# International Journal of Pure and Applied Mathematics 

Volume 45 No. 2 2008, 315-320

# THE STRUCTURE OF THE UNIT GROUP OF THE GROUP ALGEBRA $\mathbb{F}_{3^{k}} \boldsymbol{D}_{6}$ 

Leo Creedon ${ }^{1}$ §, Joe Gildea ${ }^{2}$<br>${ }^{1,2}$ School of Engineering<br>Institute of Technology<br>Sligo, IRELAND<br>${ }^{1}$ e-mail: creedon.leo@itsligo.ie<br>${ }^{2}$ e-mail: gildeajoe@gmail.com


#### Abstract

The structure of the unit group of the group algebra of the dihedral group of order 6 over any finite field of chracteristic 3 is determined in terms of split extensions of cyclic groups.


AMS Subject Classification: 20C05, 16S84, 20H30, 15A33
Key Words: group ring, group algebra, unit group, dihedral

## 1. Introduction

The set of all the invertible elements of a ring $S$ form a group called the unit group of $S$, denoted by $\mathcal{U}(S)$. Let $\mathbb{F}_{p^{k}} D_{2 p^{m}}$ be the group algebra of $D_{2 p^{m}}$ over $\mathbb{F}_{p^{k}}$, where $\mathbb{F}_{p^{k}}$ is the Galois field of $p^{k}$-elements, $D_{2 p^{m}}$ is the dihedral group of order $2 p^{m}$ and $p$ is a prime. For further details on group algebras see [5]. In [2], the order of $\mathcal{U}\left(\mathbb{F}_{p^{k}} D_{2 p^{m}}\right)$ is established to be $p^{2 k\left(p^{m}-1\right)}\left(p^{k}-1\right)^{2}$, where $p$ is an odd prime and $m \in \mathbb{N}_{0}$.

Let $C_{n}$ be the cyclic group of order $n$. Let $M_{n}(R)$ be the ring of $n \times n$ matrices over a ring $R$. Using an established isomorphism between $R G$ and a subring of $M_{n}(R)$ and other techniques, we establish the structure of $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right)$ to be $\left(\left(C_{3}{ }^{3 k} \rtimes C_{3}{ }^{k}\right) \rtimes C_{3^{k}-1}\right) \times C_{3^{k}-1}$.

Received: April 17, 2008 © 2008, Academic Publications Ltd.
${ }^{\S}$ Correspondence author

## 2. Background

Definition 2.1. A circulant matrix over a ring $R$ is a square $n \times n$ matrix, which takes the form

$$
\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \ldots & a_{1}
\end{array}\right)
$$

where $a_{i} \in R$.
For further details on circulant matrices see Davis [1].
Let $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ be a fixed listing of the elements of a group $G$. Then the following matrix:

$$
\left(\begin{array}{ccccc}
g_{1}^{-1} g_{1} & g_{1}^{-1} g_{2} & g_{1}^{-1} g_{3} & \ldots & g_{1}^{-1} g_{n} \\
g_{2}^{-1} g_{1} & g_{2}{ }^{-1} g_{2} & g_{2}^{-1} g_{3} & \ldots & g_{2}^{-1} g_{n} \\
g_{3}^{-1} g_{1} & g_{3}^{-1} g_{2} & g_{3}^{-1} g_{3} & \ldots & g_{3}^{-1} g_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{n}^{-1} g_{1} & g_{n}^{-1} g_{2} & g_{n}^{-1} g_{3} & \cdots & g_{n}^{-1} g_{n}
\end{array}\right)
$$

is called the matrix of $G$ (relative to this listing) and is denoted by $M(G)$. Let $w=\sum_{i=1}^{n} \alpha_{g_{i}} g_{i} \in R G$, where $R$ is a ring. Then the following matrix:

$$
\left(\begin{array}{ccccc}
\alpha_{g_{1}-1} g_{1} & \alpha_{g_{1}-1 g_{2}} & \alpha_{g_{1}-1} g_{3} & \ldots & \alpha_{g_{1}-1 g_{n}} \\
\alpha_{g_{2}-1} g_{1} & \alpha_{g_{2}-1} g_{2} & \alpha_{g_{2}-1 g_{3}} & \ldots & \alpha_{g_{2}-1 g_{n}} \\
\alpha_{g_{3}-1} g_{1} & \alpha_{g_{3}-1 g_{2}} & \alpha_{g_{3}-1 g_{3}} & \ldots & \alpha_{g_{3}-1 g_{n}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{g_{n}-1 g_{1}} & \alpha_{g_{n}-1 g_{2}} & \alpha_{g_{n}-1 g_{3}} & \cdots & \alpha_{g_{n}-1 g_{n}}
\end{array}\right)
$$

is called the $R G$-matrix of $w$ and is denoted by $M(R G, w)$.
The following Theorem can be found in [3].
Theorem 2.2. Given a listing of the elements of a group $G$ of order $n$ there is a bijective ring homomorphism between $R G$ and the $n \times n G$-matrices over $R$. This bijective ring homomorphism is given by $\sigma: w \mapsto M(R G, w)$.

Example 2.3. Let $D_{2 n}=\left\langle x, y \mid x^{n}=1, y^{2}=1, y x=x^{-1} y\right\rangle$ and $\kappa=$

$$
\begin{gathered}
\sum_{i=0}^{n-1} a_{i} x^{i}+\sum_{j=0}^{n-1} b_{j} x^{j} y \in \mathbb{F}_{p^{k}} D_{2 n}, \text { where } a_{i}, b_{j} \in \mathbb{F}_{p^{k}} \text { and } p \text { is a prime, then } \\
\sigma(\kappa)=\left(\begin{array}{cc}
A & B \\
B^{T} & A^{T}
\end{array}\right)
\end{gathered}
$$

where $A=\operatorname{circ}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ and $B=\operatorname{circ}\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$.
The next result can be found in [5].
Lemma 2.4. Let $G$ be an Abelian group of order $n$ and $K$ a field such that the characteristic of $K$ does not divide $n$. If $K$ contains a primitive root of unity of order $n$ then $K G \cong \underbrace{K \oplus \cdots \oplus K}_{n}$.

Example 2.5. $\mathcal{U}\left(\mathbb{F}_{p^{k}} C_{2}\right) \cong C_{p^{k}-1} \times C_{p^{k}-1}$ when $p \neq 2$.
Proof. Since $p \neq 2, \mathbb{F}_{p^{k}}$ contains primitive roots of unity of order 2. Therefore $\mathbb{F}_{p^{k}} C_{2} \cong \mathbb{F}_{p^{k}} \oplus \mathbb{F}_{p^{k}}$ and $\mathcal{U}\left(\mathbb{F}_{p^{k}} C_{2}\right) \cong C_{p^{k}-1} \times C_{p^{k}-1}$.

The next two results appear in [2]
Proposition 2.6. Let $A=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{p^{m}}\right)$, where $a_{i} \in \mathbb{F}_{p^{k}}, p$ is a prime and $m \in \mathbb{N}_{0}$. Then

$$
A^{p^{m}}=\sum_{i=1}^{p^{m}} a_{i}^{p^{m}} \cdot I_{p^{m}}
$$

Theorem 2.7. $\left|\mathcal{U}\left(\mathbb{F}_{p^{k}} D_{2 p^{m}}\right)\right|=p^{2 k\left(p^{m}-1\right)}\left(p^{k}-1\right)^{2}$, where $p$ is an odd prime and $m \in \mathbb{N}_{0}$.

## 3. The Structure of $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right)$

Define the ring homomorphism $\theta: \mathbb{F}_{3^{k}} D_{6} \longrightarrow \mathbb{F}_{3^{k}} C_{2}$ by

$$
\sum_{i=0}^{2} a_{i} x^{i}+\sum_{j=0}^{2} b_{j} x^{j} y \longmapsto \sum_{i=0}^{2} a_{i}+\sum_{j=0}^{2} b_{j} \cdot \bar{y} .
$$

Now define the group epimorphism $\theta^{\prime}: \mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right) \longrightarrow \mathcal{U}\left(\mathbb{F}_{3^{k}} C_{2}\right)$, where $\theta^{\prime}$ is $\theta$ restricted to $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right)$. Let $\psi: \mathcal{U}\left(\mathbb{F}_{3^{k}} C_{2}\right) \longrightarrow \mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right)$ be the group homomorphism defined by $a+b . \bar{y} \mapsto a+b . Y$. Then $\theta^{\prime} \circ \psi(a+b . \bar{y})=\theta(a+b . Y)=$ $a+b . \bar{y}$. Therefore $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right)$ is a split extension of $\mathcal{U}\left(\mathbb{F}_{3^{k}} C_{2}\right)$ by $\operatorname{ker}\left(\theta^{\prime}\right)$. Thus $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right) \cong H \rtimes \mathcal{U}\left(\mathbb{F}_{3^{k}} C_{2}\right)$, where $H=\operatorname{ker}\left(\theta^{\prime}\right)$.

Lemma 3.1. $H$ has exponent 3.

Proof. Let $\alpha=\sum_{i=0}^{2} a_{i} x^{i}+\sum_{j=0}^{2} b_{j} x^{j} y \in H$, where $a_{i}, b_{j} \in \mathbb{F}_{3^{k}}$. Note that $\sum_{i=0}^{2} a_{i}=1$ and $\sum_{j=0}^{2} b_{j}=0$ since $\alpha \in H$. Then

$$
(\sigma(\alpha))^{3}=\left(\begin{array}{cc}
A & B \\
B^{T} & A^{T}
\end{array}\right)^{3}=
$$

$$
\left(\begin{array}{cc}
A^{3}+2 A B B^{T}+A^{T} B B^{T} & A^{2} B+A A^{T} B+B^{2} B^{T}+\left(A^{T}\right)^{2} B \\
A^{2} B^{T}+B\left(B^{T}\right)^{2}+A A^{T} B^{T}+\left(A^{T}\right)^{2} B^{T} & A B B^{T}+2 A^{T} B B^{T}+\left(A^{T}\right)^{3}
\end{array}\right)
$$

where $A=\operatorname{circ}\left(a_{0}, a_{1}, a_{2}\right)$ and $B=\operatorname{circ}\left(b_{0}, b_{1}, b_{2}\right)$. Note that $A, B, A^{T}$ and $B^{T}$ commute, since they are circulant matrices.

Define $E=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. Now $B B^{T}=\gamma_{1} E$, where $\gamma_{1}=2 b_{1}^{2}+2 b_{1} b_{2}+2 b_{2}^{2}$. Thus $A B B^{T}=A \gamma_{1} E=\gamma_{1} \sum_{i=0}^{2} a_{i} E=\gamma_{1} E$. Similarly $A^{T} B B^{T}=\gamma_{1} E$. Also $B^{2} B^{T}=B \gamma_{1} E=\gamma_{1} \sum_{j=0}^{2} b_{j} E=0$. Similarly $A^{2} B+A A^{T} B+\left(A^{T}\right)^{2} B=B\left(A^{2}+\right.$ $\left.A A^{T}+\left(A^{T}\right)^{2}\right)=\operatorname{circ}\left(b_{0}, b_{1}, b_{2}\right) \gamma_{2} E=\gamma_{2} \sum_{j=0}^{2} b_{j} E=0$, where $\gamma_{2}=a_{0}{ }^{2}+a_{0} a_{2}+a_{2}^{2}$.
Finally $A^{3}=\left(A^{T}\right)^{3}=\sum_{i=0}^{2} a_{i}{ }^{3} I_{3}=I_{3}$ by Proposition 2.6. Thus $(\sigma(\alpha))^{3}=$ $I_{6}$.

Lemma 3.2. $C_{H}(x)=\left\{\sum_{i=0}^{2} a_{i} x^{i}+b \sum_{j=0}^{2} x^{j} y \mid \sum_{i=0}^{2} a_{i}=1, a_{i}, b \in \mathbb{F}_{3^{k}}\right\} \cong C_{3}{ }^{3 k}$ and $C_{H}(x) \triangleleft H$.

Proof. $C_{H}(x)=\{h \in H \mid h x=x h\}$. Let $h=\sum_{i=0}^{2} a_{i} x^{i}+\sum_{j=0}^{2} b_{j} x^{j} y \in H$ where

$$
\begin{aligned}
& a_{i}, b_{j} \in \mathbb{F}_{3^{k}}, \sum_{i=0}^{2} a_{i}=1 \text { and } \sum_{j=0}^{2} b_{j}=0 . \text { Then } \\
& h x-x h=\left(\sum_{i=0}^{2} a_{i} x^{i}+\sum_{j=0}^{2} b_{j} x^{j} y\right)^{x-x}\left(\sum_{i=0}^{2} a_{i} x^{i}+\sum_{j=0}^{2} b_{j} x^{j} y\right. \\
& =\sum_{i=0}^{2} a_{i} x^{i+1}+\sum_{j=0}^{2} b_{j} x^{j-1} y-\sum_{i=0}^{2} a_{i} x^{i+1}-\sum_{j=0}^{2} b_{j} x^{j+1} y=\sum_{j=0}^{2} b_{j} x^{j-1} y-\sum_{j=0}^{2} b_{j} x^{j+1} y \\
& \quad=\left(b_{1}-b_{2}\right) y+\left(b_{2}-b_{0}\right) x y+\left(b_{0}-b_{1}\right) x^{2} y=0 \Longleftrightarrow b_{0}=b_{1}=b_{2} .
\end{aligned}
$$

Thus every element of $C_{H}(x)$ is of the form $\sum_{i=0}^{2} a_{i} x^{i}+b \sum_{j=0}^{2} x^{j} y$, where $\sum_{i=0}^{2} a_{i}=1$ and $b \in \mathbb{F}_{3^{k}}$. Let $\alpha=\sum_{l=0}^{2} c_{l} x^{l}+d \sum_{m=0}^{2} x^{m} y \in C_{H}(x)$, where $c_{l}, d \in$ $\mathbb{F}_{3^{k}}$. Then $\sigma\left(\alpha^{h}\right)=\sigma\left(h^{-1}\right) \sigma(\alpha) \sigma(h)=\left(\begin{array}{cc}A & B \\ B^{T} & A^{T}\end{array}\right)^{2}\left(\begin{array}{cc}C & D \\ D & C^{T}\end{array}\right)\left(\begin{array}{cc}A & B \\ B^{T} & A^{T}\end{array}\right)=$ $\left(\begin{array}{cc}C & F \\ F & C^{T}\end{array}\right)$, where $A=\operatorname{circ}\left(a_{0}, a_{1}, a_{2}\right), B=\operatorname{circ}\left(b_{0}, b_{1}, b_{2}\right), C=\operatorname{circ}\left(c_{0}, c_{1}, c_{2}\right)$, $D=\operatorname{circ}(d, d, d), F=\operatorname{circ}\left(\gamma_{3}, \gamma_{3}, \gamma_{3}\right)$ and $\gamma_{3}=d+2 b_{1} c_{1}+b_{1} c_{2}+2 b_{2} c_{2}+b_{2} c_{1}$. Therefore $C_{H}(x) \triangleleft H$. It can easily be shown that $C_{H}(x)$ is Abelian.

Lemma 3.3. Let $T$ be the set of elements of $H$ of the form $1+r \sum_{i=1}^{2} i x^{i}+$ $r \sum_{j=1}^{2} j x^{j-1} y$, where $r \in \mathbb{F}_{3^{k}}$. Then $T$ is a group and is isomorphic to $C_{3}{ }^{k}$.

Proof. Let $\alpha=1+r \sum_{i=1}^{2} i x^{i}+r \sum_{j=1}^{2} j x^{j-1} y \in T$ and $\beta=1+s \sum_{i=1}^{2} i x^{i}+$ $s \sum_{j=1}^{2} j x^{j-1} y \in T$, where $r, s \in \mathbb{F}_{3^{k}}$. Then $\alpha \beta=1+(r+s) \sum_{i=1}^{2} i x^{i}+(r+$ s) $\sum_{j=1}^{2} j x^{j-1} y$. Thus $T$ is closed under multiplication. It can easily be shown that $T$ is Abelian.

Lemma 3.4. $H=C_{H}(x) T$.

Proof. Clearly $C_{H}(x) \cap T=\left\{1_{H}\right\}$. By the Second Isomorphism Theorem $T / T \cap C_{H}(x) \cong T \cdot C_{H}(x) / C_{H}(x)$. Thus $\left|T \cdot C_{H}(x) / C_{H}(x)\right|=3^{k}$ and $\left|C_{H}(x) \cdot T\right|=3^{4 k}$. Note that $|H|=\frac{3^{4 k}\left(3^{k}-1\right)^{2}}{\left(3^{k}-1\right)^{2}}=3^{4 k}$ by Theorem 2.7 and Example 2.5. Therefore $H=C_{H}(x) . T$.

Theorem 3.5. $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right) \cong\left(\left(C_{3}{ }^{3 k} \rtimes C_{3}{ }^{k}\right) \rtimes C_{3^{k}-1}\right) \times C_{3^{k}-1}$.
Proof. Recall that $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right) \cong H \rtimes \mathcal{U}\left(\mathbb{F}_{3^{k}} C_{2}\right)$. Note that $|H|=3^{4 k}$. Therefore $H \cong C_{H}(x) \rtimes T \cong C_{3}{ }^{3 k} \rtimes C_{3}{ }^{k}$. Thus by Example 2.5. we have that $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right) \cong H \rtimes \mathcal{U}\left(\mathbb{F}_{3^{k}} C_{2}\right) \cong\left(C_{3}{ }^{3 k} \rtimes C_{3}{ }^{k}\right) \rtimes\left(C_{3^{k}-1} \times C_{3^{k}-1}\right) \cong\left(\left(C_{3}{ }^{3 k} \rtimes C_{3}{ }^{k}\right) \rtimes\right.$ $\left.C_{3^{k}-1}\right) \times C_{3^{k}-1}$.

After submission of this paper, the authors became aware of [4]. In [4] the subgroup $V_{1}$ of $\mathcal{U}\left(\mathbb{F}_{3^{k}} D_{6}\right)$ is studied, where $V_{1}=1+J\left(\mathbb{F}_{3^{k}} D_{6}\right)$ and $J\left(\mathbb{F}_{3^{k}} D_{6}\right)$ is the Jacobson radical of $\mathbb{F}_{3^{k}} D_{6}$. They show that $V_{1}$ and $V_{1} / Z\left(V_{1}\right)$ are both elementary Abelian 3 -groups, where $Z\left(V_{1}\right)$ is the center of $V_{1}$.

## References

[1] P.J. Davis, Circulant Matrices, Chelsea Publishing, New York (1979).
[2] J. Gildea, On the order of $\mathcal{U}\left(\mathbb{F}_{p^{k}} D_{2 p^{m}}\right)$, Int. J. Pure Appl. Math., To Appear.
[3] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319-335.
[4] M. Khan, R.K. Sharma, J.B. Srivastava, The unit group of $F S_{3}$, Acta. Math. Acad. Paedagog. Nyházi., 23, No. 2 (2007), 129-142.
[5] C. Polcino Milies, S.K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers (2002).

