressures on aquatic ecosystems, such as oxygen depletion at 

lower levels within lakes as a result of a decrease in the solubility of oxygen (Foley et 
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al., 2012; Missaghi et al., 2017; North et al., 2014), water scarcity (Haddeland et al., 

2014; AghaKouchak et al., 2015) and drinking water production (Bates et al., 2008; 

Delpla et al., 2009). 

Cultural eutrophication is a key phenomenon which is directly affecting and 

fundamentally changing the ecological status of water bodies all round the world 

(Carpenter et al., 1998, 2011). It is defined by the acceleration of eutrophication in 

aquatic ecosystems as a result of those human activities which have increased limiting 

nutrients, particularly nitrogen and phosphorus. It is a recognised cause of harmful algal 

blooms, fish kills and ecosystem degradation (Schindler, 1974, 2012). As a result of 

intensification of agriculture in the US, there has been a measured increase in carbon 

burial rates in lakes (Heathcote and Downing, 2012). Policies that have been adopted 

within Europe have focused on decreasing the amount of diffuse pollution from 

agriculture to waterways which have been shown to have an impact on lakes which are 

sensitive to nutrient enrichment (O’Dwyer et al., 2013). Increasing water temperatures 

as a result of climate change has been shown to exacerbate the effects of eutrophication. 

It has been shown to negatively affect hypolimnetic dissolved oxygen in temperate lakes 

(Foley et al., 2012). The percentage of phytoplankton biovolume attributed to 

cynaobacteria has experienced a sharp gain with increases in water temperatures on a 

global scale (Kosten et al., 2012). 

The projected shifts in stratification duration as a result of climate change have 

been known to influence the timing of autumn blooms in Lake Washington (Winder and 

Schindler, 2004). Availability of thermal habitat is at risk, especially for cold water fish 

species (Warren et al., 2017). This impact has been known about for decades (Magnuson 

et al., 1990). It is not just the impact of increasing temperature for cold-water sensitive 

fish, but also the increase in range for predatory fish, for example Arctic Char Salvelinus 

alpinus are projected to disappear from greater than 70 % of lakes in Sweden as a result 

of increasing temperatures coupled with expansion of range for pike Esox Lucius, a 

natural predator of Arctic char (Hein et al., 2012). Changes in migratory behaviour has 

also been documented as a response to changes in temperatures as a result of climate 

change prevalence of some species of fish has been projected to decline as a result of 

shifts in air temperature and precipitation patterns (Finstad and Hein, 2012). 

There are areas in the world where lakes are a fundamental underpinning of a 

region’s economic output, such as the peri-alpine lakes in Europe where it is estimated 
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the four largest lakes provide up to 40 % of Italy’s GDP (Iammarino et al., 2019) or the 

lakes in the Yunnan plateau in China which are used for freshwater aquaculture, 

irrigation and drinking water for the surrounding area (Li et al., 2007; Liu et al., 2012). 

 

2.9. Summation of literature 

 

The literature described herein describes the complex and diverse field in how lake 

models are designed, formulated and applied throughout limnology. They have been a 

crucial tool in furthering understanding of lake physics and lake ecosystem interactions. 

There is a description in chapter 3 of the four lake study sites used in chapter 4 and 5. 

Chapter 4 will focus on how a variety of meteorological reanalysis datasets can be used 

with a number of lake models to accurately simulate lake thermal dynamics. The 

introduction will further review the literature around limnological monitoring and lake 

thermal properties. Chapter 5 will detail the application of a lake model in a short-term 

forecasting system where the introduction targets ecological forecasting and data 

assimilation techniques. Finally, chapter 6 will detail the impacts of climate change 

across 46 lakes using an ensemble modelling approach. Analysis of the literature here is 

focused on describing the impacts of climate change on lake ecosystems and highlighting 

previous studies in this area. 
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CHAPTER 3.  LAKE STUDY SITES 

 

In chapters 4-5 there are four lake sites that are used in the modelling studies: Lake Erken 

in Sweden, Lough Feeagh in Ireland, Lake Kinneret in Israel and Langtjern in Norway. 

These are all long-term ecological research sites and are described in detail here. 

 

3.1. Erken 

 

Lake Erken is in east central Sweden (Table 3.1; Figure 3.1). Average annual air 

temperature is 6.2 °C with a max of 27.6°C and a min of -20°C. Average annual 

precipitation for the catchment is 578 mm year-1. The shoreline of the lake is 

predominantly coniferous woodland giving way to agricultural land behind. Lake Erken 

is ice covered each year, usually from January to late April. Summer stratification usually 

begins in May and lasts until September, but mixing occurs during colder summer 

months. Ice cover is defined as the period when most of the lake is seen to be covered in 

ice from the field station. 

Water temperature data were measured using a thermocouple chain on a buoy 

moored in the eastern end of the main basin, at a depth of 15 m. Sensors were positioned 

every 0.5 m from the surface to a depth of 15 m. The buoy is removed from the lake each 

year at the end of summer before the onset of ice and deployed in springtime following 

the offset of ice. Temperatures were measured every minute and then averaged for each 

30-minute interval. Wind speed, air temperature and relative humidity were measured at 

the Malma weather station located on an island in the lake (N 59.84, E 18.63). Mean sea 

level pressure was measured at Svanberga meteorological station which is 400 m from 

the lake shore (N 59.83, E 18.63). Cloud cover was recorded at Svenska Hogarna station 

located 59 km from the lake (N 59.45, E 19.51). 
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Figure 3.1 Site map of Lake Erken, Sweden and its location in Sweden (inset). 

 

3.2. Feeagh 

 

Lough Feeagh is located within the Burrishoole catchment, in the northwest of Ireland 

(Table 3.1; Figure 3.2). The landcover in the catchment is mainly upland peat bog and 

the main land uses are upland sheep grazing and coniferous forest plantation (Dalton et 

al., 2014). The catchment is very close to the Atlantic Ocean and as a result it experiences 

a temperate oceanic climate with mild wet winters and cool wet summers. The long-term 

average annual air temperature is 10 °C with a maximum of 28.8 °C and a minimum of 

-8 °C while average annual precipitation is relatively high at 1570 mm year-1 (Dalton et 

al., 2014). Lough Feeagh drains into Lough Furnace, a coastal lagoon, via two short 

channels, both approximately 200m in length. Partial ice cover occurs only on rare 

occasions. Feeagh is usually stratified from May to October. 

Water temperature data were measured using a thermistor chain on an automatic 

water quality monitoring station located at the deepest point in the lake. The water 

temperature was measured at depths of 0.9 m, 2.5 m, 5 m, 8 m, 11 m, 14 m, 16 m, 18 m, 

20 m, 22 m, 27 m, 32 m and 42 m at 2-minute intervals. An hourly mean was then taken 

from this data which was used as the observed dataset. Meteorological data were 

measured onshore at the nearby Newport Automatic Weather Station, and included air 

temperature, relative humidity, mean sea level pressure, wind speed and direction, 
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precipitation and short-wave radiation. Cloud cover was measured at Knock airport (~50 

km from the site). These data were aggregated to an hourly time step. 

 

Figure 3.2 Site map of Lough Feeagh, Ireland and its location in Ireland (inset). 

 

3.3. Kinneret 

 

Lake Kinneret (or, alternatively, the Sea of Galilee or Lake  Tiberias) (32° 78’ N, 35° 

59’ W) is the largest freshwater body in the Middle East and is a monomictic subtropical 

lake located at -210 m altitude, i.e., below sea level. It has a maximum depth of 46 m and 

an average depth of 25 m. The surface area of the lake is 167 km2 with a catchment of 

2730 km2 (Table 3.1; Figure 3.3). The main inflow is from the Jordan River, which 

contributes on average 70 % of the total inflow (Gal et al., 2003), while the main outflow, 

until 2014, was pumped to Israel’s National Water Carrier. Kinneret is usually stratified 

from April to December and isothermal between January and March. Residence time of 

the lake is on the order of 8 years though has varied greatly in recent years due to large 

fluctuations in rainfall. 
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Meteorological data were measured at a weather station mounted on a sampling 

platform located at the deepest point in the lake. The station was located 7.5 m above the 

water level and measured air temperature, relative humidity, wind speed and direction, 

and precipitation at 10-minute intervals. Water temperature was monitored with a chain 

of 40 thermistors measuring at 10-minute intervals every 1 m throughout the water 

column (Sukenik et al., 2014). 

 

Figure 3.3 Site map of Lake Kinneret, Israel and showing its location in Israel (inset). 

 

3.4. Langtjern 

 

Langtjern is a small dimictic humic lake in central Norway (Table 3.1; Figure 3.4). The 

catchment is largely forested on podzolic soils with granite bedrock. The mean air 

temperature is 4.4 °C with an annual maximum of 28.2 °C and minimum of -25.6 °C. 

Mean annual precipitation is 979 mm year-1.Langtjern experiences ice cover usually from 

December to April and during the summer it usually stratifies from May until September. 

There is a webcam that takes a photograph each day and from these photographs, ice 

cover is defined as when all the lake in the photograph is covered in ice (NIVA, 2020).  

The lake temperature profile was measured using a thermocouple at 8 different 

depths; 0.5 m, 1 m, 1.5 m, 2 m, 3 m, 4 m, 6 m and 8 m. This is at the deepest point in the 
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lake. A weather station located on the lake shore measures air temperature, relative 

humidity, wind speed and direction and precipitation at 1-hour intervals. Cloud cover 

was not measured at this site, so cloud cover from the nearest meteorological station 

(Gulsvik-II located 6.8 km from Langtjern) as reported in Couture et al. (2015) was used. 

 

Figure 3.4 Site map of Langtjern, Norway and showing its location in Norway (inset). 
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Table 3.1 The location, characteristics and climates of each of the four lakes, Erken, Feeagh, Kinneret and Langtjern (mono = monomictic, di = dimictic, 

oligo = oligotrophic, meso = mesotrophic, eutro = eutrophic). 

Site Lat Long 
Area 

(km2) 

Max 

depth 

(m) 

Mean 

depth 

(m) 

Residence 

time (years) 

Mixing 

regime 

Trophic 

status 
Colour 

Mean annual 

air 

temperature 

(°C) 

Max annual 

air 

temperature 

(°C) 

Min Air 

Temperature 

(°C) 

Precipitation 

(mm yr-1) 

Erken, 

Sweden 

59°51’ 

N 

18° 15’ 

E 
23.7 21 9 7 Di Eutro Coloured 7 >30 <-20 560 

Feeagh, 

Ireland 

53° 

56’ N 

09° 34’ 

W 
3.9 45 16 0.45 Mono Oligo Coloured 10 >25 <-5 1570 

Langtjern, 

Norway 

60°8’ 

N 

10°23’ 

E 
0.23 12 2 0.2 Di Oligo Coloured 4.4 >25 <-25 979 

Kinneret 
32.78’ 

N 

35.59’ 

E 
166 46 25 7-9 Mono 

Meso-

eutro 
Clear 21 >35 <5 380 



  

41 

 

CHAPTER 4.  EVALUATION OF GLOBAL METEOROLOGICAL 

REANALYSES AS POTENTIAL FORCING DATASETS FOR ONE-

DIMENSIONAL HYDRODYNAMIC MODELLING 

 

4.1. Abstract 

 

Lake thermal dynamics are closely coupled to climatic conditions. Consequently, 

hydrodynamic lake model simulations in conjunction with timeseries of meteorological 

input data provide a powerful tool for evaluating climate-induced changes in lake 

ecosystems. Global meteorological reanalyses datasets are used for climate research at 

high spatial and temporal resolution. In this study, we investigated the suitability of using 

these meteorological datasets for forcing one-dimensional lake hydrodynamic models 

and accurately simulating water temperatures in three different lakes. Four established 

lake models were used to simulate lake temperature profiles for three well-studied 

European lakes of varying morphometry. Multi-annual model simulations forced by 

locally measured meteorological data were compared with simulations forced by three 

freely available meteorological reanalysis datasets from the European Centre for 

Medium-range Weather Forecasts (ECMWF). Uncalibrated model simulations forced by 

the meteorological reanalyses datasets replicated water temperature profiles with a 

similar degree of accuracy (median bias: -0.27 °C) to models forced by local observed 

meteorological data (median bias: -0.25 °C), particularly when using meteorological 

datasets with sub-daily temporal resolution. This was also true for the prediction of the 

start and end of thermal stratification in the lakes. We then calibrated each of the lake 

model/meteorological dataset combinations and found that calibrating the models, even 

with just two scaling parameters, reduced the error between simulated and observed lake 

temperature profiles. We conclude that meteorological reanalyses can be used in place 

of observed measurements to accurately replicate the overall seasonal dynamics in lake 

thermal structure. 
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4.2. Introduction 

 

Lake thermal properties and climate 

 

The thermal properties of lakes are directly regulated by climatic conditions. Changes in 

lake thermal structure can have profound implications for physical properties including 

the timing of autumn overturn (Arvola et al., 2010; Moras et al., 2019), the earlier start 

of lake stratification in spring (King et al., 1997; Peeters et al., 2007), the development 

of a stronger thermocline (Posch et al., 2012; Valerio et al., 2015), and a general warming 

of the entire water column (Sahoo et al., 2016; Schmid and Köster, 2016; Woolway, et 

al., 2017b). These changes in thermal characteristics, and the subsequent effects on lake 

biogeochemistry, will also be a function of lake-specific characteristics such as lake 

morphometry, latitude and elevation. Lake characteristics, for example, have been found 

to mediate the effects of the historical warming on lake surface temperatures in summer 

(O’Reilly et al., 2015). Kraemer et al. (2017) showed how the effects of historical 

warming on estimates of lake metabolism were stronger in lakes at low latitudes and low 

elevations, effects that can potentially shift food web dynamics, species interactions and 

carbon cycling. Changes in lake ice cover can impact dissolved oxygen in spring 

(Couture et al., 2015), diatom species assemblages (Griffiths et al., 2017), habitat 

availability (Guzzo and Blanchfield, 2017) and strengthening of stratification (Niedrist 

et al., 2018). The importance of lake temperature for all these processes means that any 

study of the sensitivity of lake ecosystems to a changing climate requires analysis of 

changes in lake physical and thermal properties as a fundamental step. Where the effects 

of short-term or long-term climate change are the focus, simulations of lake thermal 

structure using hydrodynamic models will be essential. 

 

Monitoring lake temperatures 

 

Assessment of historical and future changes in lake temperature profiles require observed 

data. Traditional monitoring of lakes involves the deployment of field staff to directly 

measure lake characteristics including water temperature profiles. Among the main 

factors that govern the collection of such datasets are the cost and time required to collect 
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data. For this reason, long term datasets of lake temperature profiles are relatively scarce. 

There are a small number of lakes which have long-term historic lake temperature data 

such as Lake Zurich for which data are available for 52 years (Livingstone, 2003). Recent 

advancements in monitoring technology has led to the deployment of sensors that 

monitor variables at high frequency but can also relay this information in near-real time 

using telemetry. These include sensors to measure lake water temperature profiles. 

Scientific community networks have developed around such data collection, leading  to 

a large increase in data availability and fuelling an advancement of knowledge of in-lake 

processes (Rose et al., 2016b). There is no single monitoring strategy that can answer all 

research questions but carefully designed and executed programs with a focus on the 

required scales can capture insightful information on lake dynamics (Mantzouki et al., 

2018). Satellite monitoring of lakes has exponentially increased the number of lakes that 

can be monitored but comes with many limitations compared to automated monitoring. 

These include the temporal frequency and measurable variables (e.g. only  lake surface 

temperature and transparency) (MacCallum and Merchant, 2012) and region specific 

coverage issues (e.g. reduced data due to clouds) (Stadelmann et al., 2001). High 

frequency monitoring data, when available, can be used to validate models of lake 

thermal structure, which can help to expand our knowledge about key in-lake physical 

and biological processes (Hamilton et al., 2015). 

 

Lake Models 

 

Numerical models have been widely used to examine the long-term impacts of climate 

change on lake physical structure (Ayala et al., 2019; Butcher et al., 2015; Shatwell et 

al., 2019; Woolway et al., 2019) and lake biogeochemistry (Trolle et al., 2014; Darko et 

al., 2019). These studies span a wide variety of scales, from localized single site studies 

to those describing regional and global responses to climate change. Lake models have 

also been coupled with atmospheric models (Perroud and Goyette, 2012) and can play 

an important role in numerical weather prediction (Mironov, 2008; Mironov et al., 2010). 

A range of lake models have been developed that facilitate the simulation of in-lake 

biogeochemical processes (Jöhnk and Umlauf, 2001; Elliott et al., 2007, 2016; Saloranta 

and Andersen, 2007; Jöhnk et al., 2008; Hu et al., 2016; Page et al., 2017). These have 

been used to model oxygen dynamics (Jöhnk and Umlauf, 2001), changes in 
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phytoplankton communities (Elliott et al., 2007; Page et al., 2018; Page et al., 2017) and 

nutrient cycling and food-web dynamics (Bruggeman and Bolding, 2014; Hu et al., 2016; 

Arhonditsis et al., 2017). Each of these biogeochemical models is, however, underpinned 

by the simulation of the lake physical structure.  They require modelling of lake thermal 

dynamics to simulate temperature profiles, and which in turn govern the availability of 

nutrients, mixing dynamics and settling rates in the water column.  

There are a wide range of existing 1D hydrodynamic models with different model 

structure and varying degrees of complexity. These include the Freshwater Lake model 

(FLake), General Lake Model (GLM), the General Ocean Turbulence Model (GOTM) 

adapted for lakes and Simstrat (as described in section 2.3.5). In limnological modelling, 

ensemble modelling has not been a widely used approach to date. It has been used in two 

studies for projecting the climate change response of phytoplankton (Nielsen et al., 2014; 

Trolle et al., 2014). There have also been studies carried out focused on inter-model 

comparisons, but only for single sites (Stepanenko et al., 2013; Thiery et al., 2014a), as 

part of the Lake Model Intercomparison Project (LakeMIP; Stepanenko et al., 2010).  

There are notable advantages when using more than one model which has been 

developed separately. It allows for different sources of uncertainty to be quantified 

through comparison of the differences when forced with the same data. Applying a 

combination of lake models to a site, however, allows the user to overcome potential 

limitations of using one single model, such as the inherent biases of each model, and has 

the potential to improve the generalization of errors.  

 

Meteorological Reanalysis Datasets 

 

Any multi-site study of lake thermal structure requires a full set of consistent forcing data 

from all study locations. Such observed data may not, however, always be available. 

Meteorological reanalysis data come from a combination of observations, a global 

forecast model and data assimilation. These data sources are used to generate best 

estimates of atmosphere states from the surface to the upper atmosphere (Parker, 2016). 

There are a large number of different reanalysis products available which cover varying 

timescales and temporal and spatial resolutions (Lindsay et al., 2014). They are generated 

on a regional or global scale on a gridded axis and are sometimes referred to as gridded 
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datasets. They are used within the atmospheric science field to further understanding 

about atmospheric processes, to validate atmosphere-chemistry models and to investigate 

the effects of climate change on a global scale (Fujiwara et al., 2017). There have been 

a number of known issues related to the use of reanalysis data with regards preserving 

trends and accuracy (Thorne and Vose, 2010), capturing precipitation (Bosilovich et al., 

2008) and warm biases in the Southern Hemisphere (Fréville et al., 2014). Overall, 

however, their development has enabled studies at large spatial scales (e.g. regional or 

global) across many different fields such as hydrology (Ledesma and Futter, 2017; Tarek 

et al., 2019), forestry (Abatzoglou and Williams, 2016), regional climate modelling 

(Solman et al., 2013; Warrach-Sagi et al., 2013) and ice-ocean models (Smith et al., 

2014). The benefits of gridded reanalysis meteorological datasets over locally observed 

meteorological data are that they are based on observed data, incorporate laws of 

atmospheric motion, are physically and dynamically coherent, include a full set of 

meteorological variables and are consistent in time and space (Parker, 2016). 

The output of general circulation models (GCMs) are gridded climate data that 

have been often used as forcing data for ecosystem models that such as simulating future 

projections based on differing global emission scenarios (Frieler et al., 2017). Dibike et 

al. (2011), for example, used gridded data from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Reanalysis (ERA)-40 dataset to simulate the effects of 

projected climate change on the formation and break-up of ice cover on mid to high 

latitudinal lakes. Read et al. (2014) used the North American Land Data Assimilation 

System (NLDAS) gridded climate product to simulate water temperature across 2,368 

lakes across the world and found a strong coherence among lakes in surface temperatures. 

Frassl et al. (2018) explored the benefits and limitations of using ERA-Interim (ERAI) 

as forcing data on Lake Chaohu, China, using a three-dimensional hydrodynamic model 

and found that ERAI data reproduced seasonal patterns and captured lake phenology 

patterns of stratification but did not accurately capture sub-daily variations in 

temperature. Historical lake warming trends across Europe were captured using a 

calibrated 1D lake hydrodynamic model forced with ERA-20C climate reanalysis data 

(Woolway et al., 2017b). Global lake surface water temperatures were simulated to a 

high degree of accuracy for the period 1900-2010 using ERA-20C (Piccolroaz et al., 

2020). 
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Comparisons of reanalyses and local observations 

 

An important consideration in the use of climate reanalysis datasets is how well they 

compare to locally measured meteorological data. In some instances, use of these gridded 

datasets may be preferred. For example, locally measured meteorological data can be 

subject to many different sources of error such as sampling frequency where the sampling 

frequency is lower than known variation in the climate e.g. daily wind speeds (Hupet and 

Vanclooster, 2001).  In addition, not all the meteorological variables necessary to force 

a lake model may be measured on-site, or for the full time period. For example, the 

availability of gap-free long-term local datasets is quite rare. However, there are also 

issues with the use of reanalysis datasets. The degree of error in gridded climate 

reanalysis datasets is strongly influenced by the number of stations used in the analysis 

(Haylock et al., 2008). There are many uncertainties within reanalysis climate date due 

to the combination of errors from observations, models and methodology (Thorne and 

Vose, 2010). It was also noted that in some regions, there can be non-climatic artefacts, 

such as warming trends seen above 62°N (Thorne, 2008). Gridded climate reanalysis 

datasets have also been found to poorly replicate observations of air temperature in areas 

of heterogenous terrain (DeGaetano and Belcher, 2007). Similar patterns have been seen 

for variables such as wind speed (Ramon et al., 2019) and precipitation (Yang and 

Villarini, 2019). Nevertheless, gridded reanalysis data have often been used as forcing in 

hydrological modelling and have been shown to work just as well as locally measured 

data (Hurkmans et al., 2008; Ledesma and Futter, 2017; Vu et al., 2012). 

 

Study aim 

 

The aim of this study was to evaluate the suitability of three widely used gridded 

reanalysis datasets as meteorological forcing data for simulating lake temperature 

profiles using uncalibrated 1D lake models. The selected lake models were set-up for 

three European lakes of varying morphometry and local climatic conditions. We 

compared the performance of the models in terms of capturing seasonal patterns 

throughout the water column and the phenology of seasonal patterns of stratification 

when driven by both the gridded meteorological datasets (hereafter referred to as 

‘gridded datasets’) and local observed data over a multi-year period for each site. Initially 
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we assess the use of the gridded datasets to simulate lake temperatures without any model 

calibration. We then calibrated each model against observed lake temperature data by 

scaling wind speed and incoming short-wave radiation, in order to demonstrate any 

improvements in model accuracy gained by calibration. Our results highlight the 

capabilities and limitations of using these gridded datasets for future modelling studies. 

 

4.3. Materials and Methods 

 

Study sites and data availability 

 

The three lake study sites, Erken, Feeagh and Langtjern, were selected based on their 

geographic spread, difference in lake surface area and depth, and the availability of high 

frequency water temperature profile data. These catchments are all long-term ecological 

research sites, which have been well studied. Each of the sites are described in chapter 3. 

 

Gridded datasets 

 

Local observed meteorological data (referred to as Local) were collected at each site as 

described in chapter 3. In addition to these local data, three different gridded reanalysis 

datasets (referred to as gridded datasets) were used as forcing data: ECMWF’s ERA 

Interim reanalysis (ERAI, Dee, et al., 2011), ECMWFs Re-Analysis 5 (ERA5, ECMWF, 

2020) and EartH2Observe WATCH forcing data methodology applied to ERA-Interim 

reanalysis data  and ERA-Interim data Merged and Bias-corrected for ISIMIP 

(EWEMBI) (Dee et al., 2011; Weedon et al., 2014; Calton et al., 2016; Lange, 2019). 

The ERA Interim dataset was available at a spatial resolution of 0.75° x 0.75° and 

a timestep of 6-hour (Dee et al., 2011). Before simulating lake temperature profiles, the 

ERAI dataset was linearly interpolated to hourly values across each climate variable. The 

ERA5 dataset was available at a spatial resolution of 0.28° x 0.28° at a time step of 1-

hour. The EWEMBI dataset covered the time period of 1979-2016 at a spatial resolution 

of 0.5°x0.5°. Each of these datasets had a global distribution which made them applicable 

for any lake in the world. The reason EWEMBI was included in this analysis was because 
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this was the data that was used to bias correct the General Circulation Model (GCM) data 

for the impact assessments carried out in phase 2b of the Inter-Sectoral Impact Model 

Inter-comparison Project (Frieler et al., 2017). For the lake sector, this dataset was used 

to calibrate the models prior to simulating hydrothermal dynamics under the different 

climate change scenarios (Table 4.1). 

When the meteorological drivers long-wave radiation, relative humidity, vapour 

pressure or cloud cover were not present in the meteorological datasets, they were 

estimated using established empirical relationships (Table 4.2). 
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Table 4.1 Description of the meteorological reanalysis datasets. 

Dataset ERA-Interim ERA5 EWEMBI 

Description 

The system includes a 4-dimensional variational 

analysis (4D-Var) with a 12-hour analysis window 

on 60 levels in the vertical from the surface up to 0.1 

hPa. 

Hourly estimates of many atmospheric, land and 

oceanic climate variables. Resolves the atmosphere 

using 137 levels from the surface up to a height of 

80km. ERA5 includes information about 

uncertainties for all variables at reduced spatial and 

temporal resolutions. 

Data sources of EWEMBI are ERA-Interim 

reanalysis data WATCH forcing data 

methodology applied to ERA-Interim reanalysis 

data, eartH2Observe forcing data, and 

NASA/GEWEX Surface Radiation Budget data. 

Spatial 

resolution 
0.75°x0.75° 0.28°x0.28° 0.5°x0.5° 

Temporal 

resolution 
6h 1h 24h 

Availability 1979-2019 1979-present* 1979-2016 

Reference Dee et al. (2011) ECMWF (2020) Lange (2019) 

Website 
https://www.ecmwf.int/en/forecasts/datasets/reanaly

sis-datasets/era-interim 

https://www.ecmwf.int/en/forecasts/datasets/reanaly

sis-datasets/era5 

https://dataservices.gfz-

potsdam.de/pik/showshort.php?id=escidoc:3928

916 

*within 5 days of real time 
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Table 4.2 Summary of meteorological variables available and associated references for calculations for those which were not present. A: Rothfusz, 1990 

B: Crawford and Duchon, 1999, C: Lowe, 1976. 

 
Air 

Temperature 

Air 

Pressure 

Precipitation Wind 

Speed 

Wind 

Direction 

Incoming 

Short-

wave 

Radiation 

Relative 

Humidity 

Cloud 

Cover 

Dewpoint 

Temperature 

Longwave 

Radiation 

Downwelling 

Vapour 

Pressure 

Local-

Erken 
✔ ✔ ✔ ✔ 

 
✔ ✔ ✔ A B C 

Local-

Feeagh 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ A B C 

Local-

Langtjern 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ A B C 

ERA5 ✔ ✔ ✔ ✔ ✔ ✔ A ✔ ✔ ✔ C 

ERAI ✔ ✔ ✔ ✔ ✔ ✔ A ✔ ✔ ✔ C 

EWEMBI ✔ ✔ ✔ ✔ ✔ ✔ A ✔ ✔ ✔ C 
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Model descriptions 

 

For model descriptions, please refer to section 2.3.5. 

 

Model setup 

 

For each lake, the models were set up using a standardised format for meteorological 

forcing data which are the boundary conditions for the lake models. Measured lake 

bathymetry and light extinction data were included in the model configuration although 

for FLake, the mean depth value is used instead of bathymetry. Each model set up 

included the same default parameters to ensure a common configuration between lakes 

and between gridded datasets. Non-dimensional scaling for wind speed and incoming 

shortwave radiation were set to a value of 1. Default mixing and turbulence parameters 

from each associated model publication were used. Each lake simulation was set up with 

no inflows or outflows to mimic a situation where such data were unavailable. In 

addition, FLake also does not calculate a water balance within the model excluding the 

influence of inflows and outflows resulted in simulations that were comparable across 

all lake models. 

Each model was run for the same time period for each lake to ensure that there 

was a fair comparison between the selected forcing datasets. For Feeagh this time period 

was 2009-01-01 to 2014-12-30 (including a 364 day spin up). For Erken this was from 

2010-05-15 to 2015-12-30 (including a 364 day spin up). For Langtjern, the time period 

was from 2013-05-23 to 2016-12-30 (including a 222 day spin up). The models were 

initialized when the lake was isothermal, which was defined as when there was a 

temperature difference < 1 °C between surface and bottom temperatures. The spin-up 

period was discarded when assessing model performance. The reason Langtjern had a 

shorter spin-up time was to ensure that at least three full-years were included in the 

analysis period. Each model was run on an hourly timestep but only the temperature 

values at 18:00 on each day were saved. An exception was FLake when using the 

EWEMBI forcing dataset, where a daily time step was used because the integration 

timestep must equal the timestep of the forcing data. 
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Model calibration 

 

For model calibration, we adopted a ‘light touch’ approach where we opted to adjust as 

few parameters as possible. This was  to reduce dimensionality in the parameters and 

avoid the issue of equifinality based on recommendations from Beven (2006). Scaling 

factors for incoming short-wave radiation (SWR) and wind speed were chosen as the two 

parameters to calibrate because they are the forcing variables to which the lake models 

are most sensitive (Imberger and Hamblin, 1982; Lewis, 2011; Bruce et al., 2018) and 

because they were common input parameters across all models and measured directly at 

each site. Latin hypercube sampling was used to sample 100 parameters for both scaling 

factors within a range of 0.5-1.5 for SWR and 0.5-1.5 for wind, except for Langtjern 

where 0.1-1.5 was used because of the strong bias seen in wind speed when comparing 

observed to reanalysis datasets (McKay et al., 2000). Latin hypercube sampling has been 

used  in other lake modelling applications (Gal et al., 2014) and is efficient when 

parameter sets are limited. The parameter sets were generated using the ‘LatinHyper’ 

function from the ‘FME’ package in R (Soetaert and Petzoldt, 2010). The ‘best’ 

parameter set was chosen by selecting the parameter set with the lowest RMSE. Latin 

hypercube sampling assumes a uniform parameter distribution. The entire period of 

observed data was used for the calibration period, as recommended by Oreskes et al. 

(1994) with regards calibration of environmental models. It is increasingly common to 

calibrate a model on a training set and validate the calibrated model on its ability to 

capture out of sample predictions. It is straightforward to interpret the situation when the 

calibrated dataset has a model performance that is equal to or lower than that observed 

in the calibration dataset. However, it is more difficult to explain the situation when the 

model performs better during the validation period. We choose to include the entire 

available dataset for calibration to estimate model parameters, similarly to Moras et al. 

(2019), as this represents the widest possible range of climatic conditions experienced 

during the simulation period. Larssen et al. (2007) found that more robust parameter sets 

for future simulations were found when using longer time series because they are 

balanced to a wider range of environmental conditions. 
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Data analysis 

 

Data analysis was carried out using the R program (R Core Team, 2020). Residuals were 

calculated by subtracting modelled data from observed data extracted at the 

corresponding depths. Surface temperatures were defined as the temperatures measured 

closest to the surface (Erken: 0.5 m; Feeagh: 0.9 m; Langtjern 0.5 m) while bottom 

temperatures were classified as the temperature measured at the lowest sensor in the lake 

(Erken: 15 m; Feeagh: 42 m; Langtjern 8 m). Density distributions of the residuals were 

compared between gridded datasets for each lake using measurements from the total 

profile, surface temperature and bottom temperature. The value for the maximum surface 

temperature and the day of year when it occurred was compared to the corresponding 

observed values. The timing of the start and end of stratification (Erken, Feeagh and 

Langtjern) and ice cover (Erken and Langtjern) for each year and each lake were 

calculated for each model and compared to the observed timings. 

For metrics of model fitness, we calculated bias, root mean square error (RMSE) 

and Nash-Sutcliffe Efficiency (NSE). 

 𝐵𝑖𝑎𝑠 =
1

𝑛
(∑ (𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1
) (4.1) 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖  −  �̂�𝑖)2

𝑛

𝑖=1
 

(4.2) 

 

 𝑁𝑆𝐸 = 1 −  
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1
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(4.3) 
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Where 𝑦𝑖  was the observed; and �̂�𝑖 was the simulated water temperatures at time i; and 

�̅� was the mean observed water temperature; and n was the number of samples. These 

metrics were compared for both the uncalibrated and calibrated model setups.  
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4.4. Results 

 

Overall, using Local at Erken with any of the four lake models (GOTM, GLM, Flake or 

Simstrat) produced the best simulation of the seasonal pattern in temperature profiles and 

captured the mixing dynamics throughout the water column (Figure 4.1). Local produced 

the smallest range in model error, with only small overestimates of water temperature at 

the lower depths. The ERAI dataset simulated warmer temperatures in the bottom for 

simulations with GLM, GOTM and Simstrat. Irrespective of the meteorological dataset 

used, (ERAI, ERA5, EWEMBI or Local), FLake consistently simulated lower bottom 

temperatures for Erken. Simulations using EWEMBI data consistently underestimated 

water temperature with errors <-5 °C with FLake. In contrast ERA5 simulated a small 

warm bias across all models, particularly towards the surface. 

 

Figure 4.1 Difference between modelled and observed temperatures for Erken for the 

four meteorological datasets; ERA-Interim, ERA5, EWEMBI and Local and for the four 

lake models; FLake, GLM, GOTM and Simstrat. Grey areas indicate periods of missing 

data for either observed or modelled. 
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For Feeagh, the most accurate simulations throughout the whole period and for 

the entire water column were those forced with ERAI (Figure 4.2). Forcing the model 

with Local underestimated temperatures in 2010-2011 but produced smaller errors 

throughout 2012-2014. EWEMBI consistently underestimated the water temperatures, 

particularly in the lower depths, with errors ranging between -5 and -9 °C in the 

hypolimnion during the summer of 2010. ERA5 overestimated temperatures in the 

epilimnion while underestimating temperatures in the hypolimnion during summer. 

Across all forcing datasets, FLake underestimated bottom temperatures in Feeagh during 

the summer period, even for the shallower depths over which FLake operates. FLake, 

GLM and Simstrat all had a warm bias in the surface for ERAI and ERA5 (Figure 4.2). 

The use of EWEMBI data consistently underestimated hypolimnetic temperatures across 

all models. 

 

Figure 4.2 Difference between modelled and observed temperatures for Feeagh for the 

four meteorological datasets; ERAI, ERA5, EWEMBI and Local and for the four lake 

models; FLake, GLM, GOTM and Simstrat. Grey areas indicate periods of missing data 

for either observed or modelled. 
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In general, all models and all forcing datasets overestimated the water 

temperature of Langjtern (Figure 4.3). However, the difference across gridded datasets 

was quite small although the use of EWEMBI and Local data produced slightly lower 

error. There was a distinct difference between the results for FLake and GLM versus 

those for GOTM and Simstrat, with the latter two models being unable to reproduce the 

stratification dynamics within Langtjern. This resulted in large overestimations of 

temperature during summer at the lower depths (>10 °C). During winter, both models 

consistently exhibited a cold bias throughout the water column across all gridded 

datasets. The only period where GOTM and Simstrat had small errors was during the 

period of onset and offset of stratification. Simulations using EWEMBI and Local data 

had the smallest errors throughout the water column for FLake and GLM, particularly at 

lower depths during the summer period. ERAI and ERA5 both had a warm bias at the 

surface during the summer period for both FLake and GLM. During the summer period 

of 2016, FLake and GLM showed a consistent warm bias across ERAI, ERA5 and 

EWEMBI while for Local this was much smaller (Figure 4.3). 

 

Figure 4.3 Difference between modelled and observed temperatures for Langtjern for the 

four meteorological datasets; ERA-Interim, ERA5, EWEMBI and Local and for the four 

lake models; FLake, GLM, GOTM and Simstrat. Grey areas indicate periods of missing 

data for either observed or modelled. 
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Local meteorological data produced the best simulations for Lake Erken, with the 

smallest distribution of residuals around 0 for the full water temperature profile (Figure 

4.4 A), surface temperature (Figure 4.4 B) and bottom temperature (Figure 4.4 C). 

Simulations using ERAI and ERA5 had slightly wider distributions but were similar in 

shape for the full profile, surface and the bottom. The residuals of the models driven by 

EWEMBI data were skewed to the left, indicating a tendency to underestimate 

temperatures for the full profile, surface and the bottom. EWEMBI simulations also 

exhibited a slight bimodality which was due to the residuals from GOTM and Simstrat 

being strongly negatively biased. 

ERAI had the smallest distribution of residuals around 0 for Feeagh for the full 

profile (Figure 4.4 A), the surface (Figure 4.4 B) and the bottom temperatures (Figure 

4.4 C). The Local and ERA5 simulations followed similar distributions for the full 

profile, surface and the bottom temperatures. EWEMBI had a negative bias for the 

surface temperature which was reflected in the density distribution for the full profile and 

surface temperatures. There was a slight bimodality in the bottom residuals across each 

of the datasets and this pattern was consistent across all lake models. 

For the full profile in Langtjern there was a similar distribution for all the datasets 

with a bimodal distribution with a peak at -3 °C and one around 0 °C. Bottom 

temperatures followed a similar pattern across all datasets (Figure 4.4 A). The bimodality 

was a result of both the GOTM and Simstrat models persistently underestimating bottom 

temperatures in winter and a large overestimation of bottom temperatures in summer 

(Figure 4.4 C). At the surface, the Local data had the smallest spread of residuals around 

0 followed by EWEMBI while ERA5 was slightly positively skewed (Figure 4.4 A). 
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Figure 4.4 Distribution of residuals for four meteorological datasets; ECMWF ERA-

Interim (ERAI), ERA5, EWEMBI and Local, for Erken, Feeagh and Langtjern for the 

full profile (A) (Erken: n=84240; Feeagh: n=83076; Langtjern: n=30457), surface (B) 

(Erken: n=3120; Feeagh: n=7224; Langtjern: n=4296), and bottom (C) (Erken: n=3120; 

Feeagh: n=7224; Langtjern: n=4296). The residuals from the four lake models: FLake, 

GLM, GOTM and Simstrat were grouped within this plot. 

Root mean square error (RMSE) and mean absolute error (MAE) were both 

calculated between observed temperature profiles and simulated temperature profiles, 

but they showed very similar patterns, so the results are focused on RMSE. The RMSE 

values indicated that the ERAI dataset produced simulations with a lower RMSE for 

Feeagh (Figure 4.5). Simulations using Local data had the narrowest RMSE distribution 

for Erken while those using ERAI and ERA5 had similar ranges of model fit for Erken 

and Langtjern. The EWEMBI forcing data was the second best in terms of model fit for 

Langtjern after the Local data, but it is important to note that there was a strong 

bimodality across all datasets, driven mainly by the diverging performance of GOTM 
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and Simstrat, which both had large error in the bottom, compared to Flake and GLM. For 

Erken, the EWEMBI simulations had a high RMSE which was driven by GOTM and 

Simstrat. GOTM and Simstrat had distinctly higher RMSE values for Langtjern when 

forced with ERAI and ERA5 data. The simulations using ERAI, ERA5 and Local data 

all had mean RMSE values less than 2.5 for Erken (2.13, 2.19, 1.79) and Feeagh (1.44, 

2.22, 2.00), while those for EWEMBI were larger (4.84; 2.86).(Table 4.3). 

The density distributions of RMSE for Feeagh and Erken were similar in pattern 

for the models GLM, GOTM and Simstrat, with Flake being an obvious outlier in terms 

of model error (Figure 4.5). For Langtjern, the distribution of the RMSE values for FLake 

and GLM indicated a much better model fit than those for GOTM and Simstrat. For 

Erken, GLM and GOTM simulations had mean RMSE values less than 2.5 °C (2.47 °C, 

2.43 °C) while those for Simstrat and FLake were less than 3 °C (2.75 °C, 2.97 °C) (Table 

4.3). For Feeagh, GLM, GOTM and Simstrat all had mean RMSE values less than 2 (1.87 

°C, 1.68 °C, 1.75 °C). The value for the FLake simulations was much larger (3.14 °C) 

(Table 4.3). For Langtjern, mean RMSE values for FLake and GLM were noticeably 

lower (2.45 °C, 2.48 °C) than those for GOTM and Simstrat (4.41 °C and 4.59 °C) but 

still relatively high to be considered a “good” calibration (i.e. less than 2 °C; Bruce et al., 

2018; Read et al., 2019) (Table 4.3). 
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Figure 4.5 Density distributions of annual root mean squared error (RMSE) values for 

the total water column temperature profile for Feeagh (n=20), Erken (n=20) and 

Langtjern (n=14) for each meteorological dataset: ERAI, ERA5, EWEMBI and Local, 

and for each lake model FLake, GLM, GOTM and Simstrat. 
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Table 4.3 Uncalibrated model fitness statistics calculated for the entre simulation period and full water column for each lake, Erken, (n=84240), Feeagh 

(n=83076) and Langtjern (n=30457), with each climate dataset ERA-Interim (ERAI), ERA5, EWEMBI and Local for each of the four lake models 

FLake, GLM, GOTM and Simstrat. Statistics calculated were root mean square error (RMSE), Nash-Sutcliffe Efficiency (NSE) and Bias. 

 Model Erken  Feeagh  Langtjern 

RMSE (°C) ERAI ERA5 EWEMBI Local  ERAI ERA5 EWEMBI Local  ERAI ERA5 EWEMBI Local 

 FLake 2.12 3.62 3.48 2.68  2.77 3.36 3.42 3.22  2.34 3.29 2.49 1.74 

 GLM 2.58 1.96 3.72 1.92  1.16 2.26 2.66 1.80  2.80 2.66 2.11 2.39 

 GOTM 1.54 1.46 5.55 1.21  0.88 1.74 2.86 1.45  4.46 4.94 3.91 4.42 

 Simstrat 2.13 1.84 5.69 1.46  1.03 1.79 2.74 1.80  5.23 5.44 4.04 3.70 

NSE                

 FLake 0.77 0.33 0.38 0.63  0.52 0.30 0.27 0.35  0.85 0.70 0.83 0.92 

 GLM 0.63 0.79 0.23 0.79  0.90 0.61 0.46 0.75  0.68 0.71 0.82 0.77 

 GOTM 0.87 0.88 -0.72 0.92  0.94 0.77 0.38 0.84  0.20 0.01 0.38 0.21 

 Simstrat 0.75 0.81 -0.81 0.88  0.92 0.76 0.43 0.75  -0.11 -0.20 0.34 0.44 

Bias (°C)               

 FLake -0.94 -1.25 -2.56 -0.60  -1.56 -1.79 -2.26 -1.94  0.73 1.23 0.65 0.17 

 GLM 1.14 1.40 -2.42 0.27  -0.20 -1.02 -1.95 -0.71  1.42 1.26 0.29 0.16 

 GOTM -0.03 -0.35 -5.23 -0.09  -0.55 -1.12 -2.54 -0.94  0.67 1.38 -0.67 0.55 

 Simstrat 1.18 0.17 -4.32 -0.42  0.61 -0.50 -1.82 -0.56  1.88 2.15 0.73 0.03 
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The bias in the model simulations varied with lake and with the forcing dataset 

used. Simulations with models using the Local data had the smallest range in bias and 

were centred around 0 for both Erken and Langtjern, while for Feeagh, it was negatively 

skewed (Figure 4.6). ERA5 was centred around 0 for Erken but it had a larger range than 

Local data. The bias for EWEMBI was strongly negatively skewed for both Erken and 

Feeagh and negatively skewed relative to ERAI and ERA5 across all three lakes. ERA5 

and ERAI were positively skewed for Langtjern. For Feeagh the distribution for the 

ERAI simulations was closest to 0 while the results using ERA5 had quite a small 

variance. 

FLake had a negatively skewed bias for Erken and Feeagh. In contrast for 

Langtjern it had the closest bias to 0 with a low variance. GLM had a positively skewed 

bias for Erken and Langtjern and a slight negative skew for Feeagh. Simstrat had a slight 

negative bias for both Erken and Feeagh driven by the EWEMBI dataset (Figure 4.6).  

 

 

Figure 4.6 Density distributions of annual bias values for Feeagh (n=20), Erken (n=20) 

and Langtjern (n=14) for each meteorological dataset: ERAI, ERA5, EWEMBI and 

Local and for each lake model: FLake, GLM, GOTM and Simstrat. 
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Erken has the largest interannual variability across datasets and models in 

predicting maximum surface temperatures and the timing of when this temperature 

occurred. Annual biases were mainly model specific rather than associated with a specific 

forcing dataset (Figure 4.7). Maximum surface temperatures were most accurately 

simulated by the simulations using the ERAI forcing data for Erken, clustered around 0, 

while the results using ERA5 were positively skewed as it consistently overestimated 

maximum surface temperature (Figure 4.7). Simulations using Local and ERAI captured 

the timing well, with smaller errors. EWEMBI consistently underestimated the surface 

temperature and the timing, as indicated by most of the points being in the bottom left 

quadrant of the graph. The clustering around zero was mainly seen in simulations using 

Local and ERAI forcing data while simulations based on ERA5 had a warm bias and 

tended to overestimate temperatures. 

For Feeagh, Local and ERAI simulations had the smallest distribution around zero 

for both the magnitude of maximum temperature and the timing of when this occurs. The 

simulations using EWEMBI had a negative bias while ERA5 had a positive bias. 

Interannual variation in error was quite large in 2010 and 2012 and for one point in 2014. 

The outliers were either with the EWEMBI forcing dataset or GLM or Simstrat. FLake 

captured the timing and magnitude of the maximum surface temperature most accurately, 

with a large clustering around zero (Figure 4.7). 

There was a large clustering of values around zero for Langtjern for all gridded 

datasets (Figure 4.7). Overall, simulations using Local forcing data had the largest 

number of values close to zero indicating that it performed best at capturing the timing 

and magnitude of maximum surface temperature. Simulations using ERA5 has a slight 

warm bias while those using EWEMBI data has a slight negative bias. The model GLM 

consistently overestimated surface temperatures with the ERAI, ERA5 and EWEMBI 

forcing data.  
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Figure 4.7 Scatterplot of residuals in predicting surface maximum temperature (Tsmax) 

and the day of surface maximum temperature for each of the three lakes with the four 

lake models: FLake, GLM, GOTM and Simstrat forced with the four meteorological 

datasets: ERA-Interim (ERAI), ERA5, EWEMBI and Local. Points from the same year 

are connected by the coloured polygons. 

Simulation of the start and end of thermal stratification was quite varied between 

gridded datasets, lake models and lakes. There was large uncertainty around simulated 

Erken stratification dates because there were years when the monitoring buoy was 

deployed after the lake was already stratified. Feeagh and Langtjern had consistent biases 

in predictions which were a result of lake model biases (Figure 4.8). 

For Erken, simulations using the Local data had the smallest error in predicting the 

start and end of stratification while those with the ERA5 dataset performed best over the 

five-year period with GLM. The simulations using the EWEMBI forcing data had small 

errors when used to drive the GLM and GOTM models for this lake, but in contrast had 

quite large errors with the FLake and Simstrat models. The simulations using the ERAI 

forcing data predicted an earlier end of stratification when used with GLM, GOTM and 

Simstrat, while the simulations using FLake had a negative bias i.e., they predicted the 

end of stratification earlier than observed. FLake consistently predicted the end of 

stratification later than was observed while GLM, GOTM and Simstrat predicted the end 

too early. Values for FLake, GLM and Simstrat were omitted for 2012 and Simstrat for 

2013 because these models simulated stratification for the entire period. It is important 
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to note that the Erken monitoring buoy is removed from the lake each winter and put 

back in the lake as soon as the ice melts but sometimes it has been seen that the lake is 

already stratified when the buoy is put back in or sometimes when it is taken out, so there 

is potential error associated with the observed dates. 

Overall, there was a slight bias towards predicting the start of stratification too 

early for Feeagh (Figure 4.8). The simulations using the ERAI forcing data had the 

smallest error in predicting the start and end of stratification. Simulations using ERA5 

data were biased towards predicting the end of stratification too late. Simstrat was biased 

towards predicting the end of stratification too early for Local and ERAI. There was 

small interannual variation with a clear bias for the FLake model which simulated 

stratification both starting too early and ending later than observed. FLake did not capture 

the stratification timing in Feeagh accurately, as it consistently simulated a start that was 

earlier than observed, and an end that was later than observed. This effect was 

irrespective of the forcing dataset, indicating that it was a model issue rather than a 

forcing data issue. Feeagh is a lake which does not stratify very strongly so the timing of 

the start and end of stratification is relatively sensitive to the criteria used for 

determination of stratification. 

For Langtjern, there was a smaller range around the simulations of the start of 

stratification while there was a much larger variation in predicting the end, which was 

biased according to the different lake models used (Figure 4.8). ERA5 and ERAI have 

the smallest range in error for both FLake and GLM. GOTM and Simstrat were strongly 

biased and predicted the end of stratification too early no matter which dataset was used. 

The simulations using the FLake model had much more interannual and inter-dataset 

variation than those using GLM, resulting in GLM having the lowest errors in predicting 

stratification timings. 
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Figure 4.8 Scatterplot of residuals in predicting the day when stratification starts (Ststart) 

and ends (Stend) for each of the three lakes with the four lake models: FLake, GLM, 

GOTM and Simstrat being forced with the four meteorological datasets: ERA-Interim 

(ERAI), ERA5, EWEMBI and Local. Points from the same year are connected by the 

coloured polygons. 

The magnitude of errors between measured and simulated ice phenology varied 

greatly between years. Ice did not form on Erken in the simulations using GLM with 

Local data for any of the years or in Langtjern for simulations with GLM in 2015 (Figure 

4.9). 

There was considerable interannual variation in the accuracy of the prediction of 

ice onset and offset at Erken across all models and gridded datasets (Figure 4.9). 

EWEMBI had a strong negative bias in simulating the onset of ice too early while ERAI, 

ERA5 and Local had similar patterns for FLake, GOTM and Simstrat.  

The interannual variability of model accuracy was also noticed for Langtjern, 

although to a lesser degree than Erken (Figure 4.9). There were no clear patterns within 

the data apart from the fact that GLM consistently predicted the onset of ice to be later 

than observed. In 2015 and 2016, all model and climate dataset combinations simulated 

ice off too early while in 2014 there was a bias in predicting the onset of ice too early. 
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Figure 4.9 Scatterplot of residuals in predicting the day of ice onset (Iceon) and offset 

(Iceoff) for each of the three lakes with the four lake models: FLake, GLM, GOTM and 

Simstrat being forced with the four meteorological datasets: ERA-Interim (ERAI), 

ERA5, EWEMBI and Local. Points from the same year are connected by the coloured 

polygons. 

Despite the relative success in reproducing water temperature profiles using 

uncalibrated models (described above), following model calibration and as might be 

expected, simulations using each of the climate forcing datasets showed an improvement, 

with a mean decrease in the RMSE value of 1.07 °C across all lakes, meteorological 

datasets and lake model combinations (Figure 4.10; Table 4.4). The improvement was 

most pronounced for the simulations using the EWEMBI and ERA5 forcing datasets. For 

the simulations of Erken, there was a large decrease in RMSE for EWEMBI (-2.12 °C), 

but the calibrated simulation still had a relatively high RMSE of 2.24 °C.  Local and 

ERAI had similar measures of error across most models following calibration. 

For Feeagh, values with an RMSE which were greater than 2 °C prior to 

calibration had the largest improvement (ERAI-FLake: -1.6 °C; ERA5-FLake: -1.3 °C; 

EWEMBI-Simstrat: -1.6 °C) (Figure 4.10; Table 4.4). The Feeagh simulations for 

EWEMBI had the greatest reduction in RMSE following calibration with three of the 

models having values below 2 °C. The calibrated simulations using the ERAI forcing 

data had a large reduction in RMSE for FLake (2.77 to 1.19 °C) with smaller reductions 

for the other models. 
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The simulations with each of the meteorological datasets for Langtjern were 

improved by calibration (Figure 4.10; Table 4.4). Despite slight improvements, the 

RMSE of all simulations using GOTM were relatively high (greater than 3 °C) (Table 

4.4). There were relatively small differences in RMSE between each of the 

meteorological datasets for Langtjern following calibration. 

 

 

Figure 4.10 Improvements in model fitness (RMSE) for each model and meteorological 

dataset after calibration against observed temperature profiles for Erken (n=84240); 

Feeagh (n=83076) and Langtjern (n=30457). A RMSE of 2 °C is used as a reference 

point for a ‘good’ calibration (Bruce et al., 2018; Read et al., 2019). 

 



  

70 

 

Table 4.4 Calibrated model performance statistics calculated for the entre simulation period for each lake: Erken (n=84240); Feeagh (n=83076) and 

Langtjern (n=30457),. with four meteorological datasets: ERA-Interim (ERAI), ERA5, EWEMBI and Local for each of the four lake models: FLake, 

GLM, GOTM and Simstrat. Statistics calculated were root mean square error (RMSE), Nash-Sutcliffe Efficiency (NSE) and Bias. 

 Model Erken  Feeagh  Langtjern 

RMSE (°C) ERAI ERA5 EWEMBI Local  ERAI ERA5 EWEMBI Local  ERAI ERA5 EWEMBI Local 

 FLake 1.24 1.60 2.50 1.21  1.19 2.05 2.03 1.84  1.76 1.65 1.52 1.39 

 GLM 2.16 1.70 2.30 1.37  0.96 1.15 1.55 1.69  1.61 1.50 1.73 2.12 

 GOTM 1.40 1.41 3.22 1.26  0.75 0.90 1.60 0.86  3.65 3.66 3.79 3.74 

 Simstrat 1.28 1.31 1.95 1.24  0.74 0.82 1.16 1.73  1.21 1.16 1.25 2.64 

NSE                

 FLake 0.92 0.87 0.68 0.93  0.91 0.74 0.74 0.79  0.91 0.92 0.94 0.95 

 GLM 0.74 0.84 0.71 0.90  0.93 0.90 0.82 0.78  0.90 0.91 0.88 0.82 

 GOTM 0.89 0.89 0.42 0.91  0.96 0.94 0.81 0.94  0.46 0.46 0.42 0.43 

 Simstrat 0.91 0.90 0.79 0.91  0.96 0.95 0.90 0.77  0.94 0.95 0.94 0.72 

Bias (°C)               

 FLake -0.04 -0.33 -0.62 0.10  -0.31 -0.58 -0.58 -0.69  -0.16 -0.57 -0.12 0.25 

 GLM 0.28 0.03 -0.38 -0.51  -0.06 -0.17 -1.15 -0.15  0.24 0.32 -0.43 -0.05 

 GOTM -0.29 0.01 -2.54 0.09  -0.45 -0.41 -1.31 -0.27  -1.18 -0.94 -1.17 -0.95 

 Simstrat 0.18 -0.28 -0.36 -0.25  0.04 0.01 -0.60 -0.03  -0.35 -0.14 -0.26 -1.51 
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The calibrated scaling factors showed a high degree of variation across the three 

lake sites. There was large variability between lake models and meteorological datasets 

for Erken. For Feeagh, increases in the scaling of wind speed improved model 

simulations for each meteorological dataset (Table 4.4). Overall, Langtjern showed more 

improvement with reductions in short-wave radiation. This showed that even with just 

three lakes there was a wide range of sensitivity across all parameters (Figure 4.11).  

 

Figure 4.11 Range of calibrated scaling factors for wind and incoming shortwave 

radiation (swr) applied to each of the four meteorological datasets; ERAI, ERA5, 

EWEMBI and Local and for each of the four lake models: FLake, GLM, GOTM and 

Simstrat for each of the three lakes: Erken, Feeagh and Langtjern. 

 

ERA5 was the gridded dataset that best replicated the local observed 

meteorological data, with much smaller biases across each of the main meteorological 

variables. It also captured maximum values accurately (Figure 4.12). Despite this, ERA5 

did not simulate lake hydrodynamics as well as simulations using the ERAI datasets in 

some cases. For example, simulations using ERAI had large positive biases in windspeed 

for Feeagh and Erken, and this resulted in a better simulation of water temperature in 

Feeagh. (Figure 4.1). This may be because Feeagh is a windy site, and the local data were 

recorded at the southern shore of the lake. It is possible that the spatial scale at which 

ERAI data were calculated better replicates conditions across the whole lake surface than 

this local observed data. Hydrological models forced by reanalysis data have also 

previously been found to be more accurate than those forced by local meteorology data 

in several studies (Ledesma and Futter, 2017; Persaud et al, 2020; Tarek et al., 2019). 

This was attributed to the fact that reanalysis data were internally coherent, while local 
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data can potentially be heterogeneous at spatial scales which do not reflect the processes 

across a whole catchment. 
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Figure 4.12 Monthly bias of daily mean for air temperature (A), wind speed (B) and incoming solar radiation (C) for Erken, Feeagh and Langtjern for 

ERA5, ERAI and EWEMBI compared to the measured local data. 
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4.5. Discussion 

 

Local and global-scale simulations of lake thermal dynamics and coupled 

biogeochemistry are now being more commonly used to inform short-term and 

longer-term lake conditions. Such simulations can greatly benefit from the use of 

gridded reanalysis datasets by increasing the number of lakes modelled to understand 

the response to meteorological changes on a regional level (Woolway et al., 2020). 

This study evaluated, for the first time, the use of the gridded reanalysis datasets 

ERA5, ERAI and EWEMBI as potential meteorological forcing datasets for 1D lake 

hydrodynamic models by comparing them to simulations using Local data. These 

forcing datasets were comprehensively tested across three lakes with diverse 

characteristics using a set of lake models with varying structures. The lake models 

were initially run without any calibration to ensure a relatively fair comparison 

between lakes and to demonstrate the benefits and limitations of using uncalibrated 

models. We found that the lake models forced with the gridded meteorological data 

had a similar level of overall model accuracy as the simulations using locally 

measured data, but that this accuracy was influenced by lake morphometry and lake 

model applied. With regards to capturing in-lake events, such as the timing and 

magnitude of maximum surface temperature and start and end of stratification, 

simulations using both the ERAI and ERA5 forcing data had similar degrees of 

accuracy as simulations using the Local data. However, our study found that there 

were no ‘best’ combination of climate dataset and lake model but demonstrated the 

general levels of variability that can be expected to arise for many combinations of 

models and gridded datasets. We also showed that a simple and computationally 

efficient calibration procedure significantly improved model accuracy when observed 

temperature profile data were available. 
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Differences in hydrothermal simulations using gridded datasets and Local data 

 

Gridded datasets have previously been used to simulate lake temperatures on a global 

scale to understand the global lake response to directional climate change (ERAI - 

Woolway and Merchant, 2019; ERA 20C - Piccolroaz et al., 2020). Other single lake 

studies have also used this approach, for example ERAI data were used  to force a 

three-dimensional model for Lake Chaohu in China (Frassl et al., 2018). Gridded 

datasets are widely used in hydrology (Persaud et al., 2020; Tarek et al., 2019) and 

could potentially be developed into an integrated catchment modelling system that 

incorporates lakes and stream networks on a regional scale in data-poor areas (Read 

et al., 2014).  However, to date there has been little focus on the performance of a 

workflow incorporating these datasets to successfully simulate temperature profiles 

in lakes of different morphometry. Such a workflow could either utilise an 

uncalibrated model setup, which can be required for studies on large spatial scales 

where observed data are absent, or to use measure temperature profile data to calibrate 

the model which could then be used in lakes with ongoing monitoring programs. 

Simulations using the ERAI dataset produced either much more accurate 

(Feeagh) or slightly more accurate (Erken and Langtjern) simulations of lake 

temperature than ERA5 despite not reproducing local meteorological conditions as 

accurately as ERA5. This was surprising because the ERAI dataset was similar in 

structure to ERA5 but was of lower temporal and spatial resolution (Albergel et al., 

2018). For the Feeagh case study, when the ERA5 data were compared to Local 

meteorology, it was found to have a much lower bias than the ERAI dataset for mean 

wind speed. However, simulations using ERA5 considerably underestimated the 

maximum wind speed (Figure 4.12). It is possible that for Feeagh, maximum wind 

speeds are a crucial driver of in-lake processes. In this regard, it may be that ERAI, 

with its larger spatial resolution, captures more accurately the influence of the Atlantic 

Ocean which exerts a strong influence on the Burrishoole catchment (Andersen et al., 

2020; Jennings et al., 2012).  
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The EWEMBI dataset captured the mean local air temperature, wind speed 

and solar radiation well but did not capture the maximum values. This was likely as a 

result of its daily timestep (Figure 4.12). Consequently, it did not accurately simulate 

the sudden occurrence of events such as the start and end of stratification and onset 

and offset of ice cover (Figure 4.8, Figure 4.9). Across both types of events, 

simulations using this forcing data tended to predict the offset of ice and stratification 

later than was observed and later than the simulations with other datasets. This issue 

could be addressed by applying a temporal downscaling technique similar to that 

presented in Shatwell et al. (2019) where they used downscaled daily data to a 6-

hourly temporal resolution.  Similarly, the shortcomings of using EWEMBI datasets 

could be overcome by using a simple calibration procedure which scales the most 

influential input variables (Figure 4.10). For example, Ayala et al. (2019) found that 

there were small differences in model simulations using synthetic hourly data and 

daily meteorological data when running GOTM for Erken, once the model had been 

calibrated. 

 

Differences between lake models 

 

For the shallow lake Langtjern, there was a clear distinction between the use of the 

two turbulence models (GOTM and Simstrat) and both Flake, which is designed to 

capture lake profile temperature evolution and GLM, an energy balance model. In the 

uncalibrated GOTM and Simstrat simulations, hypolimnetic temperatures were 

overestimated because the models failed to simulate the development of thermal 

stratification throughout the year (Figure 4.4). One of the reasons for this may be 

because there was a clear positive bias for the uncalibrated wind data all year round 

for Langtjern for all data sets (Figure 4.12), resulting in an overestimate of turbulent 

kinetic energy within the models. A similar result has been reported from other studies 

where turbulence models over-estimated mixing within shallow lakes (Stepanenko et 

al., 2010; Subin et al., 2012). Potentially, the models used in this current study have 
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not been parameterized to capture the dissipation of turbulent kinetic energy in small 

lakes. Despite the errors associated with stratification dynamics, GOTM and Simstrat 

both captured the magnitude of maximum surface temperature and timing to a high 

degree of accuracy. For Feeagh and Erken, in contrast to Langtjern, there was 

generally common agreement in RMSE across all lake models except for Flake, which 

consistently underestimated hypolimnetic temperatures (Figure 4.4 B; Figure 4.4 C). 

 The selection of a lake model can greatly influence the accuracy of simulations 

for lakes with differing morphometry, as demonstrated by the high variation in 

performance which we saw across our three study sites. In particular, the accuracy of 

FLake in capturing key lake phenological events such as the start/end of stratification 

and ice onset/offset varied between sites. It should be noted however that FLake was 

designed to simulate the lake-surface heat fluxes, hence the large errors in the 

simulations for the hypolimnion (Subin et al., 2012). This model-related bias would 

affect the outputs where that model is used for multiple sites.  Woolway et al. (2019) 

for example used one lake model (FLake), with a fixed light attenuation coefficient, 

and with only surface temperature data to validate the model for 650 sites. Our results 

suggest that the results from such a modelling experiment would contain a high degree 

of uncertainty for a number of lake metrics, particularly bottom temperature, the 

simulation of which is a recognised difficulty when using 1D hydrodynamic models 

(Bueche and Vetter, 2014). In the Woolway et al. (2019) study, the model was forced 

with data from ERAI where wind speeds were compared to observations from nearby 

weather stations and homogenised. Thiery et al. (2014b) showed how sensitive the 

FLake model was to small changes in the wind speed, especially to a regime switch 

from permanent stratification to fully mixed conditions. Le Moigne et al. (2016) 

examined the use of FLake on a global scale and found that it had warm biases that 

were greater than 1 °C which they attributed to the fact that ERAI represented an 

atmospheric state that was dryer and warmer than local above lake conditions. They 

also found large errors when simulating the duration of ice cover (±180 days). Our 

results confirm the results of these studies and showed that even when using FLake 

with local observed meteorological data, there was a relatively large degree of error, 
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particularly towards the bottom lake depth, which influenced the accuracy in 

capturing stratification dynamics (Figure 4.8; Feeagh).  

The present study has shown that uncalibrated models forced with gridded 

reanalysis data can capture surface temperatures with a high degree of accuracy. 

However, uncalibrated models were less successful at simulating water temperatures 

at depth and capturing aspects of the resulting phenology of stratification and ice 

cover. If gridded datasets are being used to simulate full water temperature profiles, 

our study showed that calibrating a model with observed temperature profile data 

improved accuracy. For Simstrat, this led to a reduction in RMSE in simulating the 

full temperature profile because it simulated the hypolimnetic temperature more 

accurately. This decrease in RMSE was a result of large reductions in SWR (0.64) and 

wind speed (0.13) which could be deemed extreme adjustments. However, such an 

adjustment would not be unusual for shallow lakes considering the positive bias 

present in the wind speed of the reanalysis data (Figure 4.12). Turbulent kinetic energy 

within the water column can be used to estimate vertical eddy diffusivity in the water 

column and is the premise for many 1D lake models (Henderson-Sellers, 1985; Wüest 

et al., 2000). Eddy diffusivity is similar to molecular diffusivity but occurs on larger 

scales due to fluid motion (Lerman et al., 1995). Deng et al. (2013) reduced diffusivity 

by 98 % to reproduce diurnal surface temperatures when modelling Lake Taihu in 

China, which is 2 m in depth, using the Community Land Model version4 – Lake, Ice, 

Snow and Sediment simulator (CLM4-LISS), which is a turbulence-based model. The 

reason why GOTM does not simulate stratification well for shallow lakes in an 

uncalibrated setup could be because it was originally developed for use in the ocean, 

where lateral boundary effects would be negligible while they would play a significant 

role in small shallow lakes (Yeates and Imberger, 2003). Hence, the simple calibration 

using just wind speed and incoming solar radiation was not enough to reduce RMSE 

for GOTM in this shallow lake (Figure 4.10). 

After calibrating each lake model, we observed a divergent response between 

the calibrated scaling factors for wind and SWR. This is a result of the differing model 

structures and indicates how the sensitivity of each model to wind and SWR varies 
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with lake site. These results highlight the inherent model complexities that would 

make it difficult to extract exactly what the key drivers of change in lake thermal 

metrics are when comparing outputs across models and sites. A similar problem has 

also been reported in hydrology, where structural differences between hydrological 

models was the crucial source of uncertainty rather than the forcing data. (Quintana-

Seguí et al., 2019). 

 

Recommendations for applications 

 

Even with the most accurate climate forcing data and site-specific calibration, there 

were still consistent biases in some of the model simulations (for example GOTM 

simulations for Langtjern). Downscaling and bias correct techniques are already used 

to correct inherent biases that are present in climate reanalysis datasets (Chen et al., 

2011). This approach is widely used in meteorology but has not yet been applied to 

lake models. We see this as a possible alternative to model calibration. A multi-variate 

bias correction could potentially remove some of the biases seen in our models 

(Cannon et al., 2015). It is important to note that although these techniques can be 

used to reduced bias but they also bring another source of uncertainty into the models 

(Wootten et al., 2017). 

The ability of four different lake models to successfully capture the timing of 

ice was examined in the current study. Similar to Yao et al. (2014), there was large 

variability and uncertainty across all lake models indicating that there is still a need 

for further improvements in modelling ice dynamics. It has been shown that this has 

been constrained by the large uncertainties that exist in observations of lake ice(Le 

Moigne et al., 2016). 

Future work should focus on developing methodologies that take advantage of 

using an ensemble of lake models. Different lake models captured surface 

temperatures more accurately than others but different lake models captured 
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stratification timings better (Figure 4.8). Duan et al. (2007) highlighted how 

hydrological forecasts using a Bayesian model averaging approach generated more 

skilful and reliable predictions. Broderick et al. (2016) also recommended using a 

multi-model ensemble with a suitable averaging method in the context of climate 

assessment such as Bayesian model averaging and Grange-Ramanthan averaging. The 

key benefits of these approaches are that they work in the probabilistic space which 

allows uncertainty in the predictions to be quantified. Within lake modelling, Trolle 

et al. (2014) showed that when simulating phytoplankton biomass the simple 

arithmetic mean of three ecosystem models performed better than any one single 

model and that the uncertainty related to the different model structures could be 

compared. Ensemble modelling allows further partitioning of the drivers of 

uncertainty within the model predictions such as the forcing data, model 

parameterization, model process or initial conditions. 

Modelling of water temperature profiles can be used to inform on past and 

future conditions in lakes and can therefore inform lake management and policy. 

However, the forcing data required for such simulations are not always available from 

nearby meteorological stations. Our results show that where local data are absent, 

gridded reanalysis datasets such as the ERAI or ERA5 can be used with confidence 

to simulate changes in lake temperature hydrodynamics, sometimes even performing 

better than using meteorological data measured on or near the lake. ERA5 currently 

has a temporal range of 1979-present but in the future, this will be extended back to 

1950 (ECMWF, 2020). This will allow for further hindcast studies to infer historical 

events and trends with a high degree of confidence (Hadley et al., 2014; Moras et al., 

2019; Piccolroaz et al., 2020; Woolway et al., 2017b). 

 

4.6. Conclusions 

 

Global reanalysis datasets are a viable alternative to meteorological data measured on-

site for sites for forcing 1D hydrodynamic models. There are significant limitations to 
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using daily meteorological forcing data for key lake indices e.g. stratification and ice 

cover duration, but that these can be overcome through calibration with observed lake 

data. A simple and efficient calibration of driving variables can significantly improve 

model performance. The use of just one lake model could potentially bias results 

owing to a model’s structural inability to replicate observed lake conditions and 

produce spurious trends. Using an ensemble of lake models is desirable owing to 

different model characteristics leading to some models performing better than others. 

This study showed that there is no single meteorological dataset or lake model that 

will work universally across sites. 
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CHAPTER 5.  IMPACT OF MONITORING FREQUENCY ON 

ERROR REDUCTION WHEN USING DATA ASSIMILATION 

FOR SHORT-TERM HYDRODYNAMIC FORECASTS 

 

5.1. Abstract 

 

Accurate short-term forecasts of processes in lakes and reservoirs can be used to 

inform water management decisions in the near future. Recent developments in 

ecological forecasting facilitate the assimilation of monitoring data into model 

simulations, thus producing forecasts that are informed by the most recent observed 

conditions. Data collection can be expensive, however, and it is currently unclear how 

frequently observational data, such as lake water temperature profiles, need to be 

collected for assimilation into models to reduce forecast error to acceptable levels. 

Here we used a one-dimensional hydrodynamic model to generate multiple 14-day 

water temperature profile forecasts for three different lakes. Using a model, that had 

first been calibrated against historical data, we ran a series of simulation experiments 

where we inserted a single measured profile to re-initialize the model on various dates 

prior to the start of the forecast. We obtained the re-initialization temperature profile 

data (at 0 hours, 24 hours, 168 hours, 336 hours, and 672 hours pre-forecast) by sub-

setting high frequency data from in-situ sensors.  We assessed how the forecast error 

was affected by 1. the length of time between the re-initialization step and the start of 

the forecast, and 2. the thermal status of the lake at the time of the forecast. We found, 

as might be expected, that the error was largest when no observational data were 

assimilated. However, even when the observed assimilated data was measured at the 

longest time interval before the start of the forecast (one month), the forecast error 

was reduced relative to model runs without any data assimilation. For simulations 

with data assimilated, the magnitude of the model error diminished as the re-

initialization time became shorter, which was particularly pronounced when the lake 

was stratified. The results of this study suggest that the design of high and low 
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frequency monitoring programmes can be tailored to the characteristics of individual 

lakes, to optimize the performance of near-term water temperature forecasts.  
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5.2. Introduction 

 

Anthropogenic pressures, including directional climate change, nutrient enrichment, 

and land use change are affecting water quality on a global scale (Adrian et al., 2009; 

Coats et al., 2006; Rempfer et al., 2010). The impacts of these pressures on lakes and 

reservoirs are especially important because of their use as drinking water sources, 

value to recreational and tourism industries and other ecosystem services (Delpla et 

al., 2009; Smith et al., 2015). Intensive monitoring of these systems can be warranted 

when there are potential health risks as a result of deterioration in quality, for example, 

from harmful algal blooms (Paerl et al., 2011). To move towards more proactive water 

management, information on the potential near-future state of a water body is 

required. Such information can only be provided by short-term forecasts (days to 

weeks) of the possible changes in lake physics, chemistry and biology. These lake 

system forecasts rely on the use of modelling workflows which couple meteorological 

forecasts with hydrodynamic and water quality models in order to accurately predict 

future conditions within a number of days (Peng et al., 2019). 

It is becoming increasingly evident that such short-term forecasts have the 

potential to play a key role in advancing environmental decision-making and 

improving decision support systems (Dietze et al., 2018). Studies have shown that 

lake and reservoir models can accurately predict events such as fluctuations in water 

level (Young et al., 2015), carbon dynamics (Zwart et al., 2019), phytoplankton 

communities (Page et al., 2018) and algal blooms (Stumpf et al., 2016; Wilkinson et 

al., 2018; Wynne et al., 2013). Different statistical and data-based models have been 

used to forecast water quality in lakes include Bayesian models (Obenour et al., 2014), 

artificial neural networks (Najah et al., 2013) and regression models (Nazeer and 

Nichol, 2016). The drawback of using such models, however, is that they tend to rely 

on static training datasets and are less likely to predict conditions outside of the range 

of the specific training data, which can be a problem for forecasting the effects of 

extreme events such as heat waves or storms (Saber et al., 2019). In contrast, process-

based models are frequently used for ecological forecasting (Luo et al., 2011; 
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Cuddington et al., 2013) and, in principle ,should provide more accurate forecasts 

when forced with data outside of the range used for calibration, as long as the 

processes are adequately simulated by the model. In limnology, these process-based 

models link lake physics, which drive hydrodynamics, to non-linear biological 

processes that govern nutrient availability and ecological functioning (Hakanson and 

Boulion, 2002; Gal et al., 2009; Toffolon et al., 2014; Snortheim et al., 2017; Bucak 

et al., 2018). Process based models are more capable of dealing with shifts and 

changes within the system which are controlled by fundamental relationships that can 

be quantified by equations within the model, and are well suited for use within 

forecasting workflows. Data-driven approaches combined with mechanistic models 

have been shown to perform better than either approach used on its own based on a 

study of for 68 lakes (Read et al., 2019). Process driven physical models are usually 

dynamically coupled to biogeochemical models for modelling in-lake responses. 

The implementation of short-term forecasts will only be adopted routinely 

when it is demonstrated that workflows can accurately predict future conditions with 

an acceptable envelope of error. Process-based models require the input of initial 

conditions to start a model run, and the use of appropriate values for these initial 

conditions is crucial to minimize potential forecast error (Palmer et al., 2005). Often, 

default initial conditions or “best guess” estimates are used along with the model 

parameter set that had the highest fitness. The model is then allowed to “spin-up” for 

some time period prior to the period of forecast which will lead to reasonable values 

of key model state variables, in what we defined hereafter as a “free model run”, 

defined similarly to Kourzeneva (2014) and Ren et al. (2016). For accurate short-term 

forecasts, especially those with human health and wellbeing implications, using such 

an approach may not be adequate. Assimilating observational data to re-initialize the 

model prior to the forecast, as opposed to using a free model run approach, may reduce 

forecast error in lake water quality predictions to a satisfactory level (Zwart et al., 

2019). How best to assimilate observational data has been a topic of much discussion 

as ecological forecasting has become more widely used (Luo et al., 2011; Liu et al., 

2012; Dietze et al., 2018). Sequential techniques for data assimilation include the 
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processing of observational data as they become available, via a two-step procedure. 

First a forecast is run simulating the future distribution and then secondly, the 

distribution of the forecast is updated based on the new observation (Hoteit et al., 

2012; Khaki et al., 2017). Stroud et al. (2009) used two methods to assimilate 

observed data into a sediment transport model for Lake Michigan: direct insertion and 

a kriging approach. They found that by using direct insertion they decreased forecast 

error compared to using a modelled approach which was not updated with new 

observational data.  

High frequency monitoring (HFM) of key aquatic variables using electronic 

sensors has been an area of rapid acceleration over the past 20 years and offers a viable 

source of observed data for inclusion in modelling workflows (Marcé et al., 2016). 

Monitoring platforms with telemetry capabilities have been deployed for many lakes 

around the world and provide observational data in near-real-time (Hamilton et al., 

2015). There has been a large increase in the availability of HFM data (Porter et al., 

2012) and parallel developments in networked science has advanced the use of these 

data in limnology (Hanson et al., 2016). High frequency data has improved 

understanding of under-ice dynamics (Bruesewitz et al., 2015), inter-seasonal 

metabolism dynamics (Laas et al., 2012), monitoring algal blooms (Pobel et al., 2012) 

and general provision of ecosystem services (Marcé et al., 2016).This has led to 

increased instrumentation of reservoirs and lakes of particularly high value (e.g. 

drinking water, recreation, fishing). HFM comes at a cost, however, as systems are 

expensive to acquire, deploy, and maintain (Horsburgh et al., 2019). Nevertheless, 

HFM water quality data offer several advantages over traditional limnological data 

collection. They can be collected remotely, irrespective of weather conditions, and at 

a temporal resolution that can capture rapidly changing water conditions (i.e. sub-

daily). It is also possible to automate the assimilation of these data into modelling 

workflows, as they can be streamed online and automatically quality controlled 

(Porter et al., 2005). 

Any forecast workflow which uses a mechanistic model for lake water quality 

is built on top of, and informed by, reliable simulations of lake thermal structure. This 
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study was the first, as far as we know, to investigate whether assimilating 

observational temperature profile data into a physical lake model, by direct insertion, 

reduced forecast error. If error was reduced, we also sought to identify the optimal 

length of the time at which the direct insertion should occur before any forecast, as 

this would inform the frequency at which observational data would need to be 

collected. These questions were explored using data from three well-studied lakes 

from which high frequency water temperature data were available: Lough Feeagh 

(Ireland), Kinneret (Israel) and Langtjern (Norway). The study evaluated model 

performance throughout one year of forecasting at a set of different re-initialization 

times prior to the forecast of between 0 and 14 days.  It also assessed forecast 

performance throughout the lake depth profile. 
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5.3. Materials & Methods 

 

Study sites 

 

The three lake study sites, Feeagh, Langtjern and Kinneret, were selected primarily 

because of the availability of high frequency water temperature profile data, but also 

based on their geographic spread and differences in lake surface area, depth and 

thermal structure. All sites have been the subject of long-term ecological research, 

meaning that the physical and ecological functioning of the lakes are well understood. 

Site descriptions are given in chapter 3. Stratified conditions were defined as a density 

difference between surface and bottom water greater than 0.1 kg m-3 and a surface 

temperature greater than 4 C. 

 

General Ocean Turbulence Model 

 

The model chosen for this study was GOTM because of its ability to accurately 

replicate lake hydrodynamics and the development of the “hot-start” facility within 

the model. See section 2.3.5 for the model description. The new “hot-start” facility 

which was recently developed for GOTM was utilised in this study to examine the 

effects of assimilating different temporal frequencies of observational lake 

temperature profile data on 14-day water temperature forecasts. In recent versions of 

Simstrat and GLM, there has been an incorporation of the “hot-start” facility into these 

models highlighting that this is a modelling tool which is useful for modelling lake 

hydrodynamics. 

  



 

 

 

 

89 

 

 

Modelling procedure 

 

GOTM was calibrated using a differential evolution algorithm with 5000 iterations 

with the negative log likelihood as the cost function. The best parameter set was taken 

to be the one with the least error between modelled and observed data, determined by 

the maximum log likelihood score. This parameter set was then used to run the free 

model run, which has no observational data assimilated (NDA), for the study period 

with a one-year spin-up period. GOTM was first initialized during a time when each 

lake was isothermal (t0) and then re-initialized by insertion of a single measured 

temperature profile (also called a “hot start”) at a selected time prior to the forecast 

period (t1) (Figure 5.1). Bolding & Bruggeman ApS recently implemented this ‘hot-

start’ functionality into GOTM. Conceptually, this feature allows a model run to be 

initialized from a restart file where given model state variables have been assigned 

values. The restart file is produced by GOTM and provides the model state variable 

values at the last time step of a given model run. The goal of the hot start functionality 

is to enable continuation of a model run which includes information on the process 

variables from a past period of simulation, without the need to run the entire historical 

period. Because of this functionality, one can also choose to manipulate one or several 

of the state variables in the restart file. In the present study, we replaced the 

temperature profiles in the restart file with observed profiles – i.e. using direct 

insertion as a means of data assimilation. Where the observed temperature depths did 

not exactly match the modelled depths, we linearly interpolated and extrapolated the 

data. This functionality allows the user to “hot-start” the lake model whenever new 

forcing data in the form of a weather forecast data becomes available. This allows a 

workflow to be developed where forecasts are continuously updated, i.e. the model 

state variables (water temperature profile), when measured values of these are 

available.  

 The timing of model initialisation varied for each site (Feeagh: 2006-01-01, 

Langtjern: 2013-05-15, Kinneret 2010-01-01). For Langtjern, this was at the 

beginning of May following the offset of ice. A minimum period of one year was used 
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to spin-up the model prior to the re-initialization, the time when the observed 

temperature profile was assimilated (Fenocchi et al., 2019). A spin-up period helps to 

reduce the error that could be associated with the initial and boundary conditions and 

allows the model to reach statistical equilibrium (Hodges, 2014). The model was run 

with an hourly integration time step. Model output was averaged to a daily timestep 

and compared to daily averaged observed data.  

 

 

Figure 5.1 Conceptual scheme of the hot-start functionality showing the continuous 

forcing and boundary conditions from t0 to t1. The free model run with no data 

assimilation (NDA) is forced continuously with the initial conditions at t0. The 

forecast with assimilated data has a model spin-up from t0 and finishes at t1. At t1 a 

“hotstart” file is produced for GOTM which contains the process and variable states 

for the model. An observed temperature profile is inserted into this file, updating the 

model states for water temperature and then the model is reinitialised with the updated 

restart file. 
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For each lake, a set of 14-day forecasts was produced that commenced 

approximately every three days throughout the study period. A similar number of 

forecasts was produced for each site (Feeagh: 142, Kinneret: 135, Langtjern: 128). 

Observed temperature profile data were then assimilated into the model by direct 

insertion before re-initializing the model to simulate a 14-day forecast. The 

observational data represented real time conditions at 0 hours (T000), 1 day (24 hours: 

T024), 1 week (168 hours: T168), 2 weeks (336 hours: T336) and 4 weeks (672 hours: 

T672) prior to the start of the targeted forecast period (Figure 5.2). These assimilation 

times were chosen to reflect different monitoring resolutions commonly used in lake 

monitoring programme, ranging from traditional low frequency operational 

monitoring (monthly: T672) to more frequent surveillance monitoring (weekly: T168) 

and up to near real time automatic monitoring (instantaneous: T000). At the data 

assimilation time, a single measured temperature profile was assimilated using direct 

insertion into the restart file that was generated following the spin-up period (Figure 

5.2). The simulation was then run until the end of the target forecast period of 14 days. 

The data for the 14-day forecast period were then extracted for analysis.  
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Figure 5.2 Schematic describing different simulated forecasts that were used. The 

dates chosen are for example purposes to demonstrate how Figure 5.1 corresponds to 

an actual forecast. The date 2012-01-01 is t0, t1 is the corresponding date for each 

forecast and 2013-04-14 represents t2. 

The forecasts produced by the models were classified according to the thermal 

status of the lake at that time (isothermal or stratified) to assess model performance 

under differing conditions. During the stratified conditions, results were also 

separated into results for the epilimnion and hypolimnion. The metalimnion was not 

included because for Feeagh this was not well defined. The presence and depths of 

the epilimnion, metalimnion and hypolimnion were calculated using the 

‘rLakeAnalyzer’ package in R on the mean daily observed data (Read et al., 2011). 

The forecasts were generated using an ensemble parameter approach which 

has been used in lake modelling studies before (Gal et al., 2014). We generated 100 

parameter sets from a multivariate distribution of the upper 10th percentile of best 

performing parameters from the 5000 calibration iterations (Figure 5.3). The forecasts 

based on the five different data assimilation times were compared to simulations for 

that site with NDA (Figure 5.3). 
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Figure 5.3 An example forecast of surface water temperature for Feeagh on 2007-03-

13 for 14 days showing the model ensemble (100 simulations; red) and the observed 

water temperature (black dots) for each forecast where data was assimilated at the 

time of the forecast (T000), one day previous (T024), one week previous (T168), two 

weeks previous (T336), one month previous (T672) and the free model run with no 

data assimilation (NDA). 

 

Data Analysis 

 

The model forecast performance was assessed using the metrics bias, mean absolute 

error (MAE). Root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) 

were used with bias and MAE to evaluate model performance following calibration. 
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where 𝑦𝑖 was the observed water temperature; �̂�𝑖 was the simulated water temperature 

at time i, �̅� was the mean observed water temperature and n was the number of 

samples.  

Data analysis was carried out using R (R Core Team, 2020). For each forecast, 

the MAE was calculated for each forecast ensemble compared to observed water 

temperature profile data and then mean of the ensemble was calculated. The MAE 

was averaged in time and depth for each forecast date to generate a time series of 

MAE for each forecast throughout the period. MAE over the forecast period were 

calculated by averaging all the forecasts for each lake status (stratified and isothermal) 

for each day of the forecast starting at day 1 and ending at day 14 for each lake. MAE 

was calculated for the lake profile for each lake status. Density distributions were 

plotted showing the distribution of MAE for each forecast during each lake status and 

the mean RMSE for the free run. Improvements in forecasts were calculated as a 

percentage reduction in MAE relative to the model NDA run. 
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5.4. Results 

 

Feeagh was stratified throughout six months of the study year from late March (2007-

03-26) until early September (2007-09-10) (Figure 5.4 A). Maximum surface 

temperature of 20.6 °C occurred in May while the maximum bottom temperatures 

(15.3 °C) occurred during autumn overturn (2007-09-12) in September. The minimum 

surface temperature of 6.0 °C occurred at the end of December 2007. Stratification 

within Feeagh was relatively weak compared to the other two sites, with the largest 

temperature difference between top and bottom temperatures during the stratified 

period being 11 °C on 2007-04-06 (mean temperature difference: 3.6 °C, SD: 1.6 °C, 

n =180). As a result of its weak stratification, a small metalimnion developed during 

stratification between 15.0 m and 15.6 m. 

Langtjern was the only lake in this study to have ice cover, which occurred 

from 2014-11-23 until 2015-05-09 and from 2015-11-12 until 2016-05-09 (Figure 5.4 

B). It was isothermal for approximately a two-month period following the breakdown 

of summer stratification in both years, from 2014-10-08 until 2014-12-11 (64 days) 

and 2015-10-02 until 2015-12-08 (67 days). In comparison, a relatively short 18-day 

isothermal period occurred following ice-off in 2015 (2015-04-26 to 2015-05-13). 

The maximum surface temperature of 23.3 °C occurred on 2015-07-05 while the 

minimum surface temperature of 0 °C coincided with the period of ice cover. During 

the summer stratification period, bottom temperatures were very stable (mean 6.1 °C; 

SD: 0.6 °C, n=178) with a maximum bottom temperature of 8.6 °C occurring on 2015-

10-03 following autumn turnover. There was a relatively large temperature 

differential between top and bottom during summer stratification (mean: 7.6 °C, SD: 

3.5 °C, n=178) which resulted in a metalimnion between 2.1 m and 4.0 m.  

The sub-tropical lake, Kinneret, had a slightly different temperature structure 

when compared to the other two sites. It had long periods of stratification with a stable 

thermal structure from 2010-04-08 until 2011-01-12. Throughout the study period 

bottom temperatures were much higher than either of the other lakes and remained 
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relatively stable (mean: 16.6 °C; SD: 0.1 °C, n=267), while surface temperatures 

underwent large diel fluctuations (up to 6 °C). The maximum surface temperature was 

32.1 °C on 2010-09-07 and the minimum surface temperature was 22.8 °C on 2011-

02-06. The lake was isothermal for very short periods in January and February 2011 

but there were no long continuous isothermal periods (maximum continuous period 

of 9 days, 2011-01-30 to 2011-02-08) (Figure 5.4 C). The metalimnion occurred at 

depths between 14.1 m and 21.2 m and was stable until turnover occurred. 
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Figure 5.4 Observed water temperature at different depths for the three study lakes: 

A) Feeagh B) Langtjern and C) Kinneret. Green background indicates periods when 

the lake was isothermal, red for when the lake was stratified and blue for when the 

lake was inversely stratified (only Langtjern). White spaces indicate time periods 

where observation data were missing. 
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Following model calibration, the model simulated the entire study time period 

with the best calibrated parameters for each site. Model performance statistics were 

calculated for the overall time period and both the stratified and isothermal time 

periods. For the overall time period, GOTM simulated the seasonal dynamics for each 

lake with a reasonable degree of accuracy. The simulations for Feeagh had the 

smallest MAE (0.53 °C) and highest NSE (0.96), followed by those for Langtjern 

(MAE: 0.76, NSE: 0.94) and then those for Kinneret (MAE: 1.38, NSE: 0.86) (Table 

5.1). Simulations for Feeagh and Langtjern had a negative bias during the isothermal 

period (-0.05 °C and -0.28) while those for Kinneret had a warm bias (+0.40 °C). 

During the stratified period the output for Langtjern had a larger negative bias (-0.47 

°C) while that for Feeagh and Kinneret had a warm bias (+0.39 °C and +0.40 °C) 

respectively).  
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Table 5.1 Model performance over the entire study period for each lake comparing 

modelled temperatures to observed temperatures at corresponding depths.  

 

 

Feeagh 
 

Langtjern 
 

Kinneret 
 

 

Bias (°C) 
   

Overall 0.18 -0.38 0.47 

Isothermal -0.05 -0.28 0.89 

Stratified 0.39 -0.47 0.40 

 

MAE (°C) 
  

Overall 0.53 0.76 1.38 

Isothermal 0.31 0.54 0.89 

Stratified 0.74 0.96 1.46 

 

RMSE (°C) 
  

Overall 0.68 1.02 1.79 

Isothermal 0.37 0.72 1.00 

Stratified 0.88 1.23 1.89 

 

NSE 
   

Overall 0.96 0.94 0.87 

Isothermal 0.98 0.79 -2.97 

Stratified 
 

0.90 
 

0.89 
 

0.86 
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The range in MAE values for the forecasts when no observational data were 

assimilated (NDA) was much larger for Kinneret (mean: 0.90 °C, SD: 1.05 °C) than 

for Feeagh (mean: 0.35 °C, SD: 0.34 °C ) or Langtjern (mean: 0.64 °C, SD: 0.59 °C ) 

(Figure 5.5). For all three lakes, there was a similar pattern in error values throughout 

the annual lake cycle, with the largest MAE values occurring during summer months 

when the lake was stratified, and lowest values occurring when it was isothermal. The 

mean difference in simulated temperatures between the NDA runs and the runs with 

the longest interval between re-initialization and the start of the forecast (four weeks: 

T672) was largest for Kinneret (1.2 °C), followed by Langtjern (1.0 °C) and then 

Feeagh (0.5 °C) (Figure 5.5). The error estimates for the multiple sequential 14-day 

forecasts for Feeagh were variable over the study time, with six noticeable peaks in 

error which were related to mixing events (arrows: 1, 4, 5) (Figure 5.5 A) and warming 

events (2, 3). The error for Langtjern was variable over the annual cycle, with eight 

distinct peaks in error. As with Feeagh, these eight peaks again coincided with discrete 

events related in this case to warming events (arrows: 1, 2, 6) (Figure 5.5 B), changes 

in the lake thermal structure: offset of summer stratification (7), cooling events (4, 8) 

and mixing events (3, 5). For Kinneret, there were two smaller peaks in error: one was 

a result of the missing data (1) and the other was related to a mixing event (2) (Figure 

5.5 C; 1, 2). The width and height of these peaks in error increased as the time period 

between the assimilation of the measured profile and the start of the forecast became 

longer for all sites. However, the NDA simulations had the tallest and widest peaks in 

error for all three sites (Figure 5.5). 

For each of the three study lakes, there was very little difference in MAE 

values between the T000 and T024 simulations throughout the entire study period. 

During isothermal periods, there were smaller differences between the error for the 

NDA simulations and those for each of the forecast datasets where observational data 

were assimilated (T000 – T672) for both Kinneret and Feeagh. The NDA had slightly 

lower MAE values than the runs in which data were assimilated during the month of 

December 2007 for Feeagh. For Langtjern, a site where the periods during which the 

lake was isothermal were much shorter, there were large peaks in error associated with 
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two sudden events: a warming event in October 2014 and rapid cooling event in 

October 2015 (2, 8) (Figure 5.5 B).  

 

Figure 5.5 Impact of the length of time between data assimilation and start of the 

forecast on the mean absolute error (MAE) for forecast water temperature for the three 

lakes: A) Feeagh, B) Langtjern and C) Kinneret during stratified and isothermal 

conditions. Each dot represents the mean absolute error of the 14-day ensemble 

forecast on that day for the entire water column. The numbered arrows highlight peaks 

where notable events occurred. 

In general, the MAE values increased over the time period of the 14 day 

forecasts for all three lakes for runs with assimilated data, while the NDA simulations 

had a relatively consistent range of error throughout the 14-day forecast period (Figure 

5.6). During the stratified period, the T000 and T024 simulations had noticeably lower 

MAE values across all 3 lakes in both the epilimnion and hypolimnion, but these 

increased with forecast length. After day eight of the forecast for Langtjern during the 
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stratified period and for the epilimnion, the MAE estimate for all datasets for 

Langtjern converged around a value of 0.8 °C. The simulations for Kinneret had a 

larger error for temperature in the epilimnion during periods of stratification compared 

to those in the hypolimnion (mean MAE epilimnion: 1.2 °C; mean MAE hypolimnion 

0.2 °C). The MAE for NDA was consistently much higher in the Kinneret 

hypolimnion (mean: 1.5 °C) while the MAE of the assimilated datasets remained 

below 0.5 °C even after 14 days. 

 

Figure 5.6 MAE averaged across the 14-day forecasts of water temperature in three 

lakes: Langtjern, Kinneret and Feeagh. The colours of the lines represent the length 

of time between data assimilation and start of the forecast. Forecasts during isothermal 

(left panel) and epilimnion and hypolimnion water during stratified periods (middle 

and right panels) are presented separately. Each line represents the MAE of all the 

forecasts generated during each thermal period (Feeagh-Isothermal: n=86; Feeagh-

Stratified: n=53; Kinneret-Isothermal: n=28; Kinneret-Stratified: n=104; Langtjern-

Isothermal: n=62; Langtjern-Stratified: n=66). 
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The forecasts for Kinneret and Feeagh had higher error values for temperatures 

in the epilimnion and lower error values for the hypolimnion (Figure 5.7). However, 

the NDA simulations had much larger errors for simulations of temperatures in the 

metalimnion for Kinneret (depths between 14 m and 21 m) and Langtjern (depths 

between 1m and 4m). The range in MAE values for the forecast epilimnetic 

temperatures across the different assimilation runs for Feeagh (0 - 15 m), Kinneret (0 

– 15 m) and Langtjern (0 – 1.8 m) were 0.4 – 0.8 °C, 0.6 – 2.1 °C and 0.8 – 1.0 °C 

respectively. For forecasts of metalimnetic temperatures in Feeagh (15 – 15.6 m), the 

range in MAE values was lower compared to the epilimnion (0.2 – 0.45 °C). For 

Kinneret (14 – 21 m) this range was 0.6 – 1.3 °C while for Langtjern (2.1 – 4.8 m) it 

was 0.45 – 0.9 °C. Forecast MAE for the hypolimnion for Feeagh had a range of 0.2 

– 0.5 °C and for Kinneret (22 – 30 m) the range was 0.25 – 0.5 °C but this reduced to 

0.05 – 0.2 °C for the bottom depths (30 – 41 m) (Figure 5.7). For the hypolimnion in 

Langtjern (4.8 – 9 m) the MAE range was 0.25 – 0.8 °C. 
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Figure 5.7 Mean bias of water temperature profiles in three lakes Feeagh, Langtjern 

and Kinneret for forecasts averaged across the isothermal (Feeagh: n=73; Langtjern: 

n=64; Kinneret: n=31) and stratified periods (Feeagh: n=69; Langtjern: n=64; 

Kinneret: n=104). The colours of the lines represent the length of time between data 

assimilation and start of the forecast. Forecasts during stratified and isothermal 

conditions are presented separately in each panel. Each line represents the bias of all 

the 14-day forecasts generated during that thermal period. Dashed horizontal lines 

indicate the mean top and bottom of the metalimnion during the stratification period. 
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Overall, the NDA run had a larger MAE values throughout the water column 

compared to all the assimilation datasets for all the three sites, during both the 

isothermal and stratified periods (Feeagh: 0.53 °C, Langtjern: 0.75 °C and Kinneret: 

1.17 °C). An exception were specific depths during the stratified period at Kinneret 

and at Feeagh (Table 5.2). During the stratified period each forecast where 

observational data were assimilated had a bias in the epilimnion, but this was a 

positive bias for Feeagh and Kinneret and a negative bias for Langtjern. For Kinneret 

during the stratified period, the NDA run had a large warm bias in the epilimnion, a 

large negative bias in the metalimnion and slight warm bias in the hypolimnion. 

During the isothermal period it had a consistent warm bias throughout the water 

column (+1 °C). There were slight negative biases near the surface for both Feeagh 

and Langtjern (mean: -0.17 °C, -0.4 °C respectively). 

Density plots of the distributions of the MAE for the temperature profile for 

all 14-day forecasts showed that the range of the errors was largest during the stratified 

period for all three lakes (Figure 5.8). For both Kinneret and Feeagh, during the 

isothermal period (Jan – Mar 2011; and Jan – Apr 2007 and Oct – Dec 2007 

respectively), there was a distinct difference between all the forecasts that had 

observational data assimilated compared to the NDA run while there was little to no 

difference between the assimilated datasets. The mean values of the distributions 

during this period for Feeagh ranged between 0.13 and 0.22 °C (mean MAE: T000: 

0.14 °C; T024: 0.13 °C; T168: 0.16 °C; T336: 0.18 °C; T672: 0.22 °C) for the 

assimilated datasets while for the NDA run it was 0.31 °C. Similarly, for Kinneret 

there was a range in the mean values of 0.27-0.48 °C for the datasets where 

observational data were assimilated, while the mean was 0.9 °C for NDA. For 

simulations during the isothermal period for Kinneret, the NDA simulation had a 

distinctly different error distribution (mean: 0.90 °C; SD: 0.44 °C) than those with 

observational data assimilation, with both a larger mean error and wider range (mean: 

0.22– 0.46 °C; SD: 0.24 - 0.37°C). In contrast, the distribution of the errors for 

Langtjern had a similar distribution for all runs, including for the NDA run.  
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During the stratified period, there was a distinct separation between each of 

the forecasting datasets (i.e. the differing reinitialization times) for all three lakes, with 

the mean error and range in the errors increasing as the time interval for re-

initialization prior to the forecast became longer (Figure 5.8). However, the NDA run 

had the largest range in error values. For all three lakes, there were very small 

differences in the distributions of MAE between T000 and T024 forecasts. There was 

a larger difference in errors between T024 and T168. For Langtjern, there was a large 

increase in the distribution of MAE as the time of assimilation increased with the 

largest difference between T024 and T168, while for Kinneret, the distribution of 

MAE values only showed large increases for the T336 and T672 runs. 
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Figure 5.8 Density plots of the distribution of the mean absolute error for all 14-day 

forecasts for the three lakes: Feeagh (Isothermal: n=114; Stratified: n=71); Langtjern 

(Isothermal: n=62; Stratified: n=66), and Kinneret (Isothermal: n=28; Stratified: 

n=104) with panels for the different thermal periods. Colours represent the length of 

time between data assimilation and start of the forecast. 

Overall, assimilating observational data into the model nearly always reduced 

the forecast error when compared to the NDA simulations (Table 5.2). The forecasts 

for Kinneret had the greatest improvement score across both the isothermal and 

stratified periods, with the percentage improvement in the MAE values ranging from 

41 % (Stratified: T672) to 77 % (Stratified; T000) (Table 5.2). The simulations for 

Feeagh had similar levels of improvement during the stratified period (23 - 59 %) and 

the isothermal period (31 - 56 %). For Langtjern, only the T000 and T024 forecasts 
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for the isothermal period had a better percentage increase in performance compared 

to the NDA runs (20 and 31 % respectively). In contrast, the T168 forecasts showed 

no improvement (0 %) while the T336 and T672 runs both had a decrease in 

performance (-4 % for both). 
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Table 5.2 Data assimilation performance for the different temporal frequencies 

showing the percentage improvement in forecast compared to the model run without 

data assimilation. 

 T000 T024 T168 T336 T672 NDA 

Feeagh       

MAE (°C)      

Overall 0.23 0.24 0.30 0.36 0.41 0.51 

Isothermal 0.14 0.13 0.16 0.18 0.22 0.32 

Stratified 0.31 0.33 0.44 0.52 0.58 0.75 

Improvement (%)      

Overall 55 53 41 29 20 - 

Isothermal 56 59 50 44 31 - 

Stratified 

 

59 

 

56 

 

41 

 

31 

 

23 

 

- 

 

Langtjern       

MAE (°C)      

Overall 0.50 0.54 0.64 0.68 0.74 0.69 

Isothermal 0.43 0.47 0.54 0.56 0.56 0.54 

Stratified 0.57 0.61 0.73 0.79 0.89 1.06 

Improvement (%)      

Overall 28 22 7 1 -7 - 

Isothermal 20 13 0 -4 -4 - 

Stratified 

 

46 

 

42 

 

31 

 

25 

 

16 

 

- 

 

Kinneret       

MAE (°C)      

Overall 0.38 0.42 0.59 0.75 0.97 1.60 

Isothermal 0.27 0.29 0.36 0.39 0.48 0.90 

Stratified 0.39 0.43 0.62 0.79 1.01 1.70 

Improvement (%)      

Overall 76 74 63 53 39 - 

Isothermal 70 68 60 57 47 - 

Stratified 77 75 64 54 41 - 
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5.5. Discussion 

 

Water quality and water security are two of the key areas of concern within the 

Sustainable Development Goals (United Nations General Assembly, 2015). Early-

warning forecasts in lakes and reservoirs that are used for drinking water and 

recreational needs have the potential to play a key role in supporting water 

management and public health authorities. Lake ecosystems are underpinned by an 

evolving physical and thermal structure. When modelling lake ecosystems it is 

imperative, therefore, to simulate lake physics with a high degree of accuracy as 

physical characteristics of the thermal regime control the process rates of many 

biogeochemical variables of lake biota (Trolle et al., 2012; Bruggeman and Bolding, 

2014; Hu et al., 2016). The occurrence of algal blooms, for example, is largely 

governed by the internal dynamics of a lake (Paerl and Huisman, 2008; Paerl et al., 

2011). Temperature and the seasonal pattern of thermal stratification are some of the 

most important variables affecting lake ecosystems (Dunham et al., 2003; Magnuson 

et al., 1979) because temperature affects many biogeochemical processes, for example 

cyanobacterial blooms (Chen et al., 2014). Being able to forecast lake water 

temperature to a high degree of accuracy in the near-term future (14 days) would be 

of enormous benefit to water resource managers. 

Our study is the first, as far as we know, to examine the effects of assimilating 

observational data by direct insertion on the performance of a lake hydrodynamic 

model. We did this for three lakes that have differing seasonal patterns of 

stratification. We found that even the assimilation of data collected one month before 

the forecast (T672) reduced the forecast error when compared to a free run (NDA) of 

the lake model. The greatest improvement in forecasting ability occurred during 

periods when all three study lakes were stratified (33-45 %, Table 5.2), a time that is 

critical for many biogeochemical processes such as horizontal oxygen mixing 

(Couture et al., 2015), calcite crystallization (Katz and Nishri, 2013) or distribution 

of zooplankton (Pinel-Alloul et al., 2004). In fact, assimilating observational data at 

any timestep up to one month prior to the forecasts reduced forecast error compared 
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to making the forecast without data assimilation. The improvement when data were 

assimilated is partly due to a reduction in error related to accumulation of a cold bias 

in the lower depths, which can carry forward through the simulation if no data 

assimilation is carried out (Thiery et al., 2014b). By inserting observed temperature 

profile data, the model state variables were corrected and brought back in line with 

observed data for each run thus reducing MAE in the first number of days (e.g. Figure 

5.3). Data assimilation of observed lake surface temperature from satellite 

measurements has previously been found to improve the characterisation of changing 

lake surface state (Rontu et al., 2012) and lake water surface temperature 

(Kourzeneva, 2014). This agrees with our finding that even assimilation of 

observational data measured four weeks before the forecast resulted in a lower error 

and more accurate forecast. As might be expected, however, the lowest error of all 

was obtained by assimilating data collected in the 0 to 24-hour period before the start 

of the forecasts. This was particularly apparent when a specific in-lake event occurred, 

such as a warming or mixing event in the 14-day forecast period. During these periods, 

the error peaked but then showed rapid return to pre-event levels, particularly for 

shorter assimilation lead in times. 

The error in the epilimnion was much higher in the largest lake Kinneret than 

in the other two lakes. This was likely owing to large fluctuations in daily surface 

temperature and the presence of large-scale internal waves (Laval et al., 2003; 

Gómez-Giraldo et al., 2006; Ji and Jin, 2006). The presence of large internal waves 

can be a source of error when using a 1-dimensional lake model as a result of the 

model structure (Hodges et al., 2000b). This influences the accuracy of the forecast 

in trying to capture the depth of the epilimnion, which is clearly seen in Figure 5.7 

where the largest errors for the NDA simulations were at the surface and at the 

metalimnion. Since Kinneret is in the sub-tropics, surface water temperature 

fluctuations during the summer period can be as large as 6 °C, a range which our 

model simulations did not always capture (Figure 5.4). This suggests that the error 

during stratified periods was mainly related to model structural error, where the model 

cannot replicate some of the 3-dimensional internal processes in the lake, for example, 
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the occurrence of multiple internal seiche modes (Antenucci et al., 2000). When 

observational data were assimilated, the biases in the forecast was reduced. 

Model errors were less substantial, for the shallow and thermally stable lake 

in our study, Langtjern. Although, during the isothermal period, and in the epilimnion 

during the stratified period, we only found improvements in forecasts for the T000 

and T024 runs and for the first 8-10 days before it had the same MAE as T168 (Figure 

5.6). This could be a result of the lake being more stable and shallower therefore 

making the initial conditions of the lake model more sensitive to atmospheric 

disturbances. Where after 8 days, the sensitivity to the initial conditions has dissipated. 

This is important in the context of short-term episodic events which can have a large 

impact on in-lake conditions (Jennings et al., 2012; Kuha et al., 2016). Therefore, 

higher frequency data would be needed to accurately forecast during and immediately 

after the event occurred. In contrast, for Feeagh, a lake with weak thermal stability, 

differences in errors resulting from varying data assimilation times remained, even 

after 14 days, The mean depth of Feeagh is much larger than Langtjern and mean 

depth is a key factor with regards lake stability (Kraemer et al., 2015). 

There was also a clear distinction in the magnitude of error between those 

times when the lakes were stratified compared to when the lakes were isothermal, 

highlighting the challenges of modelling water temperature during these different lake 

conditions (Kourzeneva, 2014). Assimilation of measured data reduced error by 

accurately simulating the depth of the epilimnion and metalimnion during the 

stratified period, the zones of the lake that govern biotic processes for zooplankton 

and phytoplankton (Pilati and Wurtsbaugh, 2003; Twiss et al., 2012). It would 

therefore be particularly beneficial for forecasts when a lake is stratified, or for deep 

large lakes which have large internal dynamics such as internal waves. For the deep 

and strongly stratified Kinneret, the main reduction in error was for the surface 

temperatures and around the depth of the metalimnion, suggesting that the 

assimilation of measured data was particularly useful in correcting errors related to 

prediction of the thermocline depth (Baracchini et al., 2019). There were slight biases 

for simulated temperatures in the hypolimnion during the stratified period. This is an 



 

 

 

 

113 

 

 

important depth zone when modelling water quality, especially for simulating periods 

of hypoxia or anoxia, as temperature is a strong regulator (Stefan et al., 1996). Our 

results showed that reinitializing the model using measured profile data can reduce 

biases in temperature forecasts for the hypolimnion. 

The overall aim of any forecast system for lake management should be that it 

is easy to use, computationally efficient and of low financial cost (Coulibaly, 2010). 

Environmental models are often not employed in the context of decision support or 

policy management, however, due to the large uncertainty associated with such 

predictions (Omlin et al., 2001; Reichert and Vanrolleghem, 2001). If lake model 

forecasts are to be used to aid management decisions, then error between the model 

simulations and observed conditions must be reduced as much as possible.  Our study 

has demonstrated a simple method of reducing forecast error for lake hydrodynamics. 

We also found that using the hot-start functionality in GOTM to assimilate 

observational had a low computational demand (0.78 – 1.36 s across all lakes, Table 

5.3) and therefore a shorter time needed to forecast water temperature profiles. This 

would have implications, for example, when running model ensemble forecasts, 

which is known to have a large computational burden (Raso et al., 2014). Our 

workflow for observational data assimilation allows forecasts to be consistently 

updated as soon as new weather forecast data became available. The hot-start 

functionality is a noteworthy software development that can be used to reduce model 

computational time and has been included in the newest versions of other lake models 

Simstrat (EAWAG, 2020; Goudsmit et al., 2002) and the General Lake Model (GLM) 

(Hipsey et al., 2017; UWA, 2020). 
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Table 5.3 Run time (in seconds) for GOTM for the spin-up period and for each of the 

forecast periods and the free model run (NDA). 

Lake 
 

 

Spin-up  
 

T000  
 

T024  
 

T168  
 

T336  
 

T672  
 

NDA  
 

 

Feeagh 2.54 1.28 1.26 1.2 1.33 1.36 5.76 

Langtjern 1.4 0.78 0.78 0.84 0.86 0.93 2.1 

Kinneret 
 

2.82 
 

1.04 
 

1.03 
 

1.06 
 

1.11 
 

1.13 
 

3.7 
 

 

Our results suggest that having knowledge about the thermal regime of a lake 

can inform the sampling frequency that would likely be required to setup a lake profile 

forecasting framework. Near-real time data acquisition brings challenges for water 

managers as data collection is costly, resource intensive and weather dependent. 

Automatic HFM offers several advantages. It can be collected remotely, irrespective 

of weather conditions, and at a temporal resolution that is appropriate to rapidly 

changing water conditions (i.e. sub-daily). It can be streamed online and automatically 

quality controlled (Marcé et al., 2016). HFM is critical for capturing short-term trends, 

extreme events and sub-daily in-lake variability (Aguilera et al., 2016). We 

recommend that for lakes in sub-tropical climates with large surface temperature 

fluctuations and strong internal dynamics such as Kinneret that the sampling 

frequency to inform lake forecasts would need to be at least daily to reduce the MAE 

to less than 0.5 °C overall. A similar frequency would be needed for a small, very 

shallow dimictic lake like Langtjern given its susceptibility to undergo rapid changes 

in physical state in response to sudden changes in atmospheric conditions. Since this 

study was carried out, GOTM now has an ice model which would allow for 

predictions in ice formation and ice off. Forecasting of this phenology change could 

be of great importance for spring phytoplankton blooms (Katz et al., 2015; 

Weyhenmeyer et al., 1999). For a medium-sized lake in terms of surface area and 

depth, such as Feeagh, that undergoes relatively small changes in surface temperature, 
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in contrast, monthly sampling may be enough to improve forecasts and keep the MAE 

at a similar level.  

  

5.6. Conclusion 

 

We have shown that assimilating observational data using direct insertion into a 

hydrodynamic model can reduce forecast error by up to 1 °C (60 % improvement) 

compared to running the model with estimated values for initialization and a one-year 

spin-up period with no updates to the state variables. Although the largest decreases 

in forecast error came with assimilation of near-real time observational data (i.e. today 

or yesterday), we also showed that assimilation of observational data from low 

frequency monitoring (monthly: T672) still greatly reduces error compared to no 

assimilation (34 % improvement). This simple methodology could be easily adapted 

and used to generate forecasts on many lakes, even those with low-frequency 

monitoring data. Our study used a multi-lake comparison from different climates, lake 

type, size and depth and the results therefore should be applicable to other sites. An 

even greater advantage would most likely be obtained from assimilation of 

observational data into a biogeochemical model, which would allow improved water 

quality forecasts to be generated. 
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CHAPTER 6.  ENSEMBLE MODELLING OF FUTURE 

CLIMATE IMPACTS ON LAKE THERMAL DYNAMICS 

 

Note on the collaborative nature of the work described here: 

The work described in this chapter is part of a large collaborative project, the Lake 

Sector of ISIMIP (ISIMIP, 2020). Scientists who worked on this part of the project 

include Tadhg Moore (TM), Robert Ladwig (RL), Elvira de Eyto (EdeE), Oaxana 

Erina (OE), Gideon Gal (GiG), Gosia Golub (GoG), Sean Kelly (SK), Madeline 

Magee (MM), Rafael Marce (RM), Donald C. Pierson (DP), Noam Shachar (NS), 

Wim Thiery (WT), R. Iestyn Woolway (RIW) and Eleanor Jennings (EJ). 

RM, DP and WT are the ISIMIP Lake Sector managers. GoG is the ISIMIP 

Lake Sector Coordinator who collated all the observed lake data. TM was model 

leader for the GOTM model and co-leader for GLM with RL within the ISIMIP Lake 

Sector - Local. This involved developing a modelling protocol, which included 

calibration and simulation procedures. TM, DP, GiG, NS ran the GOTM calibration 

procedure on the 60 study lakes. TM, RL, OE, GiG, NS, MM ran the GLM calibration 

procedure on the 60 study lakes. TM, GiG, NS and DP ran the climate change 

simulations for GOTM. TM and RL ran the climate change simulations for GLM. 

TM analysed the data presented in this chapter and wrote the draft with feedback from 

SK, EdeE, RIW, EJ. 
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6.1. Abstract 

 

Global lakes and reservoirs are a critical natural resource and are vulnerable to the 

effects of climate change. These effects will vary depending on lake location and 

morphometry. Projected impacts can also vary, however, depending on the general 

circulation model (GCM) and lake model used. To best quantify and understand the 

wide and variable response of lakes to climate change, an ensemble modelling 

approach is best practice. The Inter-Sectoral Impact Model Intercomparison Project 

(ISIMIP) is a cross-sectoral network of climate impact modellers using a common 

approach and set of future projections to gain a consensus on global impacts. Here, 

we describe the protocol used for two lake impact models: the General Ocean 

Turbulence Model (GOTM) and the General Lake Model (GLM), and simulate 

projected thermodynamic changes in 46 lakes. We found that we achieved a good fit 

(RMSE: < 2 °C and NSE: > 0.5) of modelled to observed water temperatures for 77 

% of the lakes in the study (46/60) for both models. Future simulations of climate 

change impacts under three different emissions scenarios, representative 

concentration pathways (RCP), which showed unequivocal warming in surface 

temperatures by 2069-2099 (RCP 2.6: +1.3 °C; RCP 6.0: +2.4 °C; RCP 8.5: +3.7 °C) 

and increases in stratification duration (RCP 2.6: +11.3 days; RCP 6.0: +21.2 days; 

RCP 8.5: +32.1 days). Changes in summer thermocline depth were sensitive to the 

choice of lake model used, with large variability by 2069-2099 for RCP 6.0 when all 

GCMs, sites and years in that time period were included (GLM: +0.4 m ± 2.5 m; 

GOTM: +0.2 m ± 2.0 m). The projected changes in thermal dynamics highlight that 

lakes and reservoirs are highly vulnerable to warming and will experience changes in 

stratification patterns, and an increased strength of stratification and therefore changes 

in habitat availability for lake biota under each of the different climate scenarios. We 

demonstrated in this study the steps necessary for approaching ensemble climate 

change modelling across multiple lakes and highlighted the key changes that are likely 

to occur in lakes under RCP 6.0. This knowledge will help to manage these fragile 

ecosystems as we move into a future of climate adaptation.  
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6.2. Introduction 

 

Importance of lakes in the global context. 

 

Lakes are an important environmental resource globally. They provide drinking, water 

food and have cultural significance. In an ecological sense, lakes provide habitats for 

a range of species that differs with latitude. Lakes influence the local climate through 

air-water fluxes (Bogomolov et al., 2016; Heiskanen et al., 2015; Mironov et al., 

2010). They also have a latent response to changes in the climate and, therefore, can 

integrate long-term climatic signals (Adrian et al., 2009). 

There have been significant trends in water quality degradation for lakes on a 

global scale as a result of direct and indirect anthropogenic activities (Mueller et al., 

2016; Shadkam et al., 2016). At the same time, there has been quantifiable but highly 

variable increases in lake surface temperatures globally, and also in metrics of lake 

stratification (Kraemer et al., 2015; O’Reilly et al., 2015). Increases in lake water 

temperature and resultant changes in stratification can have large impacts on these 

ecosystems. Changes to the thermal profile of the lake can shift how fish and 

zooplankton interact. For example, daphnids inhabit surface waters for longer during 

periods of extended stratification, making them less accessible to deep water predators 

such as coregonids (Helland et al., 2007). There has also been an increase in reporting 

of extreme climatic events which can affect lakes, such as high precipitation events 

which can reduce gross primary productivity (de Eyto et al., 2016) or extended 

droughts which cause strong hypolimnetic oxygen depletion (Jankowski et al., 2006). 

The trophic status of lakes can also affect the response of lake zooplankton 

communities to climate change, where high nutrient load can make the lake more 

sensitive (Alric et al., 2013). Water temperature and incident irradiance are two of the 

main variables which explain global productivity in lakes, while the extent and 

duration of ice cover plays an important role in some regions (Lewis, 2011). Lake 

water temperature is recognised as a master environmental variable as it influences 
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many different processes within lakes (Magnuson et al., 1979). Understanding the 

potential changes in lake temperature under different climate change scenarios will 

aid in developing robust adaptation strategies for lakes and reservoirs across lake 

physical, chemical and biological domains (Jeppesen et al., 2009; Ogutu-Ohwayo et 

al., 2016; Paukert et al., 2016; Trolle et al., 2019). 

 

Ensemble modelling of anthropogenic perturbations on lakes 

 

Lake water temperature is largely controlled by a combination of climatic drivers that 

contribute to the lake surface energy budget. Climatic variables including cloud cover, 

wind speed, atmospheric humidity and air temperature are the main drivers of this 

energy budget (Edinger et al., 1968). Changes in any of these drivers can influence 

lake temperature through multiple feedbacks in the surface energy balance. To 

accurately project lake temperature responses to future climate change, process-based 

numerical models that can compute complex air-water thermodynamic fluxes are 

needed. A number of such process-based models have been developed in recent 

decades, including those developed from parameterization schemes based on 

similarity theory (Mironov, 2008), mixed-layer concept (Goyette et al., 2000), eddy-

diffusion (Hostetler and Bartlein, 1990), energy balance (Hipsey et al., 2019), and 

turbulence closure (Goudsmit et al., 2002). However, most studies to date that have 

simulated future climate change impacts on lake temperature have utilised only a 

single mechanistic model (e.g. Shatwell et al., 2019; Woolway and Merchant, 2019). 

Whilst such studies have merit, the advantage of applying more than one 

independently developed model (i.e., an ensemble approach), is that some of the 

inherent uncertainties in the individual models can be reduced by conveying the mean 

and standard deviation of the simulations, thus enabling increased robustness of future 

projections. Such coordinated modelling experiments of independently developed 

multi-model projections have become the de facto standard in climate science 

including, for example, the Coupled Model Intercomparison Project (Eyring et al., 
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2016). However, ensemble modelling of lake physical responses to future climate 

change has not yet been undertaken. 

Uncertainty is a crucial characteristic that must be taken into account in any 

modelling study, including studies on lake thermal dynamics, due to the number of 

unknowns that are an inherent part of model structure (Smith and Stern, 2011). This 

includes uncertainty related to the general circulation models (GCM) used, 

uncertainty in human behaviour that will drive change in greenhouse gas emissions 

used for those global simulations, and uncertainty inherent to the lake model used, as 

well as variation in lake response that will be linked to local lake characteristics. The 

selection of a given GCM for an impact study can affect results obtained, particularly 

if the chosen lake model is sensitive to a parameter that is simulated with a large 

degree of uncertainty by that GCM, for example precipitation (McSweeney and Jones, 

2016). There is also uncertainty related to estimations of future fossil fuel production. 

It has been estimated that the Inter-governmental Panel on Climate Change (IPCC) 

high emissions scenario is highly unlikely due to an overestimation of global fossil 

fuel resources (Capellán-Pérez et al., 2016; Mohr et al., 2015). Accounting for such 

different sources of uncertainty, with some linked to model structure and others linked 

to human behaviour, is particularly important for any study of future climate 

projections. Ensuring that this uncertainty is communicated effectively is essential if 

climate research is to inform global policy (Stainforth et al., 2007). Future projections 

using GCMs  are also inherently uncertain due to the fact they are trying to predict a 

never seen system, and historical skill for the model does not translate into future skill 

(Collins et al., 2006; Murphy et al., 2004), possibly because of the non-stationarity of 

the feedback processes within the models (Reifen and Toumi, 2009). There are many 

ways of characterising and accounting for uncertainty. For models of lake thermal 

structure there are four main sources of uncertainty: 1) initial condition uncertainty; 

2) boundary conditions uncertainty; 3) process uncertainty and 4) parameter 

uncertainty. Kiktev et al. (2007) found that a multi-GCM ensemble means produced 

more accurate simulations than use of a single GCM, in the context of air temperature 

and precipitation outputs from GCMs. Ensemble modelling is regarded as best 
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practice particularly when trying to gauge the variable impacts of climate change 

(Collins et al., 2006). This is because it allows for the biases between differing models 

to be balanced out and accounts for uncertainties associated with the GCM forcing 

data and process error within for example the lake models used. 

 

ISIMIP Approach 

 

There have been many modelling studies undertaken to assess the impacts of projected 

climate change on lake thermal structure at a local and regional spatial scale (e.g. 

Schmid et al., 2014; Sahoo et al., 2016; Schmid and Koster, 2016; Magee and Wu, 

2017b; Woolway et al., 2017a; Råman Vinnå et al., 2018; Woolway and Merchant, 

2019). It has been highlighted that when summarising potential impacts of climate 

change in one sector, such as the lake sector, there can be a mis-characterization of 

the response to climate change due to a lack of accounting for complex inter-

dependencies that exist between sectors (Harrison et al., 2016). The ISIMIP project is 

unique because it adopts a cohesive global approach across many different sectors, 

for example agriculture, forests, fisheries, terrestrial biodiversity and hydrology 

(Frieler et al., 2017; ISIMIP, 2020). It provides a common simulation protocol which 

allows for the separation of historical warming from pre-industrial conditions, 

quantifies the impact of global air temperature warming by 1.5 °C in accordance with 

the Conference of Parties 21 (COP21) agreement in Paris (UNFCCC, 2015) and 

allows for further comparisons across different potential future emission scenarios 

(Frieler et al., 2017). Representative Concentration Pathways (RCPs) have been 

developed to represent potential future greenhouse gas emission (GHG) scenarios 

representing differing levels of global action to mitigate the effects of anthropogenic 

induced climate change. General circulation models provide consistent atmospheric 

and oceanic forcing data representing each of the different RCPs on a global scale. 

Sector impact modelling use these datasets, along with projected socio-economic 

conditions, to project the potential impacts. The use of common forcing data also 
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allows impacts to be quantified across sectors and therefore through cross-sectoral 

analysis. All the ISIMIP output data are publicly available. 

Prior to the initiation of the ISIMIP Lake sector, there was a group which set 

up a lake model intercomparison project (LakeMIP; Stepanenko et al., 2010). The 

purpose of LakeMIP was to evaluate the individual performance of various lake 

models at different sites (Perroud et al., 2009; Thiery et al., 2014a), couple a lake 

model with an atmospheric model (Goyette and Perroud, 2012; Perroud and Goyette, 

2012) and accurately simulate energy fluxes and thermal stratification (Stepanenko et 

al., 2014). This project built up a network of researchers who work with many 

different lake models (Stepanenko et al., 2010). The focus of the LakeMIP group was 

on short-term lake thermal dynamics, while the current ISIMIP Lake sector built on 

this to start focusing on investigating long-term multi-decadal and centennial changes 

in lake variables. 

Within the current ISIMIP lake sector, six models were used to simulate the 

effects of climate change on lake water temperature, which included Simstrat, 

Freshwater Lake Model (FLake), Advanced Lake Biogeochemical Model (ALBM), 

Multi-year Lake model (MyLake), and the two models used in this study: the General 

Lake Model (GLM) and the General Ocean Turbulence Model (GOTM). These 

simulations were carried out in line with the protocol of ISIMIP2b (Frieler et al., 

2017). ISIMIP2b is the latest round of global climate simulations and was designed 

to complement the IPCC scheduled report which focused on reflecting the impacts of 

the 1.5 °C target (Frieler et al., 2017). There were two distinct simulations approaches 

used within the Lake Sector which have been termed 1) global and 2) local. The global 

approach used a global lakes database based on a 0.5° x 0.5° gridded map of the world 

(Figure 6.1 A). A percentage value per grid was calculated using data from ~13 000 

freshwater lakes for lake area, mean depth and maximum depth which was then 

mapped onto a global grid with a resolution of 30 arc sec (Kourzeneva et al., 2010). 

The models were run uncalibrated using boundary conditions (forcing data) from four 

GCMs. The aim of this approach was to capture the geographical response and 

variability of a ‘typical’ or generic lake to different climate conditions based on 



 

 

 

 

123 

 

 

different carbon emission scenarios. Simulated lake variables included lake surface 

temperature, lake stratification and ice cover regime shifts. Given the generic 

approach and assumptions of the global lake sector methodology, a complimentary 

local lake sector group was formed with the purpose of examining individual lake 

responses to climate change which used specific detail from each individual site 

(Figure 6.1 B). The local lake sector, which the work presented in this chapter was 

part of, used high-frequency, long-term in situ data from some of the world’s best-

studied lakes, which allowed full calibration and validation of model performance for 

each individual site prior to simulating climate change projections. 
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Figure 6.1 Distribution of lakes that are included in the global (A) and local (B) 

ISIMIP lake study. The data for the global lakes comes from the Global Lake Data 

Base (Kourzeneva et al., 2010). 
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Previous global lake studies 

 

Global studies of the historical response of lakes to change in climate have found key 

trends and identified potential explanatory variables. O’Reilly et al. (2015) showed 

that the response of lake summer surface temperatures to contemporary (1985 to 

2009) climate change in 235 globally distributed lakes was highly variable using in-

situ and satellite measured data. The main drivers for these trends were increases in 

air temperature and downwelling solar radiation and decreases in cloud cover. A 

separate study of 26 lakes across the world demonstrated that historical (1970 to 2010) 

changes in lake stratification varied depending on lake average temperature and 

morphometry (Kraemer et al., 2015). In a regional study of 160 monitored lakes in 

the north-eastern and midwestern United States from 1981 to 2010, local drivers 

combined with regional scales strongly influenced lake sensitivity to climate change 

(McCullough et al., 2019). Relationships between water clarity and lake warming 

were found to be highly non-linear in a climate change modelling study (Shatwell et 

al., 2019). Previous global lake modelling studies have applied uncalibrated and 

simple lake models to characterise regional scale responses to climate change 

(Woolway and Merchant, 2019; Woolway et al., 2019). Some case-studies have used 

model calibration to reduce the uncertainty in the model output and accounts for biases 

present in the climate forcing data (Ayala et al., 2019; Sahoo et al., 2016; Shatwell et 

al., 2019).  

 

Aim of this study  

 

This chapter describes the protocol used to undertake impact modelling for the “local” 

lake sector of ISIMIP using two one-dimensional (1-D) lake models: The General 

Lake Model (GLM) and the General Ocean Turbulence Model (GOTM), which has 

been adapted for lakes. Simulations of projected climate change impacts on lake 

thermal dynamics were forced using data from four GCMs. An introduction and 
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summary for the GCMs, the RCPs and both lake models are described along with 

model configuration and calibration workflows that were developed as part of this 

project and applied across the 60 sites. A general overview of the results from these 

simulations is presented in the context of the different RCP scenarios, with a key focus 

on the impacts on lake thermodynamic properties under RCP 6.0 for the period 2069 

to 2099. The discussion of this local lake study is framed in the context of the global 

lake sector simulations, with the key benefits of each study approach being 

highlighted. Recommendations for future approaches and developments are outlined 

in anticipation of the next round of simulations, ISIMIP3, which has recently been 

launched. 
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6.3. Simulation protocol and data sources 

 

Here we describe the components of the modelling workflow as per the ISIMIP 

protocol (ISIMIP, 2019) and captured in the schematic Figure 6.2. 

 

Figure 6.2 Schematic of the ISIMIP workflow, detailing how the GCMs are bias 

corrected with EWEMBI, the lake models are calibrated with EWEMBI and then are 

both used to simulate future lake thermal states under different greenhouse gas (GHG) 

emission scenarios which are the RCPs. 
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General Circulation Models 

 

General circulation models are numerical models that have been developed to 

simulate climatic processes, and are used in weather and climate prediction and to 

investigate atmospheric dynamics (Mechoso and Arakawa, 2015). They simulate the 

processes within the atmosphere, ocean, troposphere, land surface and cryosphere and 

the many complex interactions between them (Manabe et al., 1965; Coppin and Bony, 

2017) and have even been applied to other planetary bodies such as Mars (Mooring et 

al., 2019). They provide geographically and physically based consistent projections 

on a global scale as they operate in a three-dimensional grid that covers the globe. 

They can have varying degrees of horizontal (0.5 – 3.75°) and vertical resolution in 

the atmosphere (20-40 layers) and in the ocean (10-50 layers). Parameterisation of the 

GCMs allows for the integration over large spatial areas. The temporal resolution of 

GCMs is usually daily to monthly, to minimise computational run time and the 

quantity and magnitude of output data. To capture the influence that humans have on 

the future global atmosphere and environment, the GCMs operate on large time scales, 

stretching back to the pre-industrial period 1661-1860, which means the use of GCMs 

can disentangle the historical influence of anthropogenic activity, particularly the 

industrial revolution on the climate system. 

Due to their relatively coarse spatial resolution, GCMs contain systematic 

biases across many variables when compared with observations, as a result of the 

neglection of sub-grid scale orography (Cattiaux et al., 2013; Sillmann et al., 2013; 

Kumar et al., 2014; Mueller and Seneviratne, 2014). Systematic biases refer to distinct 

differences in distributions of the variables, such as precipitation, compared to 

observed distributions. GCM output can be corrected for these biases by applying 

empirical or statistical bias correction techniques and the most widely used is quantile 

mapping (Cannon, 2016, 2018; Cannon et al., 2015; Eden et al., 2012). This method 

maps quantiles from a source distribution, the GCM output, to a target distribution 

which is the historical observations (Wilcke et al., 2013). Bias correction allows for a 

more direct comparison between observed and projected states, accounts for threshold 
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related behaviour, for example, between air temperature and precipitation, 

incorporates more detailed observational data and improves simulation of variance. 

On the other hand, it significantly alters the consistency of the data and can potentially 

change the trend (Piani et al., 2010). 

Four general circulation models (GCM) were selected for the ISIMIP protocol 

(Figure 6.2; Table 6.1), based on whether they could provide the required atmospheric 

variables (i.e. boundary conditions) needed to force each lake model and that they 

covered the following time periods: 1) 200 pre-industrial control years (1661-1860); 

2) the entire historical period (1861-2005); 3) RCP 2.6, RCP 6.0 and RCP 8.5 from 

2006 to 2099. The four GCMs used were Geophysical Fluid Dynamics Laboratory 

(GFDL) Earth System Model with Modular Ocean Model version 4 (MOM4) 

component (ESM2M) (GFDL-ESM2M), Met Office Hadley Centre Earth System 

Model (HadGEM2-ES), Institut Pierre-Simon Laplace Climate Model 5A - Low 

Resolution (IPSL-CM5A-LR) and Model for Interdisciplinary Research on Climate 

(MIROC5) (Table 6.1). The atmospheric variables provided are listed in Table 6.2.  
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Table 6.1 Summary of General Circulation Models used for the Inter-Sectorial Inter-Model Intercomparison Project (ISIMIP). 

Name Abbreviation Atmosphere 

Spatial 

resolution 

Ocean 

Spatial 

resolution 

Atmospheric 

levels 

Ocean levels Components Reference 

Geophysical Fluid Dynamics Laboratory 

Earth System Model (GFDL) with Modular 

Ocean Model version 4 (MOM4) component 

(ESM2M)  

GFDL-ESM2M 2° x 2.5° 1° x 1° 24 50 Ocean, atmosphere, land, sea-ice Dunne et al., 

2012, 2013 

Met Office Hadley Centre Earth System 

Model  

HADGEM2-ES 1.875° x 1.25° 1° x 1° 38 40 Land-surface scheme, large scale 

hydrology module, river model, 

tropospheric chemistry, aerosols, 

terrestrial carbon cycle, ocean 

carbon cycle 

Collins et al., 

2011; Jones et 

al., 2011 

Institut Pierre-Simon Laplace Climate Model 

5A - Low Resolution 

IPSL-CM5A-

LR 

1.9° x 3.75° Varies 39 31 ORCHIDEE land-surface model, 

NEMOv3.2 oceanic module, sea-

ice model LIM-2 and ocean 

biogeochemistry mode PISCES 

Dufresne et al., 

2013; Hourdin et 

al., 2013  

Model for Interdisciplinary Research on 

Climate  

MIROC5 1.4° x 1.4° 1.4° x 1.4° 40 49 Atmosphere and ocean model Watanabe et al., 

2010 
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Table 6.2 Climate variables provided by each General Circulation Model (GCM). 

Variable Short name Unit 

Near-Surface Relative Humidity hurs % 

Near-Surface Specific Humidity huss kg kg-1 

Precipitation (rainfall + snowfall) pr kg m-2 s-1 

Snowfall Flux prsn kg m-2 s-1 

Sea-level Air Pressure ps Pa 

Surface Air Pressure psl Pa 

Surface Downwelling Longwave Radiation rlds W m-2 

Surface Downwelling Shortwave Radiation rsds W m-2 

Near-Surface Wind Speed sfcWind m s-1 

Near-Surface Air Temperature tas K 

Daily Maximum Near-Surface Air Temperature tasmax K 

Daily Minimum Near-Surface Air Temperature tasmin K 

 

 

Representative Concentration Pathways 

 

Potential future scenarios are based on anticipated and projected changes in the 

climate system based on fluctuations in greenhouse gases (GHGs), aerosols and 

incorporating land use and land cover changes (Parson et al., 2007). These scenarios 

are representative of pathways of changes in global radiative forcing and are referred 

to as representative concentration pathways (RCPs). Radiative forcing is the overall 

change in the net radiative flux at the top of the atmosphere. These are the inputs used 

to force the GCMs to project future climate. The scenarios are not exact methods to 

capture precise changes, but represent different potential futures all of which are 

equally feasible under different scenarios (Moss et al., 2008). Not only do they capture 

shifts in radiative forcing, but they also project the trajectory at which such shifts can 

potentially occur (Moss et al., 2010). 
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RCPs are the result of collaboration between climate modellers, emission 

inventory experts, terrestrial ecosystem experts and integrated assessment modellers 

(Moss et al., 2010) (Figure 6.3). They include variables such as technological 

advancements, land use changes, population growth, air pollutants, socio-economic 

changes and greenhouse gas emissions (van Vuuren et al., 2011). Four scenarios were 

selected to capture the potential range of responses dependent on human mitigation 

measures with representative pathways that capture a potential way in which those 

response may occur in relation to CO2 equivalent emissions (Moss et al., 2010). These 

accounted for radiative forcing increases of 2.6 W m-2 (RCP 2.6), 4.5 W m-2 (RCP 

4.5), 6.0 W m-2 (RCP 6.0) and 8.5 W m-2 (RCP 8.5) (Table 6.3). For the ISIMIP project 

only three of the RCPs were selected: RCP 2.6, RCP 6.0 and RCP 8.5 with the focus 

being RCP 2.6, the scenario where global temperature rise is limited to 1.5 °C. 
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Figure 6.3 Development of RCPs. Scenarios are generated and used by three broad types of models and analytic frameworks in climate 

change research: integrated assessment models, climate models and other approaches used to help assess impacts, adaptation and 

vulnerability. (Adapted from Moss et al., 2010). 
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Table 6.3 The four Regional Concentration Pathways (RCPs) (adapted from Moss et al., 2010). 

Name Radiative forcing Concentration (p.p.m) Pathway Reference 

RCP 2.6 

 

Peak at ~3 W m-2 before 

2100 and then declines 

Peak at ~490 CO2 equivalent 

before 2100 and then declines 

Peak and decline (van Vuuren et al., 2006) 

RCP 4.5 ~4.5 W m-2 ~650 CO2 equivalent  

(at stabilization after 2100) 

Stabilization 

without overshoot 

(Smith and Wigley, 2006) 

RCP 6.0 ~6 W m-2 ~850 CO2 equivalent 

(at stabilization after 2100) 

Stabilization 

without overshoot 

(Fujino et al., 2016) 

RCP 8.5 >8.5 W m-2 in 2100 >1370 CO2 equivalent in 2100 Rising (Riahi et al., 2007) 
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EWEMBI 

 

The output data from each of the GCMs were interpolated with a first-order 

conservative remapping scheme (Jones, 1999) on a regular 0.5° x 0.5° grid. To correct 

for biases within each GCM, a standardised reanalysis dataset based on global 

observations (EWEMBI) was used (Frieler et al., 2017) (Figure 6.2). The 

EartH2Observe WATCH forcing data methodology was applied to ERA-Interim 

reanalysis data (WFDEI) and ERA-Interim data Merged and Bias-corrected for 

ISIMIP (EWEMBI) datasets, which temporally ranged from 1979-2016 on a daily 

timestep, and were at a spatial resolution of 0.5° x 0.5° (Lange et al., 2019). This 

dataset was created by merging data from the ERA-Interim reanalysis data (ERAI; 

Dee et al., 2011), WATCH forcing data, (Weedon et al., 2014), eartH2Observe 

forcing data (E2OBS; Calton et al., 2016) and NASA/GEWEX Surface Radiation 

Budget data (SRB) (Stackhouse Jr. et al., 2011).  

Although some bias could be introduced by selection of a subset of GCMs, it 

has been shown that use of a subset is representative of the full range of GCM outputs, 

particularly for air temperature although the overall uncertainty would be 

underestimated (McSweeney and Jones, 2016).  

 

Lake models 

 

In this part of the ISIMIP Lake sector project, the two 1D physical lake models used 

to simulate water temperature: GLM and GOTM are described. A general overview 

and references of each model is presented in section 2.3.5. We used the General Lake 

Model (v3.0.0 beta12) for this study, the most up-to-date version of the model at the 

outset of the ISIMIP project. For this study, the General Ocean Turbulence Model 

(GOTM) (v5.1 – lake branch) was used for the simulations. This was the most up-to-

date version of the model at the outset of the ISIMIP project, although currently (2020) 

there is a version 5.4 which has a new integrated ice model. 
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Collation of lake data 

 

A data request was distributed by email throughout the collaborative networks of 

ISIMIP participants. Announcements were also made at several international 

conferences and workshops, aimed at data providers with access to in situ lake data. 

For a candidate lake site to be included in the project, one of two separate criteria had 

to be met: 1) at least two years of high-frequency water temperature profiles (sub-

daily) or 2) at least five years of low-frequency water temperature profiles. For both 

conditions, the data had to be within the time period 1979-01-01 and 2016-12-31 as 

this was the period covered by the meteorological dataset used to calibrate the model 

(section 6.3.7). Hypsograph data were provided from each site. Additional metadata 

were also requested, including latitude, longitude, elevation, maximum depth, lake 

surface area, watershed area, influence of hydrology, trophic state, light extinction 

coefficient and/or Secchi depth. In total, we were able to collect data from 60 lakes 

around the world (Figure 6.1). 

 

Model configuration 

 

6.3.6.1. General Lake Model 

 

To resolve the vertical density profile, the minimum layer thickness in GLM was set 

to be 0.5 m and the maximum layer thickness to be 1.5 m. GLM uses a light extinction 

coefficient to capture the depth of light penetration into the water column and we used 

the setting  where 45 % of incident solar radiation is photosynthetically active 

radiation (PAR) and follows Beer-Lambert law (Swinehart, 1962): 

 

 𝜙𝑃𝐴𝑅[𝑧] = 𝑓𝑃𝐴𝑅𝜙𝑆𝑊0
exp[−𝐾𝑤𝑧], (6.1) 
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where z is the depth of any layer from the surface, ϕPAR [z] is the incident PARat depth 

z, where fPAR is the PAR fraction of incident solar radiation and Kw is the light 

extinction coefficient in m-1. The default surface heat exchange parameters were used 

as defined from (Fischer et al., 1979) and mixing parameters similarly to (Bruce et 

al., 2018).  

Basin length and basin width were calculated by assuming an elliptical lake 

shape with a length which is twice the width: 

 

𝑏𝑠𝑛𝑤𝑖𝑑 =  √
2 ∗ 𝐴0

𝜋
 (6.2) 

 𝑏𝑠𝑛𝑙𝑒𝑛 = 2 ∗ 𝑏𝑠𝑛𝑤𝑖𝑑 (6.3) 

 

where A0 is the surface area, bsnwid is the basin width and bsnlen is the basin length. 

When daily forcing data are supplied to GLM, it is disaggregated internally to a sub-

daily time-step according to the calculation in Hamilton and Schladow (1997), which 

distributes the daily solar flux over a diurnal cycle based on the latitude, day of the 

year and time of day. Short-wave albedo was estimated using equations from 

Hamilton and Schladow (1997).  

Sedimentary heat flux parameterisations in GLM were also switched off to 

ensure that model setups were coherent across sites between lake models. No inflows 

and outflows were configured because we did not have inflow or outflow data for all 

the sites. When running long term simulations this can lead to issues such as 

decreasing water level over time (Winslow et al., 2017b). To deal with this, Winslow 

et al. (2017b) increased precipitation by 170 mm during the summer months and 

excess water was allowed to overflow over the lake surface thus reducing the impact 

on mixing within the model. In this study, we assumed a fixed water level by 

switching off the mass loss associated with evaporation. However, the thermal energy 

fluxes associated with evaporation were still calculated. To prevent lakes from over 

filling we ensured there was overflow if the lake volume increased beyond basin 

carrying capacity.  
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6.3.6.2. General Ocean Turbulence Model 

 

The number of depth levels used to discretise the water column for lakes shallower 

than 50 m in depth was: 

 
𝑛𝑙𝑒𝑣 =  

𝑧𝑚𝑎𝑥

0.5
 

 

(6.4) 

where 𝑛𝑙𝑒𝑣 is the number of layers in the model and 𝑧𝑚𝑎𝑥 is the maximum depth. 

Surface zooming is a feature in GOTM that allows inclusion of an adjusted grid and 

an increase in the number of layers at different depths of the water column. For lakes 

deeper than 50 m, the number of layers was set to 100 and surface zooming was 

switched on. The layer depth in the model is determined by: 

 ℎ𝑖 = 𝐷

tanh ((𝑑𝑙 + 𝑑𝑢)
𝑖

𝑛𝑙𝑒𝑣
− 𝑑𝑙) + tanh(𝑑𝑙)

tanh(𝑑𝑙) + tanh(𝑑𝑢)
 

 

(6.5) 

where hi is discretization depth from the bottom for layer i, dl is the bottom zooming 

factor, du is the surface zooming factor and nlev is the number of layers for 

discretisation, see Figure 6.4 for an example of discretized depths in three lakes of 

varying depths. For lakes with a depth greater than 50 m and less than 100 m, the 

surface zooming factor (du) was set to 1.5 and the bottom zooming factor (dl) was set 

to 0 and lakes with a depth greater than 100m the surface zooming factor (du) was set 

to 3 and the bottom zooming factor (dl) was set to 0.  
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Figure 6.4 Examples of discretization depths of layers within GOTM for three 

example study lakes A) Bourget, FR (145 m; 100 layers), B) Green Lake, US (73 m; 

100 layers) and C) Langtjern, NO (9 m; 24 layers). 

GOTM has a wide variety of turbulence models that can be utilised within its 

structure. For our study we used a second-order turbulence closure model. These 

models result from the approximate or full solution of transport equations for turbulent 

fluxes, which are strongly influenced by the Navier-Stokes equations (Sander, 1998). 

Whilst the meteorological driving data provided were on a daily timestep, the 

internal timestep for model integration was set to 3600 s. GOTM resolves internal 

processes more accurately when run at a sub-daily time step (Ayala et al., 2019). 

When model input data is at a lower temporal resolution, GOTM performs internal 

interpolation of the input data to match the integration timestep.  

The method for calculating net longwave radiation was the method developed 

by Clark et al. (1974). Within GOTM, we used the Fairall et al. (1996) method for 

calculating the heat fluxes between the lake surface and atmosphere. GOTM requires 
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cloud cover as a driving variable so this was calculated using the method from Martin 

and McCutcheon (1999) which uses air temperature, relative humidity, short-wave 

radiation, latitude, longitude and elevation.  Light was separated into visible and non-

visible components with the visible component accounting for 45 % and the non-

visible was 55 %. The e-folding depth (light attenuation) for each lake was included 

in the calibration parameters. Incoming short-wave radiation was disaggregated from 

mean daily values using a calculation that uses time, latitude and longitude from 

Simpson and Paulson (1979). 

 

Calibration procedure 

 

The aim of the calibration process for each lake model simulation was to correct the 

model for potential biases in the meteorological forcing data and internal model 

processes. For example, the use of daily meteorological data as forcing data does not 

accurately represent the influence of wind speed, which can sometimes have 

pronounced diurnal patterns. Light attenuation is a state variable that can have large 

temporal variation (Yacobi, 2006; Gerea et al., 2017; Lisi and Hein, 2019) and 

uncertainty around the value due to Secchi depth approximations. As a result of these 

uncertainties it was also included in calibration. For each lake, GLM and GOTM were 

calibrated by forcing the models with meteorological data extracted from the 

appropriate EWEMBI grid square (Figure 6.2). Model simulations were then 

compared to observed data, and a calibration procedure applied. This calibration 

procedure differed with lake model and is described below. 
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6.3.7.1. GLM Calibration 

 

For GLM calibrations, we ensured there was a two-year spin-up period. The model 

was initialized using a ‘typical’ profile at a time of year when the lake was isothermal. 

For GLM the parameters selected for calibration were a wind scaling factor 

(wind_factor) and light attenuation (Kw). GLM uses incoming long-wave radiation 

as a forcing variable so we also included a scaling factor for this (lw_factor). We used 

similar ranges to ensure parameters stayed within realistic ranges (Table 6.4). 

 

Table 6.4 Parameters used in the GLM calibration with their default values and ranges. 

Long name Short name Set value Range 

   Min Max 

Long wave 

radiation scaling 

factor 

lw_factor 1 0.5 1.5 

Wind speed 

scaling factor 

wind_factor 1 0.5 2.0 

Light 

attenuation 

Kw Kwobs 0.1* Kwobs 1.9* Kwobs 

 

A Covariance Matrix Adaptive Evolutionary Strategy (CMA-ES) algorithm (Hansen 

and Ostermeier, 2001; Hansen et al., 2003) was used to calibrate the model. The aim 

of CMA-ES is to fit the multi-variate normal distributions of the mutations to the 

contour of the objective function. The cost function used for GLM was the root mean 

square error (RMSE). 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

 

(6.6) 

 

where n was the number of samples, 𝑦𝑖  was the observed and �̂�𝑖 was the simulated 

water temperatures at time i. Root mean square error was chosen because it is widely 

used to assess the goodness of fit for lake models. This differed from GOTM due to 

the ACPy tool being hard coded to use just log likelihood. Due to computational and 

time constraints we limited the calibration to 500 iterations which for most lakes 

allowed for convergence. The ‘best’ parameter set was the one with the lowest RMSE. 

There was a significant variability in sensitivity to the different parameters across the 

lakes. Each lake’s calibration value was inspected following the completion of 

calibration to ensure that it was in a reasonable range and that the model performance 

was reasonable. 

 

6.3.7.2. GOTM Calibration 

 

A minimum two-year spin-up period was used to ensure there was no influence on the 

simulation related to the initial water temperature conditions. The parameters used for 

calibrating GOTM were scaling factors for wind speed (wind_factor), total 

downwelling short-wave radiation (swr_factor) and surface heat fluxes (shf_factor) 

(Table 6.5). The parameters which affect light attenuation: e-folding depth for visible 

(g2) and non-visible light (g1), and the minimum turbulent kinetic energy (k_min) 

were also included. These were the main parameters identified in a preliminary 

investigation as being an important part of GOTM calibration (Ayala et al., 2019). 
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Table 6.5 Parameters used in the GOTM calibration with their default values and 

ranges. 

Long name Short name Set 

value 

Range 

   Min Max 

Surface heat-flux 

factor 

shf_factor 1 0.5 1.5 

Short wave 

radiation factor 

swr_factor 1 0.5 (1200 / swrmax) 

Wind factor wind_factor 1 0.5 2.0 

Minimum 

turbulent kinetic 

energy 

k_min 3.6e-6 1.4e-7 1e-5 

e-folding depth 

for non-visible 

fraction 

g1 0.54 0.01 2 

e-folding depth 

for visible 

fraction 

g2 7.18 (0.1 * g2obs) (1.9 * g2obs) 

 

The program used to calibrate GOTM was ACPy (Auto calibration utility for 

GOTM written in Python, now renamed parsac), developed by  Bolding and 

Bruggeman Aps and the code is available on GitHub (Bolding and Bruggeman, 2020). 

ACPy uses a differential evolution (DE) algorithm which calculates a log likelihood 

function based on comparing the modelled water temperature to the observed 

temperature (Storn and Price, 1997).   
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In this study, for each calibration run, the model was run for 84 generations 

which allowed for ~5000 iterations. The cost function used for the calibration routine 

was the calculation of log likelihood (𝑙𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) for each parameter set, 

comparing modelled to observed: 

 
𝑙𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  ∑ −0.5(log𝑒(𝜋)) −  log𝑒(𝜎𝑜𝑏𝑠) − 0.5( 

𝑦𝑖 − �̂�𝑖

𝜎𝑜𝑏𝑠
 )

𝑛

𝑖=1

 

 

(6.7) 

where 𝜎𝑜𝑏𝑠 was the standard deviation of observed values, 𝑦𝑖  was the observed and �̂�𝑖 

was the simulated water temperatures at time i, and n was the number of samples. The 

‘best’ parameters selected were the ones that had the highest log likelihood. 

Issues were encountered for individual scaling factor calibration whenever the 

best-fit parameter would approach the upper or lower limit of the pre-set value range. 

We recognised that this demonstrated that the parameters could potentially improve 

by increasing the limit range, but the limits were selected to ensure that the parameters 

stayed within a realistic range to prevent the potential for the model to achieve the 

best fit for the wrong reasons. The best parameter set was then used for all the 

historical and future simulations. 

 

Simulating projections 

 

For initialising the model, we selected a period where the lake was isothermal and 

initialised each simulation with this profile and on this day of year. To counteract the 

influence of the initial conditions we used a three-year spin-up period (Hodges, 2014). 

This period was created by repeating the first three years in the driving data and then 

removed this from the simulated output. For initial conditions we used an observed 

temperature profile from when the lake was isothermal and initialised each simulation 

with a three-year spin-up period.  

For simulations using GOTM, daily averaged data was extracted, while for 

GLM daily point values at 8:00 every day were extracted. This was because of 
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differences in the model outputs: GOTM has the functionality to save mean daily 

output while GLM only has the capacity to save point values. Outputting hourly 

values for GLM would have exponentially increased model runtime and handling of 

model output files particularly for the very deep sites. The differences between daily 

averaging hourly model output and extracting data at 8:00 were compared for IE_Fee 

over a 10-year period with a mean difference of 0.01 °C (SD: 0.06 °C) (Figure 6.5), 

This showed that this method did not influence the results to a large degree. 

 

Figure 6.5 Daily averaged hourly GLM output versus output at 08:00 every day for 

the time period 2005-2014. 
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Data analysis 

 

For each lake, the variables analysed were surface and bottom temperature, 

volumetrically averaged whole lake temperature, the duration, start and end of 

stratification, density differences between surface and bottom, and summer 

thermocline depth. Throughout this chapter, each of the variables were analysed as 

anomalies relative to the historical period of 1970 to 2005 annual and monthly mean 

values for each GCM. 

Lake stratification was defined as when there was a density difference of 

greater than 0.1 kg m-3 between the surface and the bottom (ISIMIP, 2019). The start 

of stratification was defined as the first day of stratification for the longest continuous 

period of stratification each year, while the end was the end of that period. 

Thermocline depth was calculated using the calculations in the ‘rLakeAnalyzer’ 

developed for R by Read et al. (2011) (R Core Team, 2020). 

Model output was extracted and saved into a standardised format which has 

been defined by the overall ISIMIP project. NetCDF files was used as the output file 

type to preserve file size, allow the inclusion of metadata and facilitate easier analysis. 

The overall trends for the three RCPs are described below. For comparisons 

across lakes, we focus solely on RCP 6.0. Similarly, when describing monthly 

anomalies, it is for the period 2069-2099 for RCP 6.0. 
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6.4. Results 

 

Lake observations 

 

Data from 46 lakes met the requirements for this simulation experiment which were 

that the RMSE had to be less than 2 °C and the NSE was greater than 0.5 for both 

models. Lakes were classified into regions according to the IPCC classification used 

in Seneviratne et al. (2012) from Giorgi and Francisco (2000). Regions and lakes are 

shown in Figure 6.6 and characteristics for each lake are presented in Table 6.6. The 

study sites were dominated by lakes in the Northern Europe region (NEU) (11), 

Central Europe region (CEU) (10) and Central North America region (CNA) 

(10).There were five lakes in the Southern Hemisphere, one in the North Australia 

region (NAU) and four in the South Australia region (SAU). The lakes represented a 

wide range of morphometry. Most of the lakes were between 10 – 90 m deep and 1 – 

50 km2 in area. There were five very deep lakes (depth greater than 100 m) and six 

very large lakes (surface area greater than 100 km2). Out of these lakes three were 

both very deep and very large (Table 6.6). 
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Figure 6.6 Global distribution of calibrated lakes that are included in the local study with associated shorthand labels. Regions are outlined as 

described in Seneviratne et al. (2012): CEU = Central Europe, CNA = Central North America, ENA = East North America, MED = Mediterranean, 

NAU = North Australia, SAU = South Australia and New Zealand, WNA = Western North America. See Table 6.6 for site reference names. 
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Table 6.6 Description of the location, characteristics and climates of each of the 60 sites. Lakes which did not meet the criteria for being included 

in this study are denoted by being in bold with an asterisk (*) next to the name. The criteria were that the RMSE had to be less than 2 °C and the 

NSE was greater than 0.5 for both models. Regions are outlined as described in Seneviratne et al. (2012): CEU = Central Europe, CNA = Central 

North America, ENA = East North America, EAF = East Africa, MED = Mediterranean, NAU = North Australia, SAU = South Australia and New 

Zealand, WNA = Western North America. 

ISIMIP Name 
Short 

Name 
Region 

Latitude 

(°N) 

Longit

ude 

(°W) 

Elevatio

n 

(m) 

Area 

(km2) 

Max 

depth 

(m) 

Mean 

depth 

(m) 

GLM 

RMSE 

(°C) 

GOTM 

RMSE 

(°C) 

GLM 

NSE 
 

GOT

M 

NSE 

Allequash Lake US_Alq CNA 46.04 -89.62 494.00 0.58 8.00 5.53 1.43 1.75 0.96 0.91 

Annecy FR_Ann CEU 45.87 6.17 447.00 26.51 65.00 42.53 0.66 0.64 0.98 0.98 

Annie US_Ann ENA 27.21 -81.35 33.70 0.34 68.00 8.05 1.30 1.33 0.91 0.91 

Argyle AU_Arg NAU -16.31 128.68 100.00 1013.8 51.00 11.37 1.15 0.99 0.79 0.84 

Biel CH_Bie CEU 47.08 7.16 429.00 39.30 74.00 29.57 1.45 1.30 0.90 0.92 

Big Muskellunge 

Lake 
US_Bmu CNA 46.02 -89.61 500.00 3.87 21.30 8.18 1.57 1.48 0.94 0.93 

Black Oak 

Lake* 
US_Bla CNA 46.16 -89.32 521.51 2.25 25.91 12.85 3.94 1.08 0.59 0.97 
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Bourget FR_Bou CEU 45.76 5.86 231.00 42.60 145.00 81.99 0.72 0.76 0.95 0.95 

Burley Griffin AU_Bur SAU -35.30 149.07 556.00 6.05 17.00 4.22 1.49 1.11 0.90 0.95 

Crystal Bog* US_CrB CNA 46.00 -89.61 503.00 0.01 20.40 1.48 3.47 2.93 0.72 0.76 

Crystal Lake US_Cry CNA 46.01 -89.61 502.00 0.37 2.50 11.51 1.71 1.78 0.92 0.90 

Delavan US_Del CNA 42.61 -88.60 282.55 6.96 16.46 7.72 1.43 1.47 0.96 0.94 

Dickie Lake CA_Dic ENA 45.15 -79.09 341.00 0.94 12.00 5.00 1.14 1.35 0.96 0.94 

Eagle Lake* CA_Eag ENA 44.68 -76.70 419.00 6.86 35.00 13.69 1.69 2.16 0.93 0.88 

Ekoln basin of 

Malaren 
SE_Eko NEU 59.75 17.62 0.70 20.18 50.00 16.92 1.33 1.57 0.94 0.86 

Erken SE_Erk NEU 59.84 18.63 10.00 23.67 21.00 9.03 1.25 1.18 0.94 0.91 

Esthwaite Water UK_Est NEU 54.37 -2.99 65.00 0.96 16.00 7.02 0.94 1.09 0.95 0.93 

Falling Creek 

Reservoir* 
US_Fal ENA 37.31 -79.84 507.00 0.12 9.30 2.68 4.81 2.36 0.41 0.79 

Feeagh IE_Fee NEU 53.90 -9.50 15.00 3.93 44.00 16.05 0.75 0.80 0.95 0.95 

Fish Lake US_Fsh CNA 43.29 -89.65 261.00 0.87 18.90 5.98 1.42 1.72 0.95 0.92 

Geneva FR_Gen CEU 46.45 6.59 372.00 580.10 309.70 156.15 0.78 0.62 0.91 0.94 
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Great Pond US_GrP ENA 44.53 -69.89 81.00 32.55 21.00 6.04 0.96 1.19 0.97 0.95 

Green Lake US_Grn CNA 43.81 -89.00 243.00 30.12 72.00 33.83 1.20 1.03 0.96 0.97 

Harp Lake CA_Hrp ENA 45.38 -79.13 327.00 0.71 37.50 13.33 0.94 0.69 0.96 0.98 

Kilpisjarvi* FI_Kil NEU 69.03 20.77 473.00 30.83 57.00 19.67 2.98 5.17 -0.05 -2.40 

Kinneret IL_Kin MED 32.49 35.35 -210.00 167.00 45.00 24.17 1.62 1.65 0.87 0.87 

Kivu* RW_Kiv EAF -1.73 29.24 1463.00 2488.3 485.00 221.51 0.35 0.26 0.45 0.61 

Kuivajarvi FI_Kui NEU 60.47 23.51 130.00 0.64 13.20 4.87 1.40 1.36 0.95 0.92 

Langtjern NO_Lan NEU 60.37 9.73 510.00 0.06 12.00 3.02 1.38 1.59 0.86 0.83 

Laramie Lake US_Lar WNA 40.62 -105.8 2843.80 0.14 6.40 2.19 1.05 0.51 0.91 0.98 

Lower Zurich CH_LLZ CEU 47.28 8.58 406.00 66.60 136.00 50.14 1.09 0.73 0.95 0.98 

Mendota US_Men CNA 43.10 -89.41 259.00 39.40 25.30 12.44 1.39 1.39 0.95 0.94 

Monona US_Mon CNA 43.06 -89.36 258.00 13.67 22.50 8.24 1.42 1.43 0.95 0.93 

Mozhaysk RU_Moz CEU 55.59 35.82 183.00 23.67 23.00 9.03 1.39 1.06 0.87 0.92 

Mt Bold AU_MtB SAU -35.12 138.71 242.90 3.22 45.40 13.74 1.68 1.59 0.81 0.83 

Mueggelsee DE_Mug CEU 52.43 13.65 32.30 7.66 7.70 4.77 0.75 0.63 0.99 0.99 
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Neuchatel CH_Neu CEU 46.54 6.52 429.00 217.90 152.00 63.29 1.32 1.07 0.92 0.95 

Nohipalo 

Mustjarv 
EE_NoM NEU 57.93 27.34 61.00 0.21 8.90 4.06 1.56 1.23 0.93 0.95 

Nohipalo 

Valgejarv 
EE_NoV NEU 57.94 27.35 62.00 0.07 12.50 4.75 1.31 1.77 0.95 0.92 

Okauchee Lake US_Oka CNA 43.13 -88.43 269.00 4.63 28.65 13.69 1.35 1.67 0.96 0.94 

Paajarvi FI_Pää NEU 61.07 25.13 102.00 13.44 85.00 14.90 1.23 0.92 0.91 0.95 

Rappbode 

Reservoir 
DE_Rap CEU 51.74 10.89 415.00 4.34 89.00 25.14 0.61 0.54 0.97 0.98 

Rimov CZ_Rim CEU 48.85 14.49 471.48 2.11 44.00 16.02 1.70 1.59 0.89 0.89 

Rotorua NZ_Rot SAU -38.08 176.28 280.00 79.31 52.90 10.36 0.75 0.72 0.97 0.97 

Sammamish US_Sam WNA 47.59 -122.1 9.00 20.00 32.00 17.43 0.74 0.82 0.99 0.96 

Sau Reservoir* ES_Sau MED 41.97 2.40 425.00 6.00 65.00 27.49 2.99 2.46 0.69 0.79 

Sparkling Lake US_Spa CNA 46.01 -89.70 495.00 0.58 20.00 11.03 1.25 1.27 0.97 0.96 

Stechlin GE_Ste CEU 53.17 13.03 59.80 4.23 69.50 23.52 0.91 0.84 0.97 0.98 

Sunapee* US_Sun ENA 43.23 -72.50 333.00 16.93 34.00 12.24 2.50 1.26 0.87 0.94 

Tahoe US_Tah WNA 39.09 -120.0 1897.00 465.97 501.00 339.40 0.49 0.48 0.94 0.94 
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Tarawera NZ_Tar SAU -38.21 176.43 300.00 40.97 87.50 55.93 0.65 0.59 0.92 0.94 

Toolik Lake* US_Too ALA 68.63 -149.6 720.00 1.49 26.00 7.36 3.76 1.31 -0.14 0.83 

Trout Bog* US_TrB CNA 46.04 -89.69 499.00 0.01 7.90 6.10 1.60 2.40 0.93 0.85 

Trout Lake* US_Tro CNA 46.03 -89.67 492.00 160.79 35.70 15.09 2.07 1.66 0.86 0.91 

Two Sisters 

Lake* 
US_Two CNA 45.77 -89.53 481.00 2.83 19.20 9.82 3.12 1.36 0.67 0.94 

Vendyurskoe RU_Ven NEU 62.10 33.10 131.00 10.40 13.40 5.36 1.30 1.19 0.96 0.94 

Vortsjarv EE_Vor NEU 58.31 26.01 33.00 270.60 6.10 2.79 1.33 0.98 0.97 0.97 

Washington* US_Was WNA 47.64 
-

122.27 
5.00 87.62 65.20 33.03 4.39 0.82 -0.17 0.96 

Windermere UK_Win NEU 54.31 -2.95 39.00 6.72 64.00 16.78 0.86 0.65 0.95 0.97 

Wingra US_Win CNA 43.05 -89.43 259.00 1.40 6.70 2.09 1.39 1.53 0.96 0.94 
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Based on observed historical data, all lakes in NEU experienced annual variations 

in water temperature of 0 – 24 °C and all had ice cover during winter except for the three 

lakes which are strongly influenced by the Atlantic Ocean (UK_Est, IE_Fee, and 

UK_Est). There were three lakes in sub-tropical areas IL_Kin in MED, US_Ann in ENA 

and AU_Arg which all had annual water temperature variations of 14 – 32 °C. Lakes in 

CNA had a slightly larger range in temperatures (0 – 26 °C) compared with lakes in CEU 

and NEU (0 – 22 °C). The sites in NAU had a small range with higher observed 

temperatures (22 – 30 °C), while sites in SAU was at a slightly lower range (10-26 °C) 

(Figure 6.7). Most lakes in NEU and CEU had very low surface temperature during 

winter (less than 4 °C), except for the lakes in the western NEU (IE_Fee, UK_Win and 

UK_Est) and the deep alpine lakes (depth greater than 50 m) in CEU (FR_Ann, CH_Bie, 

FR_Bou, FR_Gen, CH_LLZ) which had slightly warmer surface temperatures from 

December through to March (6 to 10 °C). 

 



 

155 

 

 

 

Figure 6.7 Mean observed surface (surftemp) and bottom temperature (bottemp) for 46 

calibrated lakes. Sites are ordered according to regions with labels on the right side, 

separated by a bold line. White blocks indicate no recorded data from that period. See 

Table 6.6 for site reference names. 

Two of the lakes in sub-tropical areas (IL_Kin and US_Ann) had the largest 

observed density difference (-3.5 kg m-3) between surface and bottom temperatures and 

the longest period of strong density differences (>200 days) (Figure 6.8). Some of the 

shallower and polymictic lakes, EE_Vor, DE_Mug, US_Win, had small (-0.5 kg m-3) to 

no density differences between surface and bottom, indicating that they did not 
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continuously stratify during the year. A known monomictic lake, IE_Fee, also had a very 

low-density difference between top and bottom indicating that it stratified very weakly 

in comparison to other sites. 

 

 

Figure 6.8 Monthly mean observed density difference between surface and bottom for 

46 calibrated lakes. Sites are ordered according to regions with labels on the right side, 

separated by a bold line. White blocks indicate no recorded data from that period. See 

Table 6.6 for site reference names. 
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Calibration results 

 

Following calibration, 77 % of the lakes (46/60) had a RMSE below the threshold of 2 

°C and a Nash-Sutcliffe efficiency greater than 0.5 for both GOTM and GLM (Figure 

6.9; Table 6.6). Possible reasons for some lakes not meeting the calibration threshold 

criteria were because they had large lake level fluctuations (e.g. US_FCR, ES_Sau and 

US_TrB), highly irregular morphometry (e.g. CA_Eag), or were meromictic (e.g. 

RW_Kiv). For some lakes (e.g. US_Too) the reasons for poor calibration were unclear. 

 

Figure 6.9 Root mean square error (RMSE) results from calibration of the General Ocean 

Turbulence Model (GOTM) and the General Lake Model (GLM) (A). Nash-Sutcliffe 

Efficiency (NSE) results from calibration of the General Ocean Turbulence Model 

(GOTM) and the General Lake Model (GLM) (B). Lakes with a RMSE greater than 2 

and NSE less than 0.5 are coloured grey and referred to as uncalibrated (Uncalib). See 

Table 6.6 for values corresponding to each site. 

Two common parameters which were calibrated in both models were wind 

scaling factor and the light extinction coefficient (Kw). The log transform of Kw had a 

relatively strong correlation between both models (0.62) while the wind scaling factor 

had a weak correlation (0.32) (Figure 6.10). 
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Figure 6.10 Calibrated values for wind scaling factor (A) and light attenuation (Kw) (B), 

the two common parameters which were calibrated for the two lake models: GLM and 

GOTM. Kw values have been log transformed. Dashed line is the 1:1. See Table 6.6 for 

actual values. 

 

GCM projections 

 

Annual mean air temperature anomalies across all sites displayed an unequivocal 

increase for RCP 6.0 for the period 2006 – 2099 relative to the historical anomaly which 

was calculated from 1970-2005 (Figure 6.11). There were strong regional coherencies 

for regions where sites are relatively close together such as Northern Europe (NEU) 

(EE_Vor, EE_NoM, EE_NoV, FI_Kui, SE_Erk, FI_Paa, SE_Eko), which were projected 

to warm by +3 to +5 °C (SD: 1 - 3 °C; n=1460) by 2069-2099. The western sites in NEU 

(UK_Est, IE_Fee and UK_Win) had a smaller projected increase by the same time period 

of +1 to +3 °C (SD: 1 °C). Central Europe (CEU) (DE_Rap, DE_Ste, DE_Mug, CH_BIE, 

FR_Ann, CH_LLZ, CH_Neu, FR_Bou, FR_Gen) had a positive increase of +3 to +4 °C 

(SD: 1 °C), while Eastern North America (ENA) and Central North America (CNA) 

followed a similar pattern but had a larger increase of +4 to +6 °C (SD: 1 – 2 °C). Lakes 

in the NAU had a slightly warmer increase of +3 to +5 °C (SD: 1 °C) compared to those 

in SAU, which had an increase of +2 to + 4 °C (SD: 1 °C). The variation between GCMs 

was below 1 °C throughout the entire period for all lakes except for a few years.  
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Figure 6.11 Mean and standard deviation (SD) of the annual anomaly for air temperature 

for 46 lakes across four GCMs for RCP 6.0 for the time period 2006 – 2099 (n =1460). 

Sites are ordered according to regions with labels on the right side, separated by a bold 

line. See Table 6.6 for site reference names. 

Mean annual wind speed anomalies were more variable within regions compared 

to air temperature from 2006 – 2099 (Figure 6.12). There was a strong coherence among 

some of the NEU sites (EE_Vor, EE_NoM, EE_NoV, FI_Kui) which had a projected 

increase in wind speed by 2069-2099 from +0.2 to +0.6 m s-1 but with large variability 

(SD: 0.7 to 1.1 m s-1; n =1460). Site RU_Moz in CEU had a strong decrease in the wind 

speed throughout the entire time period 2006-2099, with a mean anomaly which ranged 
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from -0.1 to -0.4 m s-1 with a SD of 0.1 – 0.5 m s-1. The western sites in NEU (UK_Est, 

IE_Fee and UK_Win) all had slight decreases in wind speed by 2069-2099 with mean 

anomalies that ranged from of -0.1 to -0.4 m s-1 (SD: 0.7 to 1.1 m s-1). In the CEU region, 

there was a slight increase in wind speeds of +0.1 to +0.3 m s-1 (SD: 0.1 to 0.3 m s-1). 

Wind speed showed a coherent decrease in projected values across sites in ENA 

(US_Win, US_Fsh, US_Del, US_Mon, US_Men, US_Oka, US_Grn) by the later period 

of 2069-2099, with mean decreases of -0.1 to -0.2 m s-1 (SD: 0.1 – 0.3 m s-1). Sites further 

north in ENA (CA_Dic and CA_Hrp) had a slight projected increase in wind speed by 

2069-2099 of +0.1 to +0.3 m s-1 (SD: 0.1 – 0.5 m s-1). In the CNA region, there was a 

regional decrease in wind speed by 2069- 2099 of -0.1 to -0.2 m s-1 (SD: 0.1 – 0.3 m s-

1).  
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Figure 6.12 Mean and standard deviation (SD) of the annual anomaly for wind speed for 

46 lakes across four GCMs for RCP 6.0 for the time period 2006 – 2099 (n =1460). Sites 

are ordered according to regions with labels on the right side, separated by a bold line. 

See Table 6.6 for site reference names. 

Mean annual short-wave radiation was projected to increase across all sites 

except for one site, AU_Arg in Northern Australia (NAU) of -4 to +4 W m-2 (SD: 4 – 12 

W m-2; n =1460) (Figure 6.13). Sites in NEU and CEU showed the largest projected 

increase by 2050 of +4 to +20 W m-2 (SD: 4 – 12 W m-2). Sites in CEU had the largest 

increase by 2069-2099 which ranged from +12 to +20 W m-2 (SD: 4 – 12 W m-2). Sites 
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across ENA, CNA and WNA had a more gradual increase and smaller magnitude by 

2069-2099 of +4 to + 12 W m-2 (SD: 4 – 12 W m-2). 

 

Figure 6.13 Mean and standard deviation (SD) of the annual anomaly for short-wave 

radiation for 46 lakes across four GCMs for RCP 6.0 for the time period 2006 – 2099 (n 

=1460). Sites are ordered according to regions with labels on the right side, separated by 

a bold line. See Table 6.6 for site reference names. 

The mean monthly anomalies for 2069-2099 showed a general regional 

coherence for air temperature (Figure 6.14). Site RU_Ven in the NEU region had the 

largest projected anomaly for mean monthly air temperature anomaly from November 

through February of +5 to +7 °C (SD: 1 – 2 °C; n=3600). The sites in western NEU 
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(UK_Est, IE_Fee, UK_Win) had a smaller magnitude in the range of anomalies of +3 to 

+4 °C (SD: 1 – 2 °C). Site in CEU had the largest anomaly for the month of August 

(FR_Ann, CH_Bie, FR_Bou, FR_Gen) of +5 °C (SD: 2 °C), with a higher anomaly in 

June to September across all sites of +5 °C (SD: 2 °C). The ENA region has a larger 

anomaly of +5 °C in the months of January, February, August and September, while it 

was +4 °C (SD: 2 °C) in that same region for the other months. Sites in NAU and SAU 

had a smaller projected anomaly for air temperature generally, but with a larger anomaly 

in summer November through March of +3 °C (SD: 1 °C) compared to winter which was 

+2 °C (SD: 1-2 °C). 
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Figure 6.14. Mean and standard deviation (SD) of the monthly anomaly for air 

temperature, for 46 lakes across four GCMs for RCP 6.0 for the time period 2069-2099 

(n=3600). Sites are ordered according to regions with labels on the right side, separated 

by a bold line. See Table 6.6 for site reference names. 

The projected mean monthly wind speed anomaly was negative in March, April 

and May for sites in the western NEU, with values of -0.2 to -0.1 m s-1 (SD: 0.1 - 0.5 m 

s-1; n=3600) (Figure 6.15). In the CNA region, there were coherent decreases in projected 

windspeeds across seven of the sites, ranging from -0.3 to -0.1 m s-1 (SD: 0.1 – 0.3 m s-

1) from March to November, with values in the month of June having the largest decrease 

of -0.3 m s-1 (SD: 0.1 m s-1). The three sites in Estonia (EE_NoM, EE_NoV and EE_Vor) 
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had the same mean monthly anomaly for September through February of +0.1 to +0.3 m 

s-1 (SD: 0.5 – 0.9 m s-1). 

 

Figure 6.15 Mean and standard deviation (SD) of the monthly anomaly for wind speed 

for 46 lakes across four GCMs for RCP 6.0 for the time period 2069-2099 (n=3600). 

Sites are ordered according to regions with labels on the right side, separated by a bold 

line. See Table 6.6 for site reference names. 

Sites in CEU had a relatively large increase in the monthly mean SWR anomaly 

particularly in June, July and August of +25 to +35 W m-2 (SD: 5 – 25 W m-2; n=3600) 

(Figure 6.16). These months showed increases for each of the sites in the Northern 

Hemisphere +10 to +35 W m -2 (SD: 5 – 25 W m-2) except for the two sub-tropical lakes 
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IL_Kin and US_Ann. Each had smaller increases in February through May of +10 to +20 

W m-2 (SD: 5 – 15 W m-2). IE_Fee and NO_Lan had much smaller increases throughout 

the entire year of +5 to +10 W m-2 (SD: 5 – 15 W m-2). The sites in NAU and SAU had 

small increases of +5 to +15 W m-2 (SD: 5 – 15 W m-2) throughout the whole year. 

 

 

Figure 6.16 Mean and standard deviation (SD) of the monthly anomaly for short-wave 

radiation for 46 lakes across four GCMs for RCP 6.0 for the time period 2069-2099 

(n=3600). Sites are ordered according to regions with labels on the right side, separated 

by a bold line. See Table 6.6 for site reference names.  
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Overall simulations 

 

Overall there was an increase in the mean annual lake surface water temperature anomaly 

under each of the RCP scenarios averaged across all lakes, with the simulations using 

RCP 8.5 having the largest increase by 2099 (overall mean anomaly for all sites of +4.5 

°C; n=134320) (Figure 6.17). The anomaly was calculated relative to the 1970-2005 

historical period. These RCP 8.5 simulations also had the largest degree of variability 

when all 46 sites were included (SD: 1.8 °C). The simulations using RCP 2.6 and RCP 

6.0 followed similar increases until 2050 (+1.3 °C). After 2050, the projected increase 

for the RCP 2.6 simulations levelled off before decreasing slightly towards the 2069-

2099 (mean anomaly +1.6 °C) while RCP 6.0 continued to increase at a relatively 

constant rate with a mean anomaly of +2.7 °C by 2099. 

The increase in projected mean annual bottom lake water temperature was not as 

large when compared to the surface temperature (RCP 2.6: +0.6 °C; RCP 6.0: +1 °C; 

RCP 8.5: +2 °C) (Figure 6.17). Simulations using RCP 2.6 and RCP 6.0 also diverged 

from each other later (~2060) than those for the surface temperature. There was also a 

much larger variability in the anomalies for the mean lake bottom temperature across the 

46 sites, likely reflecting the differences in depth across the study sites (RCP 2.6: +0.8 

°C; RCP 6.0: +1.0 °C; RCP 8.5: +1.4 °C), than was observed for the surface temperature 

(RCP 2.6: +1.0 °C; RCP 6.0: +0.9 °C; RCP 8.5: +1.5 °C). 

Volumetrically averaged lake temperature follows a similar upward trajectory, 

but the increase was not as steep as the surface temperature, with a lower projected mean 

anomaly by 2099 (RCP 2.6: +1.3 °C; RCP 6.0: +2.0 °C; RCP 8.5: +3.4 °C) (Figure 6.17). 

The standard deviation was all within the positive anomaly, signifying that under all 

scenarios there would be an increase in water temperature and in most lakes. 
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Figure 6.17 Mean surface (surftemp), bottom (bottemp) and volumetrically averaged lake 

temperature (wholelaketemp) anomaly across 46 lakes, four GCMs and two lake models 

(n=134320), under the historical, RCP 2.6, RCP 6.0 and RCP 8.5 scenarios from 1970-

2100. Shaded areas represent one standard deviation from the mean. 

The mean number of stratified days for the 46 lakes was projected to increase at 

a relatively consistent rate until 2040 for each of the three emissions scenarios (+5 to +15 

days; n=368) (Figure 6.18). Following this, the number of stratified days increased at a 

higher rate for RCP 8.5 compared to either of the other scenarios (RCP 2.6: +10 days; 

RCP 6.0: +22 days; RCP 8.5: +35 days). Stratified days for the RCP 2.6 and RCP 6.0 

simulations continued to follow a similar trajectory until ~2065 at +14 days. After this 

period the number of days for the RCP 2.6 simulations declined while in contrast, for the 

RCP 6.0 the projections for the mean number of days stratified continued to increase.  

There was large variability around the mean values for each of the scenarios until 

2050 (SD: 20 days) which increased further towards the 2069-2099 period particularly 

for the simulations using RCP 8.5 (SD: 30 days) (Figure 6.18). This observed increase 

in the number of stratified days was driven by both a projected earlier start of 

stratification and a later end of stratification. There was a larger shift to an earlier timing 
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for onset of stratification by the period 2069-2099, with a mean anomaly for RCP 8.5 of 

-15 days.  The mean timing of the offset of stratification was projected to be later by +8 

days. There was also a larger variation around the onset of stratification (SD: 25 to 30 

days) compared to offset (SD: 15 to 25 days). 

 

Figure 6.18 Mean anomaly of the duration, start and end of stratification each year across 

46 lakes, four GCMs and two lake models (n=368) under the historical, RCP 2.6, RCP 

6.0 and RCP 8.5 scenarios from 1970 to 2100. Shaded errors represent one standard 

deviation from the mean. 

 

Lake simulations 

 

For the simulations using RCP 6.0, there were unambiguous projected warming of water 

temperatures across all sites studied, strongest for the surface temperatures (Figure 6.19). 

Surface temperatures increased by between +0.5 and +1.5 °C (SD: 0.5 – 1.5 °C; n=2920) 

by 2050 and continuing to increase up to a range of +2.5 to +3.5 °C (SD: 1.5 – 1.5 °C) 

by 2069-2099. However, there were some sites which did not show the same rate of 
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projected increase, such as IE_Fee, NO_Lan, US_Ann, US_Lar and AU_MtB with 

increases of +0.5 to +1.5 °C (SD: 0.5 – 1.5 °C) by 2069-2099 (Figure 6.19). The highest 

increases were in CEU and CNA with increases of +1.5 to +3.5 °C (SD: 0.5 – 1.5 °C) 

with one site, US_Oka having an increase of +1.5 to +3.5 °C (SD: 0.5 – 1.5 °C). 

 

Figure 6.19 Mean and standard deviation (SD) of the annual surface temperature 

anomaly for 46 lakes across four GCMs and two lake models (n=2920) for RCP 6.0. 

Sites are ordered according to regions with labels on the right side, separated by a bold 

line. See Table 6.6 for site reference names. 
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For bottom temperatures there was a projected increase in mean annual 

temperature across all sites, but the change was much more variable between sites than 

that seen for surface water temperature (Figure 6.20). The sites which exhibited the 

greatest increase by 2069-2099 were three of the sites which have relatively small mean 

depths US_Win (2.1 m) of +2 to +3 °C (SD: 0.5 – 1.5 °C), EE_Vor (2.8 m) +2 to +3 °C 

(SD: 0.5 – 1.5 °C) and DE_Mug (4.8 m) +2 to +3 °C (SD: 0.5 – 1.5 °C). Some sites with 

relatively large mean depths were also projected to have an increase in bottom 

temperatures by 2069-2099: NZ_Tar (56.0 m) +1 to +2 °C (SD: 0.5 – 1.5 °C), CH_Neu 

(63.3 m) +1 to +2 °C (SD: 0.5 – 1.5 °C), FR_Bou (82.0 m) +1 to +2 °C (SD: 0.5 – 1.5 

°C)  and FR_Gen (156.0 m) +0.5 to +1.5 °C (SD: 0.5 – 1.5 °C). Most of the lakes in NEU 

and CNA had a small increase of 0.5 to +1.5 °C (SD: 0.5 – 1.5 °C).  
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Figure 6.20 Mean and standard deviation (SD) of the annual bottom temperature anomaly 

for 46 lakes across four GCMs and two lake models (n=2920) for RCP 6.0 for the time 

period 2006-2099. Sites are ordered according to regions with labels on the right side, 

separated by a bold line. See Table 6.6 for site reference names. 

Increases in projected mean annual whole lake temperature were greater for sites 

with a smaller mean depth for example US_Win (mean depth 2.1 m, +2 to +3 °C) and 

EE_Vor (mean depth 2.8 m, +1.5 to +2.5 °C) and DE_Mug (mean depth 4.8 m, +2.5 to 

+3.5 °C) (Figure 6.21). Two other sites which also had a large projected increase were 

US_Sam and IL_Kin (+1.5 to +2.5 °C). Some of the sites had relatively small projected 
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increases across the time period IE_Fee, NO_Lan, CA_Hrp and US_Grn (+0.5 to +1.5 

°C). 

 

Figure 6.21 Mean and standard deviation (SD) of the annual volumetrically averaged 

whole lake temperature anomaly for 46 lakes across four GCMs and two lake models 

(n=2920) for RCP 6.0 for the time period 2006-2099. Sites are ordered according to 

regions with labels on the right side, separated by a bold line. See Table 6.6 for site 

reference names. 

For the period 2069-2099, surface temperature for sites in the northern 

hemisphere had large projected positive anomaly during the months April through 
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October while southern hemisphere sites had an increase across all months (Figure 6.22). 

The largest positive anomalies were for sites NO_Lan, RU_Moz, EE_NoM, EE_NoV, 

FI_Paa, and EE_Vor between April to June of +2.5 to +5.5 °C (SD: 0.5 – 2.5 °C; 

n=7200). Sites in the CEU region had consistent warming from November through to 

February of +1.5 to +2.5 °C (SD: 0.5 – 1.5 °C) across all sites, with a slightly larger 

increase in summer of +3 to +4 °C (SD: 0.5 – 1.5 °C). Sites in ENA and CNA had both 

small decreases and increases for January and February of -0.5 to +1.5 °C (SD: 0.5 °C) 

with relatively large increases in April through November of +3.5 to +4.5 °C (SD: 0.5 – 

1.5 °C). 
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Figure 6.22 Mean and standard deviation (SD) of the monthly surface temperature 

anomaly for 46 lakes across four GCMs and two lake models (n=7200) for RCP 6.0 for 

the time period 2069-2099. Sites are ordered according to regions with labels on the right 

side, separated by a bold line. See Table 6.6 for site reference names. 

There were large projected increases in bottom temperatures at two sites, 

RU_Ven, EE_Vor, which both had anomalies of +3.5 °C in May and April respectively 

(Figure 6.23). In the CEU region, there was an increase in bottom temperature throughout 

the entire year of +1.5 °C (SD: 0.5 °C) with the exception of for site DE_Mug which had 

a larger projected increase than for other lakes of +1.5 to +2.5 °C (SD: 0.5 – 1.5 °C). In 

ENA and CNA there were only increases projected for bottom temperature in March, 
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April and for September through to December, all of which were between +1 and +3 °C 

(SD: 0.5 – 1.5 °C). An exception were the two relatively shallow lakes US_Win and 

US_Lar (mean depth: 2.1 m and 2.2 m respectively) which had increases from March 

through to November of +0.5 to +3.5 °C (SD: 0.5 – 1.5 °C). For each of the sites in the 

NAU and SAU regions, there were positive projected anomalies throughout the whole 

year of +1 to +2 °C (SD: 0.5 °C). 

 

Figure 6.23 Mean and standard deviation (SD) of the monthly bottom temperature 

anomaly for 46 lakes across four GCMs and two lake models (n=7200) for RCP 6.0 for 

the time period 2069-2099. Sites are ordered according to regions with labels on the right 

side, separated by a bold line. See Table 6.6 for site reference names. 
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Volumetrically averaged water temperature was projected to increase from 

March to November in the NEU region by +1 to +6 °C (SD: 0.5 – 1.5 °C) (Figure 6.24). 

There was a consistent positive anomaly across four of the lakes in CEU (FR_Ann, 

CH_Bie, FR_Bou and FR_Gen) of +2 °C (SD: 0.5 – 1.5 °C). In ENA and CNA, April 

through November had increases of +1.5 to +3.5 °C (SD: 0.5 – 1.5 °C).  

 

Figure 6.24 Mean and standard deviation (SD) of the monthly volumetrically averaged 

whole lake temperature anomaly for 46 lakes across four GCMs and two lake models 

(n=7200) for RCP 6.0 for the time period 2069-2099. Sites are ordered according to 

regions with labels on the right side, separated by a bold line. See Table 6.6 for site 

reference names. 
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The overall increase in the number of stratified days, described above, was 

apparent across most of the individual sites (Figure 6.25). The lakes that had the largest 

increase in the total number of stratified days by 2069-2099 for RCP 6.0 were in CEU 

(DE_Rap and DE_Ste) of +25 to +35 days (SD: 5 – 15 days; n=8) and WNA (US_Tah) 

with increases of +25 to greater than +35 days (SD: 15 – 35 days). Each of these sites 

had similar changes in stratification starting earlier and finishing later throughout the 

period. There were four sites in NEU (NO_Lan, EE_NoM, EE_NoV and FI_Paa) where 

the increase in stratification duration of +15 to + 35 (SD: 15 – 25 days) days was 

influenced more by stratification starting earlier by -15 days (SD: 5 – 15 days) (Figure 

6.26) days more so than stratification ending later +5 to +15 days (SD: 5 – 15 days) 

(Figure 6.27). In ENA and CNA, from 2006-2050 there were more occurrences of 

stratification starting earlier by -5 to -15 days (SD: 5 – 15 days) than ending later by +5 

to +15 days (SD: 5 – 15 days). The warm tropical lake IL_Kin had the smallest increase 

in stratified days by 2069-2099 of +5 to +15 days (SD: 5 – 15 days). 
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Figure 6.25 Mean and standard deviation (SD) of the anomaly for duration of 

stratification across the four GCMs and two lake models for 35 lakes (n=8) for RCP 6.0. 

Only dimictic and monomictic lakes are shown. Sites are ordered according to regions 

with labels on the right side, separated by a bold line. See Table 6.6 for site reference 

names. 
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Figure 6.26 Mean and standard deviation (SD) of the anomaly for the start of 

stratification across the four GCMs and two lake models for 35 lakes (n=8) for RCP 6.0 

for the time period 2006-2099. Only dimictic and monomictic lakes are shown. See Table 

6.6 for site reference names. 
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Figure 6.27 Mean and standard deviation (SD) of the anomaly for the end of stratification 

across the four GCMs and two lake models for 35 lakes (n=8) for RCP 6.0 for the time 

period 2006-2099. Only dimictic and monomictic lakes are shown. Sites are ordered 

according to regions with labels on the right side, separated by a bold line. See Table 6.6 

for site reference names. 

The magnitude of the density difference between the surface and bottom 

increased for all lakes throughout 2006-2099 for RCP 6.0 (Figure 6.28). There were four 

lakes in ENA (US_Fsh, US_Grn, US_Mon and US_Oka) which had the largest changes 
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of -0.3 to -0.5 kg m-3 (SD: 0.1 – 0.3 kg m-3; n=2920). Shallow polymictic lakes (EE_Vor, 

DE_Mug and US_Win) had no change to annual mean density difference between 

surface and bottom of +0.1 kg m-3 (SD: 0.1 kg m-3). While monomictic lakes which had 

weak stratification (IE_Fee and RU_Ven) had a very slight changes in density difference 

by 2069-2099 of -0.1 to -0.3 kg m-3 (SD: 0.1 kg m-3). For the sites in the Southern 

hemisphere the changes were not as large by 2069-2099 of -0.1 to -0.3 kg m-3 (SD: 0.1-

0.3 kg m-3). The rest of the sites all had changes of -0.1 to -0.5 kg m-3 by 2069-2099 (SD: 

0.1 – 0.3 kg m-3) with US_Ann having a larger SD (0.3 – 0.5 kg m-3). 
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Figure 6.28 Mean and standard deviation (SD) of the annual anomaly for density 

difference of stratification averaged across the four GCMs and two lake models (n=2920) 

for 46 lakes for RCP 6.0 for the time period 2006-2099. Sites are ordered according to 

regions with labels on the right side, separated by a bold line. See Table 6.6 for site 

reference names. 

For the period of 2069-2099, the mean monthly anomalies showed a large change 

in the projected density difference from April to October for lakes in the Northern 

Hemisphere (Figure 6.29). RU_Moz had the largest mean anomaly in June through 
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August of -0.9 kg m-3 (SD: 0.1 kg m-3+; n=7200). Sites in ENA and CNA all had increases 

of -0.3 to -0.5 kg m-3 (SD: 0.1 – 0.3 kg m-3) from June through September. The shallow 

and polymictic lakes (EE_Vor, DE_Mug and US_Win) had very small changes in density 

difference +0.1 kg m-3. 

 

Figure 6.29 Mean and standard deviation (SD) of the monthly anomaly for density 

difference of stratification averaged across the four GCMs and two lake models (n=7200) 

for 46 lakes for RCP 6.0 for the time period 2069-2099. Sites are ordered according to 

regions with labels on the right side, separated by a bold line. See Table 6.6 for site 

reference names. 
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 Thermocline depth was found to be very sensitive to the lake model, so the 

results were separated by model. Due to the variability between the GCMs, a rolling 30-

year mean was used to remove this noise and extract the climatic signal from 2036 to 

2099. The changes in projected thermocline depth was much larger and variable for 

simulations using GLM (Figure 6.30) compared to GOTM (Figure 6.31), mainly for the 

sites with a larger mean depth. Sites with relatively small mean depths did not show any 

large shifts in projected thermocline depth based on simulations using GOTM, while the 

GLM simulations for sites AU_Bur, EE_NoV and US_GrP all projected a deepening of 

the thermocline (Figure 6.30). The inter-model divergence was most apparent for 

AU_Arg (GLM: -0.25 to -0.75 m; GOTM: +0.25 to +.75 m), FI_Paa (GLM: +0.25 to 

+1.75 m; GOTM: -0.25 to -1.25 m) and US_Grn (GLM: +0.25 to -0.25 m; GOTM: -0.75 

to -2.75 m).  

Overall, the projections based on GLM indicated a stronger deepening of the 

thermocline depth than those using GOTM. For GOTM, three of the sites with large mean 

depth in the CEU region (FR_Ann, CH_LLZ, CH_Neu, CH_Bie) had a consistent 

deepening of thermocline depth of +0.25 to +1.25 m (SD: 0.25 –0.75 m; n=14400). In 

contrast, for simulations using GLM, only site FR_Ann projected a similar deepening of 

the thermocline while the other lakes projected thermocline shallowing (CH_Bie) or 

larger magnitudes in thermocline deepening (CH_LLZ). The site US_Tah was the 

deepest lake in the study (max depth: 501 m). It was projected to have a large deepening 

of the thermocline based on simulations using GOTM of greater than 3m (SD: >3 m) 

while for GLM it showed slight shallowing of -0.25 to -0.75 m (SD: 0.75 – 1.25 m). 
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Figure 6.30 30-year rolling mean of the annual summer anomaly for thermocline depth 

for 46 lakes simulated using GLM, averaged across four GCMs (n=14400) for RCP 6.0 

for the time period 2036-2099. Sites are ordered according to regions with labels on the 

right side, separated by a bold line. See Table 6.6 for site reference names. Positive values 

indicate that the thermocline is getting deeper while negative indicates it is getting 

shallower. 
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Figure 6.31 30-year rolling mean of the annual anomaly for thermocline depth for 46 

lakes simulated using GOTM averaged across four GCMs (n=14400) for RCP 6.0 for the 

time period 2036-2099. Sites are ordered according to regions with labels on the right 

side, separated by a bold line. See Table 6.6 for site reference names. Positive values 

indicate that the thermocline is getting deeper while negative indicates it is getting 

shallower. 
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Comparison of global and local 

 

Data from the GOTM global simulations were retrieved from the grid squares where six 

of the study lakes were located (Golub, personal communication). The lakes were chosen 

to represent shallow and small (NO_Lan), medium (IE_Fee) and deep (FR_Bou) lakes, 

sub-tropical (US_Ann and AU_Arg) and large surface area (US_GrP). The anomalies for 

surface and bottom temperature for the Local and Global study projections followed very 

similar distributions for the six sites for which we made comparisons (Figure 6.32). The 

Local study values for NO_Lan had a smaller range in distribution for bottom 

temperatures than those for the same site in the Global study, while for site US_Ann the 

opposite was true, and the Local study projected anomalies had a wider distribution than 

those from the Global study. 

 

Figure 6.32 Distribution of anomalies for 4 GCM for GOTM (n=122640) for six lakes 

from the local and global simulations for RCP 6.0 for the time period 2015-2099 for 

surface and bottom temperature. See Table 6.6 for site reference names. 

  



 

189 

 

 

6.5. Discussion 

 

Understanding the effects of directional climate change on lake temperature and thermal 

dynamics is essential for the future management of these systems and the services that 

they provide. This is the largest scale study that was been carried out, comparing multiple 

lakes, using a calibrated ensemble of hydrodynamic models and forced with an ensemble 

of GCMs under three prescribed climate change scenarios. We found that there was an 

unequivocal increase in surface, bottom and whole-lake water temperature across all 46 

lakes under all scenarios. Both the duration of the stratification period and the density 

difference between the surface and bottom waters also increased for most lakes. The 

consistency in these results indicates that these shifts will be part of a global phenomenon 

that will likely affect lakes in all the regions where our study sites were located (Woolway 

and Merchant, 2019). Moreover, the data from these simulations of lake physical 

responses can be used to inform on biogeochemical and biological responses. For 

example,  water temperature has been empirically linked to metabolic rates (Kraemer et 

al., 2017) and decreases in thermocline depth coupled with increased  light attenuation 

can potentially mitigate the potential for thermal shocks to cold-water fish species 

(Warren et al., 2017).  

This is also the first study of this scale that allows detailed insights into site 

specific responses. The study included lakes of varying morphometry which allowed 

further insights into what characteristics can influence the vulnerability of the lakes, as 

we had clusters of lakes which had regionally coherent forcing data but had divergent 

response in the lake variables (Butcher et al. (2015). For example, EE_Vor in NEU, 

DE_Mug in CEU and US_Win in CNA all had relatively large increases in bottom 

temperature (+2.5 °C) by the end of the century, which was a result of them being 

relatively shallow (mean depths: 2.8 m, 4.8 m and 2.1 m respectively) compared to the 

other lakes in the same region. In CEU, surface lake temperatures are projected to 

increase at a similar rate to most lakes in NEU and CNA despite air temperature increases 

being lower (+3 °C) than in the other regions (+5 °C). This could be explained by the 

increase in downwelling solar radiation experienced in CEU (+12 to +20 W m-2) which 

has been shown to account for up to 40 % of surface water temperature increases in CEU 

(Schmid and Koster, 2016). Five lakes in CNA (US_Fsh, US-Grn, US_Men, US_Mon 
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and US_Oka) had the largest increase in density difference between surface and bottom 

(-0.5 kg ) by 2069-2099 (Figure 6.28). There were decreases in wind speed (-0.3 m s-1) 

experienced at these sites, potentially attributed to atmospheric stilling (Vautard et al., 

2010), during the summer months of May to September (Figure 6.15). This phenomena 

has been shown to significantly prolong stratification dynamics for EE_Vor from 1982 

– 2010 (Woolway, et al., 2017a). 

We found that the mean annual surface temperature anomaly increase was 

relatively similar across most of the lakes by the end of the century and this was explained 

by increases in air temperature and incoming short-wave radiation. These results are 

similar to the changes reported for observed summer surface temperature trends in a 

study of lakes in many global locations by O’Reilly et al. (2015). For all lakes that 

thermally stratified in summer, the current study found that there was an increase in 

stratification duration under the RCP 6.0 scenario of on average +20 days This increase 

was highly variable for the CEU region, despite most of the lakes there showing a 

relatively consistent increase in surface temperature. This difference in the patterns for 

these surface temperature and stratification duration can be attributed to the lakes in this 

region having distinctly varying morphometry, particularly with regards mean depth and 

surface area, which Kraemer et al. (2015) previously highlighted as being more important 

in explaining differences in stratification patterns than increased surface warming. Two 

of the lakes which had the largest projected increase in stratification duration, DE_Ste 

and DE_Rap, are lakes with historically low-density differences (Figure 6.8), which was 

similar results reported by Kraemer et al. (2015).  

Wind speed has a large effect on lake thermal dynamics and a decrease in wind 

speed has been shown to reduce average whole-lake water temperature (Tanentzap et al., 

2008), increase the length of stratification (Woolway et al., 2017a) and potentially alter 

lake mixing regimes (Woolway and Merchant, 2019). Sites in the ENA and CNA regions 

were projected to experience reductions in wind speed, but all our simulations indicated 

that all these sites would have increases in whole lake temperature and increases in 

stratification duration. This result indicates that the increases in air temperature and 

downwelling shortwave radiation have a stronger influence than a possible cooling effect 

caused by decreases in wind speed. Seasonal and monthly variability are highly 

important when quantifying climate change impacts (Shatwell et al., 2019; Toffolon et 
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al., 2020; Winslow et al., 2017a). In the NEU region, there was a large positive anomaly 

in air temperature from November through to April, which led to a large increase in 

surface temperature in April and May, This then contributed to large increases in the 

density difference between surface and bottom water while also contributing to the start 

of stratification becoming earlier. 

The multi-model ensemble approach used in this chapter was very powerful, 

particularly for ascertaining levels of uncertainty associated with each output. The key 

benefit of using ensembles is that the non-predictable aspects of the simulation can be 

removed through averaging, and uncertainty information can be gauged from the range 

of ensemble members (Duan et al., 2007). In this climate impact study for lake thermal 

dynamics, the ensemble represents the range of uncertainty across all the four GCMs and 

the two lake models. A multi-model ensemble approach brings with it risks of 

underestimating uncertainty due to correlation between models that share input data and 

parameterization (Riccio et al., 2007). However, using a diversity of input data (e.g. in 

our study forcing data from four GCMs) improves estimations of uncertainty as they 

account for many different possible futures (Diallo et al., 2012; Kendon et al., 2010; 

Shatwell et al., 2019). There was a noticeable lack of agreement between GCMs for the 

wind speed anomalies (Figure 6.34), while in contrast downwelling short-wave radiation 

anomalies and air temperature anomalies were highly correlated between GCMs (Figure 

6.33, Figure 6.35).  
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Figure 6.33 Paired scatter plot. distributions and correlations of the 30-year rolling mean 

anomaly for air temperature (A) the four GCMs across all 46 lakes from 2036-2099. 
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Figure 6.34 Paired scatter plot, distributions and correlations of the 30-year rolling mean 

anomaly for wind speed for the four GCMs across all 46 lakes from 2036-2099. 
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Figure 6.35 Paired scatter plot, distributions and correlations of the 30-year rolling mean 

anomaly for downwelling shortwave radiation for the four GCMs across all 46 lakes from 

2036-2099. 

Despite the differences between GCM outputs, the simulations for the two lake 

models in our study had relatively high agreement for the anomalies of whole-lake 

temperature and density difference between surface and bottom (Figure 6.36, Figure 

6.37). However, we found that there was little or no correlation for thermocline depth 

between the two models we used here (Figure 6.38). Shifts in thermocline depth is known 

to play a role in phytoplankton and zooplankton composition and structure (Cantin et al., 

2011) and on boundary mixing and nutrient fluxes across the thermocline (Lorke, 2007; 

MacIntyre et al., 1999). Therefore, assessing effects of climate change on lakes and 

reservoirs would need to ensure that this aspect of lake physics is captured if coupled 
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biogeochemical models are to produce reliable projections. Overall, these results 

highlighted that projections of lake temperature anomalies have relatively low 

uncertainty, while the uncertainty around thermocline depth is still quite large and will 

require further investigation and model refinement. Further research will be carried out 

in this area when all the simulations for all lake models for ISIMIP2b have been 

completed. 

 

 

Figure 6.36 Hexagon density scatterplot of annual GOTM anomaly versus GLM anomaly 

for the four GCMs and for the four scenarios for volumetrically averaged temperature 

for 46 lakes. 
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Figure 6.37 Hexagon density scatterplot of annual GOTM anomaly versus GLM anomaly 

for the four GCMs and for the four scenarios for density difference between the surface 

and bottom for 46 lakes. 
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Figure 6.38 Hexagon density scatterplot of annual GOTM anomaly versus GLM anomaly 

for the four GCMs and for the four scenarios for thermocline depth for 46 lakes. 

The Global and Local lake simulations had very similar distributions of annual 

anomalies for surface and bottom temperatures for six lakes (Figure 6.32). This result, 

while preliminary, is promising for the Global simulations ability to accurately replicate 

thermal conditions to a similar degree of accuracy as the local. When working on a global 

scale, it is imperative that simulations are ‘ground-truthed’ to ensure that the assumptions 

made e.g. cylinder bathymetry, do not lead to unrealistic results as has been shown for 

global modelling studies in hydrology (Vörösmarty et al., 1998) and the carbon cycle 

(Carvalhais et al., 2008). Further comparison between the Global and Local models will 



 

198 

 

 

be carried out in the future across other variables, such as stratification, to investigate if 

there are any potential biases in the global dataset. 

It is envisaged that the output from the ISIMIP project will be used to help design 

policies which affect stakeholders such as lake or reservoir managers for managing 

hydropower production (Jahandideh-Tehrani et al., 2014), flood risk (Eum et al., 2012) 

and water supplies (Georgakakos et al., 2012; Sidiropoulos et al., 2013). It is important 

to remind these potential end-users that the projections within the ISIMIP project are for 

specific prescribed scenarios which represent potential different changes to radiative 

forcing on our planet (Moss et al., 2010). While there is uncertainty with regards the 

trajectory within these scenarios, historical climate models have been shown to be skilful 

in predicting global mean surface temperature changes, even when accounting for the 

differences between observed changes in forcing and prescribed changes (Hausfather et 

al., 2020). The skill of our historical simulations indicates that the model projections 

produced in our study are highly likely, if there are no concerted global efforts made to 

reduce emissions (IPCC, 2013). Increases in the strength and duration of stratification 

pose significant challenges to water resource largely due to increases in the risk of 

hypoxia at lower depths, internal loading of nutrients and increases in cyanobacteria 

blooms (Butcher et al., 2015; North et al., 2014). This can particularly affect the quality 

of drinking water (Delpla et al., 2009) and has led to the development and increased 

deployment of technologies to aerate and de-stratify lakes and thus reduce these risks 

(Gerling et al., 2014; Hanh et al., 2017; Smith et al., 2018). This would be a highly 

expensive mitigation measure that could potentially need to be introduced at sites if the 

anticipated changes in stratification pose such a threat at sites. Fundamental changes in 

the lake thermal structure could also drastically reduce the availability of thermal habitat 

for certain species of cold-water fish (Guzzo and Blanchfield, 2017). This could lead to 

a shift in habitat range and subsequently a loss of some fish species in some lakes (Hein 

et al., 2012). 

For ISIMIP3, the next round of climate impact modelling projections, there are 

several recommendations arising from this study that would increase confidence in 

projections of lake thermal structure. We would strongly recommend against the 

inclusion of light attenuation as a parameter for calibration because 1) it changes the light 

regime of the lake and 2) reduces the ability to do a fair comparison between models if 
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the light attenuation used for the same lake but different models is quite different (Figure 

6.10). There are notable dynamic feedbacks that occur between lake biogeochemistry 

and light where light can decrease as a result of establishment of macrophytes (Su et al., 

2019) or increase as a result of nutrient loading, for example phosphorus or nitrogen 

(Søndergaard et al., 2017). Model parameters used in the calibration protocol should be 

selected that do not have a large impact on the energy budget of the lake. This would 

mean not including variables such as scaling factors on incoming short-wave radiation 

and net surface heat fluxes. Usage of such scaling factors could impact and potentially 

alter the climate signal. Therefore, an area for future research would be to analyse and 

quantify the potential impact including such factors has on how climatic trends are 

transferred into an in-lake response. Ideally, we suggest that incorporating as few model 

adjustments as necessary would be the best approach. Many of these lake sites have 

measured meteorological data on-site. Development of a bias-correction method for each 

site to be applied to each GCM would allow further reduction in uncertainty rather than 

using EWEMBI as was carried out by Shatwell et al. (2019). We also assumed a fixed 

water level for each of the lakes which potentially was one of the reasons for poor 

calibration for some lakes but also it is an unrealistic assumption to neglect the flow of 

water in these systems. We would recommend that, particularly for lakes which have 

large water level fluctuations and/or short residence times, that a protocol for inflow and 

outflow calculation is developed which could be a relatively simple format of having 

inflow equal the outflow, or to introduce a seasonal fluctuation if that is strongly 

pronounced in the lake. It would be of even higher impact if there was a cross-sectoral 

integration of the ISIMIP regional hydrological modelling group to produce inflows for 

the lake simulations, otherwise using a simple lumped hydrological model could be 

driven by the GCM’s to produce scenario relevant inflows. 

 

6.6. Conclusion 

 

This study is the first to apply multiple complex dynamic models to project global lake 

thermal responses to climate change. The ensemble modelling approach has been used 

for decades for weather forecasting and climate modelling, and is common practise when, 

for example, in IPCC reports on the potential effects of anthropogenic activities on future 
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climate. Furthermore, the meteorological and climate modelling communities have, over 

many years, built up a strong history for observation and model-data sharing hence 

facilitating ensemble modelling. This can to a large degree be explained by the fact the 

national meteorological institutes are all members of the World Meteorological 

Organization and data exchanges are built into the organization charter. The same is not 

the case for lake-modelling. Sharing of observations and model results is mostly done on 

a bi-lateral basis through direct/individual contact. Providing an open forum for exchange 

of observations, numerical models, model configurations and model results is of prime 

interest to the entire lake-modelling community and is necessary to adequately convey 

uncertainties in model projections to the wider community. This is even more importance 

as we aim to mitigate and manage the impacts of climate change on lake ecosystems. 
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CHAPTER 7.  SYNTHESIS 

 

Inland water bodies are a crucial resource globally with approximately over 50 % of the 

global population living within 3 km of a freshwater body (Kummu et al., 2011). They 

hold cultural, recreational, economical and functional importance (Rees, 1997; Sobek et 

al., 2012; Gallina et al., 2017). Water security is a constant issue in some parts of the 

world (White et al., 2007; Xia et al., 2007). Provision of potable water and water for 

irrigation purposes are two fundamental purposes of lakes and reservoirs (Goff and 

Crow, 2014; Torabi Haghighi and Kløve, 2017). Historical mismanagement of water 

courses has led to significant degradation of aquatic habitat to a degree where it is highly 

unlikely they will be able to recover, for example the Aral Sea (Micklin, 2007), the Great 

Lakes in Africa (Fryer, 1972; Chen et al., 2018) and the Great Lakes in North America 

(Sproule-Jones, 1999; Kling et al., 2003). Currently, humanity is having to deal with the 

resultant impacts its actions have left on the Earth’s environment, such that we have now 

entered the Anthropocene (Crutzen, 2006; Lewis and Maslin, 2015). The biosphere is 

increasingly under pressure as humans disrupt the hydrological cycle (Tapiador et al., 

2016; Szilagyi, 2018), creating imbalances in the carbon cycle (Curtis and Gough, 2018; 

Kirschbaum et al., 2019), phosphorus cycle (Filippelli, 2008; Vaccari, 2009) and the 

nitrogen cycle (Vitousek et al., 1997; Fields, 2004). A rigorous scientific approach which 

seeks to understand and predict future trajectories in a rapidly changing world is required 

to meet these management challenges and ensure water security for future generations. 

Hydrodynamic modelling is central to this effort.  

Aquatic ecosystems are particularly sensitive to short-term and long-term 

meteorological changes (Adrian et al., 2009). One of the reasons is because of water’s 

high specific heat capacity and the non-linear relationship between water temperature 

and density. This causes water bodies to warm slowly and retain heat for longer periods 

of time and as water temperature increases, the decrease in density becomes greater. This 

influences the length and strength of stratification in lakes and reservoirs and governs 

ecosystem structure. The ability, therefore, to accurately simulate the physical structure 

of lakes is fundamental to any development of automated predictions of in-lake processes 

including short-term forecasts or decadal-scale projections (Peng et al., 2019; Shatwell 

et al., 2019). Such automated workflows are central to the future managements of 
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precious freshwater resources.  The work described in this thesis addresses some of the 

key issues associated with implementing automated modelling workflows, including 

efficiency, coverage, uncertainty and accuracy. While gridded climate products have 

been used as forcing data for 1D hydrodynamic models in several previous studies (e.g. 

Woolway et al., 2017b), the limitations and uncertainties associated with such an 

approach have not been rigorously compared against a common benchmark, such as 

locally observed meteorological data. This was explored in chapter 4. Increased 

availability of real-time monitoring data offers an opportunity to assimilate observed data 

into modelling workflows to improve accuracy, and this was demonstrated in chapter 5. 

Finally, knowledge and modelling expertise gained through the work described in 

chapters 4 and 5 enabled the work described in chapter 6, a multi-model ensemble 

approach toward accurately simulating future climate impacts across multiple lake sites 

on a global scale, which has never been carried out before.  

 

7.1. Summary of findings 

 

Temporal and spatial expansion of modelling sites 

 

The work in chapter 3 of this thesis showed that gridded meteorological datasets, which 

are freely obtainable on-line, can be used in an uncalibrated model setup to simulate 

observed water temperature profiles with a high degree of accuracy. The use of gridded 

data offers many benefits for lake modellers. Firstly, it allows hydrodynamic modelling 

to be carried out for large areas where there is sparse meteorological data and a large 

numbers of lake, for example Northern Canada, the Tibetan plateau or Northern Europe 

(Verpoorter et al., 2014). Secondly, gridded meteorological datasets can be used as a 

complimentary dataset for occasions when meteorological instrumentation malfunctions 

and creates gaps in the forcing dataset. Finally, the ECMWF datasets currently cover a 

relatively long time period from 1979 to the present and it is expected in the near future, 

that the ERA5 dataset will cover the period 1950 to the present (Copernicus Climate 

Change Service, 2017). This will present increased opportunities for accurate hindcasting 

of lake conditions, as in order to understand the implications of future possible changes, 
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it is necessary to understand the historic state of any site (Hadley et al., 2014; Moras et 

al., 2019; Piccolroaz et al., 2020). If lake models which have been forced with these 

gridded datasets simulate lake thermal structure and related physical processes accurately 

for present day conditions (as demonstrated in chapter 3), it gives greater confidence that 

a similar degree of accuracy will be obtained for historical time periods using the same 

forcing data. The work described in chapters 5 and 6 also adds confidence that short term 

forecasts and future climate projections can accurately simulate in lake dynamics, as they 

are also generated using gridded meteorological datasets. 

 This thesis covers research from site specific to large-scale global work. This 

provided key insights into the trade-offs when approaching such studies. Site specific 

modelling studies allow for higher levels of detail towards accounting for site specific 

processes such as inflows, outflows and water level fluctuations as was seen in chapters 

4 and 5. While for large global studies, assumptions must be made to reduce the 

dimensions of complexity which is seen in chapter 6. It is critical, that such assumptions 

are designed and approached in a way that ensures that the robustness of the study is not 

compromised. Justification of assumptions is critically important and also having clear 

and well-defined boundaries to ensure that simulations which fall below a certain level 

of quality are excluded to prevent spurious and suspect results as was done in chapter 6 

through the exclusion of lakes which did not meet a certain criteria. Further research into 

ways to overcome some of the assumptions made would be hugely beneficial in reducing 

some sources of uncertainty in large global modelling studies and lend more 

weight/credibility to such findings. 

 

Global limnology 

 

Global ecology was a term that brought ecological matters to the forefront on a global 

scale. Global limnology is the effort to build understanding around the processes that 

affect lakes beyond site-specific in-lake events (Downing, 2009). Efforts have been made 

to simplify understanding and provide classifications according to a lake type e.g. based 

on mixing regime or surface water temperature (Lewis, 1983; Maberly et al., 2020b), 

these generalisations allow for projecting upwards based on lake “type”. Use of such 
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classifications can be problematic as it goes against the concept of general ecological 

theory and can introduce further limitations (Kraemer, 2020). Lakes play an important 

role in many key global cycles e.g. hydrological and carbon cycles. However, many 

limnological studies are focused on one case study or a small selection of lakes. The 

ISIMIP Lake Sector is the first globally inter-connected network focused on 

characterising global impacts of climatic change on lakes via a dual-layered approach i.e. 

global and local simulations (section 6.2.3). Currently, the Lake Sector is in a 

developmental stage, but this will be an important network to maintain and build upon 

recent research in global limnology. Expansion of the study focus of that group to include 

as many lakes as possible is crucially important through inclusion of sites from areas 

which were not included in this study, for example South America, Central and South 

East Asia and the African Great Lakes. Also the inclusion of small lakes and ponds is 

critical because it has been shown that their contribution to the global carbon cycle has 

been largely underestimated (Downing, 2010). 

In chapter 6 the potential applications of this project at a global scale were clearly 

demonstrated. The use of an ensemble of lake models and GCMs allowed the 

determination of sources of uncertainty, and therefore levels of confidence, in 

predictions. While there were differing responses in the meteorological variables, there 

was a strong cohesive global response for key lake variables e.g. lake surface water 

temperatures and length of stratification were projected to increase unequivocally under 

the emissions scenario RCP 6.0. These results highlight that management needs to target 

both emissions and effects in lakes as resource managers seek to mitigate the negative 

changes that were identified in this study. The uncertainties related to some lake physical 

variables (e.g. thermocline depth) and the unmeasured uncertainties as a result of some 

assumptions (e.g. fixed water levels, unchanging light attenuation, no inflows or 

outflows) need to be the focus of the next round of simulations. While it can be gleaned 

from the current results that responses for surface temperatures are relatively clear-cut, 

further research is needed to reduce the uncertainties in the projected change in  lake 

physical thermal structure. 
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Foundations of predictive limnology 

 

The aim of forecasting is to predict what is probably going to occur in the near future. 

Unsurprisingly, research in clairvoyancy has so far yielded little to no results. The goal 

of using a mechanistic model for forecasting is based on the understanding that the model 

can simulate observed processes. In chapter 5 a simple data assimilation methodology 

was applied to varying systems and showed how effective it was at reducing error in 

short-term simulations. For forecasting, predicting the future needs to be communicated 

in a probabilistic manner to represent the inherent uncertainties that are integrated within 

(Grounds et al., 2017). Managing these uncertainties is crucially important if the 

forecasts are to be actionable and to build trust between the end-user and the forecaster. 

In tandem with this, forecast need is dependent on the service a water body provides, 

although in these early stages of water temperature forecasts they should be deployed at 

sites with highly instrumented sites to develop the fundamental principles of lake 

forecasting. 

In contrast to meteorological forecasting, limnological forecasting is not 

dominated by the “initial conditions” problems that dominates meteorological 

forecasting. Lakes and reservoirs are well constrained and follow a relatively predictable 

seasonal cycle. The key benefits of a forecast are the ability to accurately predict episodic 

events. While this was not the focus of this study, the results highlighted that with high-

frequency data the short-term forecasts are extensively improved with such data. Actual 

observed meteorological data was used in this study, for an actual forecast there will be 

increased uncertainty when this propagate through this framework. Accuracy in 

meteorological forecasts has been consistently improving throughout the last 90-years of 

research. This has been through a combined approach of increases in synoptic weather 

observations combined with advances in model development with improved data 

assimilation techniques (Simmons and Hollingsworth, 2002). Therefore, it is important 

to understand that predictive limnology still must grow and develop. This will allow for: 

the principles of predictive limnology to develop, identification of research bottlenecks 

and the expansion of knowledge in this field. At the same time, predictive limnology can 

utilise the insights from the almost 90-year journey that numerical weather prediction 

has already been on (Shuman, 1989). This includes the development of strong 
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collaborative networks to facilitate data and knowledge sharing while also harnessing the 

power of open source and freely available tools. 

  

7.2. An Irish context 

 

This thesis sets the groundwork for establishing a comprehensive regional monitoring 

and modelling programme which could be part of a more comprehensive management 

program for lakes and reservoirs. For example, in Ireland 226 lakes are included in the 

national monitoring program run by the Irish EPA (https://www.epa.ie/water/wm/lakes/). 

This includes all lakes larger than 50 ha (0.5 km2) monitored in accordance with the 

European Commission’s WFD 2000/60/EC (European Council, 2000), several of which 

are used for drinking water. Many of these sites are monitored at a relatively low 

frequency. It is envisioned that the workflows developed within this study could allow 

for scaling up and integration of lake modelling into the monitoring of Irish lakes. Setting 

up of models for monitoring sites has become easier through the development of open-

source and well documented tools such as the newly developed open-source R package 

“LakeEnsemblR” which has been collaboratively developed with colleagues in the 

Aquatic Ecosystem Modelling Network – Junior (AEMON-J) (Moore et al., 2020). This 

toolset allows the user to set up a modelling study with five different lake models (FLake, 

GLM, GOTM, Simstrat and MyLake) using a standardised format of model inputs (a 

prototype of which was used in chapter 4). Using measured historical data (even low 

frequency as described in chapter 5) models could be calibrated for each Irish lake of 

interest. If meteorological data are not measured on site, then freely available gridded 

reanalysis data could be used as forcing data for the model such as ERA5 or ERAI (as 

demonstrated in chapter 4). A hindcasting experiment using data from ERA5 could 

provide an extensive resource to accurately recreate the recent historical period in 

Ireland.  

Developing a regional-scale forecasting framework for the above-mentioned 226 

Irish lakes could potentially be implemented using the forecasting system described in 

chapter 5. It would be able to provide forecasts daily across all lakes and the data 

collected from the monitoring programme could be assimilated at its current collection 

https://www.epa.ie/water/wm/lakes/
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frequency to reduce uncertainty around the forecasts. To further understand potential 

threats and vulnerabilities in a changing climate, long-term multi-decadal projections can 

be used. These have already been used to produce adaptive management scenarios 

(Ladwig et al., 2018; Page et al., 2018; Mi et al., 2019; Feldbauer et al., 2020). The 

expansion of such a network would provide an environmental monitoring body such as 

the EPA with unprecedented information about past, present and future conditions in 

Irish lakes. This would allow for more targeted management plans for lakes which are 

potentially more vulnerable and allow a more cost-efficient allocation of restoration and 

conservation efforts. Modelling studies at a regional scale have been carried out 

elsewhere. For example, thousands of lakes across the US Midwest were modelled using 

GLM for contemporary and future time periods (Read et al., 2014; Winslow et al., 

2017a). There is no doubt that the tools described here, including the use of consistent, 

openly available meteorological data, calibration of models using observed data and 

projections using an ensemble of lake models, make these regional scale studies more 

accurate, and computationally efficient. 

The Irish EPA have recently released the latest round of global climate 

simulations as part of the Coupled Model Intercomparison Project phase 6 (CMIP6) 

(Nolan and McKinstry, 2020). This has been integrated into the Coordinated Regional 

Downscaling Experiment (CORDEX) Model Intercomparison Project (MIP). This 

provides high resolution, temporal (6-hourly) and spatial (~79 km horizontal grid 

spacing) data and could be used to model lakes across Ireland, using a similar framework 

as described in chapter 6. The impact of climate change could be quantified across lake 

types. For example, Arctic Char (Salvelinus alpinus L.) have  been shown to be 

particularly sensitive to shifts in climate change due to warming water temperatures and 

shifts in predator-prey interactions (Hein et al., 2012; Jonsson and Setzer, 2015), and are 

confined to only a small number of Irish lakes (Igoe et al., 2003; Igoe and Hammar, 

2004). Modelling future habitat changes in Irish lakes would help to inform the 

management of this species. 

As previously highlighted, the integration of hydrological information into lake 

modelling workflows is likely to increase their usefulness. Previous hydrological 

research has been carried out across 37 catchments on the island of Ireland (Broderick et 

al., 2016) which could potentially be expanded upon using the extensive network of 
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hydrometric stations around the country maintained by the Office of Public Works 

(OPW) (OPW, 2020). This could be interconnected with the lake network in Ireland to 

allow for modelling from catchment to sea. Such a system has been demonstrated in a 

boreal catchment in Southern Finland and allows for improved estimations of dissolved 

organic carbon export (Holmberg et al., 2014). 

 

7.3. Future research 

 

There are several gaps in the knowledge which have been highlighted by the works in 

this thesis that warrant further research. The influence of uncertainty in inflow volumes 

when forecasting was not included in chapter 4 despite one of the sites having a relatively 

short residence time (Langtjern, NO: ~ 80 days). Inflows and outflows were also not 

included in the ISIMIP modelling workflow described in chapter 6. Lake inflows can 

play an important role in determining lake physical structure (Fenocchi et al., 2017; 

Råman Vinnå et al., 2018). The coupling of open source hydrology modules could 

significantly increase the accuracy of model simulations in certain lake types. An area of 

interest would be the integration of hydrology models from the ISIMIP hydrology sector 

in future lake simulations carried out within the ISIMIP framework. This is of particular 

importance in geographic areas where  water security is an identified risk (Paton et al., 

2013; Paton et al., 2014).  

Characterising each of the model’s sensitivity to lake bathymetry is another area 

which would benefit from some attention, particularly if models are going to be used for 

many lakes on a regional scale. Detailed lake bathymetry is only available for a very 

small proportion of the global lake population, only detailed bathymetry from 2,434 sites 

globally were included in Messager et al. (2016) from an estimated 1.42 million lakes on 

the planet. Potentially some of the current generation of 1D models are more sensitive 

than others to a lack of this data. For example, the FLake model does not require 

bathymetry, as it uses mean depth. While it has been demonstrated that Flake simulates 

observed surface data relatively well (Thiery et al., 2014;b Woolway et al., 2017b; 

Shatwell et al., 2019; Woolway and Merchant, 2019; Woolway et al., 2019), the work 
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described in this thesis indicates that it has reduced performance at simulating water 

temperatures at lower depths (chapter 4). 

A key area of interest would be the coupling of biogeochemical models with the 

physical lake models using a forecasting framework as described in chapter 5. 

Information regarding water quality such as fluxes of dissolved organic carbon and algal 

blooms is of key importance for water quality managers. Whilst accurate prediction of 

lake thermodynamics is central to water quality management, detailed information in 

relation to in-lake biogeochemical processes is also required. Coupling of lake 

hydrodynamic models with process-based biogeochemical models can be a difficult and 

onerous task due to the large quantities of data that are required (Janssen et al., 2019). 

These data, such as inflowing nutrient concentrations of total nitrogen and total 

phosphorus, may have lower temporal resolution (weekly to monthly) and have a higher 

uncertainty due to the higher potential for large fluctuations (Nielsen et al., 2014). 

Despite these limitations, several studies have successfully  simulated important 

biological processes such as phytoplankton dynamics across lakes of varying trophic 

states (Copetti et al., 2006), biogeochemical variations during floods (Romero et al., 

2004), timing of biogeochemical processes (Kara et al., 2012), phytoplankton succession 

(Kerimoglu et al., 2017), in-lake carbon dynamics (Benoy et al., 2007; Couture et al., 

2012), oxygen dynamics (Couture et al., 2015) and methane emissions (Tan and Zhuang, 

2015; Tan et al., 2018). The results of these studies indicate that many biogeochemical 

and ecological dynamics can be modelled successfully, with the next step to include them 

in the types of forecasting future climate frameworks described in chapters 4 and 5. 

During the PROGNOS project a Simple EcoLogical Model for the Aquatic environment 

(SELMA) was developed, which can be used to simulate abundance of zooplankton and 

phytoplankton groups. A sub-module DOMCAST was also developed for the simulation 

of the fate of DOM in the lake. Further testing of these models with high resolution data 

collected at the test sites in chapter 3 would allow for potential application at these sites. 

A final area that is currently rapidly evolving is the subject of ecological 

forecasting. A quick and efficient data assimilation method which considerably reduces 

the model error in short-term forecasts is described in chapter 5. Further development of 

a water forecasting framework that accounts for more sources of uncertainty and a more 

thorough approach to data assimilation than simple direct insertion would be desirable. 
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The benefits of using Ensemble Kalman filters (EnKF) in modelling has been clearly 

demonstrated for lake carbon dynamics (Zwart et al., 2019), three-dimensional 

hydrodynamics (Baracchini et al., 2019), sediment transport modelling (Stroud et al., 

2010) and forecasting phytoplankton communities (Page et al., 2018). Such methods 

allow for partitioning out and quantification of different sources of uncertainty. 

Uncertainty quantification is crucially important if forecasts are to be actionable 

(Kirchhoff et al., 2013). 

 

7.4. Personal development 

 

Lake modelling is a rapidly evolving area of science due to its multitude of applications. 

A key driver in this field is the emphasis on open-source software, collaborative and 

networked science. Using these three approaches I was able to advance my own research 

and contribute back to the community through the development of new methods and tools 

built using open-source software that are freely available. Emphasis in this regard is key 

to driving further developments and is critical for science to be reproducible. Through 

collaborative research I have been able to work with scientists across Europe, North 

America and Australia as part of the PROGNOS and WateXr projects. This was critical 

to helping shape my approach to critical thinking when approaching scientific problems 

and developing skills in project management. Being part of the Global Lake Ecological 

Observation Network (GLEON) and AEMON-J helped to integrate myself into networks 

which are at the forefront of research developments within lake science. I would argue 

that these three pillars; open-source software, collaborative research and networked 

science are instrumental in advancing science, but also the fundamental unit that is 

needed for the field of science to tackle many of the issues facing the world today. 
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7.5. Concluding remarks 

 

Across the world the ecological status of aquatic ecosystems and particularly lakes are 

in decline. This thesis has shown how the power of using collaborative open source 

science is critical in addressing future problems as a result of the unequivocal changes to 

our climate. Hydrodynamic models can: forecast lake temperature accurately on short-

time scales with assimilation of observation data, expand modelling efforts for sites 

which do not have measured meteorological data and project the potential impacts of 

future climate conditions on lake thermal structure. 
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APPENDIX 

 

The code and data used in each of the chapters of this thesis can be found on the following 

GitHub repository in the corresponding chapter directory: https://github.com/tadhg-

moore/PhD-thesis 

 

https://github.com/tadhg-moore/PhD-thesis
https://github.com/tadhg-moore/PhD-thesis
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