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1. Introduction

The set of all the invertible elements of a ring S form a group called the unit
group of S, denoted by U(S). Let FpkD2pm be the group algebra of D2pm over

Fpk , where Fpk is the Galois field of pk-elements, D2pm is the dihedral group of
order 2pm and p is a prime. For further details on group algebras see [5]. In
[2], the order of U(FpkD2pm) is established to be p2k(pm−1)(pk − 1)2, where p is
an odd prime and m ∈ N 0.

Let Cn be the cyclic group of order n. Let Mn(R) be the ring of n × n
matrices over a ring R. Using an established isomorphism between RG and a
subring of Mn(R) and other techniques, we establish the structure of U(F3kD6)
to be ((C3

3k
⋊ C3

k) ⋊ C3k−1) × C3k−1.
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2. Background

Definition 2.1. A circulant matrix over a ring R is a square n×n matrix,
which takes the form

circ(a1, a2, . . . , an) =










a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

...
...

. . .
...

a2 a3 a4 . . . a1










,

where ai ∈ R.

For further details on circulant matrices see Davis [1].

Let {g1, g2, . . . , gn} be a fixed listing of the elements of a group G. Then
the following matrix:










g1
−1g1 g1

−1g2 g1
−1g3 . . . g1

−1gn

g2
−1g1 g2

−1g2 g2
−1g3 . . . g2

−1gn

g3
−1g1 g3

−1g2 g3
−1g3 . . . g3

−1gn

...
...

...
. . .

...
gn

−1g1 gn
−1g2 gn

−1g3 . . . gn
−1gn










is called the matrix of G (relative to this listing) and is denoted by M(G). Let

w =
n∑

i=1

αgi
gi ∈ RG, where R is a ring. Then the following matrix:










αg1
−1g1

αg1
−1g2

αg1
−1g3

. . . αg1
−1gn

αg2
−1g1

αg2
−1g2

αg2
−1g3

. . . αg2
−1gn

αg3
−1g1

αg3
−1g2

αg3
−1g3

. . . αg3
−1gn

...
...

...
. . .

...
αgn

−1g1
αgn

−1g2
αgn

−1g3
. . . αgn

−1gn










is called the RG-matrix of w and is denoted by M(RG,w).

The following Theorem can be found in [3].

Theorem 2.2. Given a listing of the elements of a group G of order n
there is a bijective ring homomorphism between RG and the n× n G-matrices

over R. This bijective ring homomorphism is given by σ : w 7→M(RG,w).

Example 2.3. Let D2n = 〈x, y |xn = 1, y2 = 1, yx = x−1y〉 and κ =
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n−1∑

i=0

aix
i +

n−1∑

j=0

bjx
jy ∈ FpkD2n, where ai, bj ∈ Fpk and p is a prime, then

σ(κ) =

(
A B
BT AT

)

,

where A = circ(a0, a1, . . . , an−1) and B = circ(b0, b1, . . . , bn−1).

The next result can be found in [5].

Lemma 2.4. Let G be an Abelian group of order n and K a field such

that the characteristic of K does not divide n. If K contains a primitive root

of unity of order n then KG ∼= K ⊕ · · · ⊕K
︸ ︷︷ ︸

n

.

Example 2.5. U(FpkC2) ∼= Cpk−1 × Cpk−1 when p 6= 2.

Proof. Since p 6= 2, Fpk contains primitive roots of unity of order 2. There-
fore FpkC2

∼= Fpk ⊕ Fpk and U(FpkC2) ∼= Cpk−1 × Cpk−1.

The next two results appear in [2]

Proposition 2.6. Let A = circ (a1, a2, . . . , apm), where ai ∈ Fpk , p is a

prime and m ∈ N 0. Then

Apm

=

pm

∑

i=1

ai
pm

.Ipm.

Theorem 2.7. |U(FpkD2pm)| = p2k(pm−1)(pk − 1)2, where p is an odd

prime and m ∈ N 0.

3. The Structure of U(F3kD6)

Define the ring homomorphism θ : F3kD6 −→ F3kC2 by
2∑

i=0

aix
i +

2∑

j=0

bjx
jy 7−→

2∑

i=0

ai +

2∑

j=0

bj .y.

Now define the group epimorphism θ ′ : U(F3kD6) −→ U(F3kC2), where
θ ′ is θ restricted to U(F3kD6). Let ψ : U(F3kC2) −→ U(F3kD6) be the group
homomorphism defined by a+b.y 7→ a+b.Y . Then θ ′◦ψ(a+b.y) = θ (a+b.Y ) =
a+ b.y. Therefore U(F3kD6) is a split extension of U(F3kC2) by ker (θ ′). Thus
U(F3kD6) ∼= H ⋊ U(F3kC2), where H = ker (θ ′).
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Lemma 3.1. H has exponent 3.

Proof. Let α =
2∑

i=0

aix
i +

2∑

j=0

bjx
jy ∈ H, where ai, bj ∈ F3k . Note that

2∑

i=0

ai = 1 and
2∑

j=0

bj = 0 since α ∈ H. Then

(σ(α))3 =

(
A B
BT AT

)3

=

(
A3 + 2ABBT +ATBBT A2B +AATB +B2BT + (AT )2B

A2BT +B(BT )2 +AATBT + (AT )2BT ABBT + 2ATBBT + (AT )3

)

,

where A = circ(a0, a1, a2) and B = circ(b0, b1, b2). Note that A,B,AT and BT

commute, since they are circulant matrices.

Define E =





1 1 1
1 1 1
1 1 1



. Now BBT = γ1E, where γ1 = 2b21 + 2b1b2 + 2b22.

Thus ABBT = Aγ1E = γ1

2∑

i=0

aiE = γ1E. Similarly ATBBT = γ1E. Also

B2BT = Bγ1E = γ1

2∑

j=0

bjE = 0. Similarly A2B + AATB + (AT )2B = B(A2 +

AAT +(AT )2) = circ(b0, b1, b2)γ2E = γ2

2∑

j=0

bjE = 0, where γ2 = a0
2+a0a2+a2

2.

Finally A3 = (AT )3 =
2∑

i=0

ai
3I3 = I3 by Proposition 2.6. Thus (σ(α))3 =

I6.

Lemma 3.2. CH(x) =
{ 2∑

i=0

aix
i+b

2∑

j=0

xjy
∣
∣

2∑

i=0

ai = 1, ai, b ∈ F3k

}
∼= C3

3k

and CH(x) ⊳H.

Proof. CH(x) = {h ∈ H |hx = xh}. Let h =
2∑

i=0

aix
i +

2∑

j=0

bjx
jy ∈ H where
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ai, bj ∈ F3k ,
2∑

i=0

ai = 1 and
2∑

j=0

bj = 0. Then

hx− xh =





2∑

i=0

aix
i +

2∑

j=0

bjx
jy



x− x





2∑

i=0

aix
i +

2∑

j=0

bjx
jy





=
2∑

i=0

aix
i+1+

2∑

j=0

bjx
j−1y−

2∑

i=0

aix
i+1−

2∑

j=0

bjx
j+1y =

2∑

j=0

bjx
j−1y−

2∑

j=0

bjx
j+1y

= (b1 − b2)y + (b2 − b0)xy + (b0 − b1)x
2y = 0 ⇐⇒ b0 = b1 = b2.

Thus every element of CH(x) is of the form

2∑

i=0

aix
i + b

2∑

j=0

xjy, where

2∑

i=0

ai = 1 and b ∈ F3k . Let α =
2∑

l=0

clx
l + d

2∑

m=0

xmy ∈ CH(x), where cl, d ∈

F3k . Then σ(αh) = σ(h−1)σ(α)σ(h) =

(
A B
BT AT

)2 (
C D
D CT

)(
A B
BT AT

)

=
(
C F
F CT

)

, where A = circ(a0, a1, a2), B = circ(b0, b1, b2), C = circ(c0, c1, c2),

D = circ(d, d, d), F = circ(γ3, γ3, γ3) and γ3 = d+ 2b1c1 + b1c2 + 2b2c2 + b2c1.
Therefore CH(x) ⊳H. It can easily be shown that CH(x) is Abelian.

Lemma 3.3. Let T be the set of elements of H of the form 1 + r

2∑

i=1

ixi +

r

2∑

j=1

jxj−1y, where r ∈ F3k . Then T is a group and is isomorphic to C3
k.

Proof. Let α = 1 + r

2∑

i=1

ixi + r

2∑

j=1

jxj−1y ∈ T and β = 1 + s

2∑

i=1

ixi +

s

2∑

j=1

jxj−1y ∈ T , where r, s ∈ F3k . Then αβ = 1 + (r + s)

2∑

i=1

ixi + (r +

s)

2∑

j=1

jxj−1y. Thus T is closed under multiplication. It can easily be shown

that T is Abelian.

Lemma 3.4. H = CH(x)T .
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Proof. Clearly CH(x) ∩ T = {1H}. By the Second Isomorphism The-
orem T/T ∩ CH(x) ∼= T.CH(x)/CH (x). Thus |T.CH(x)/CH(x)| = 3k and

|CH(x).T | = 34k. Note that |H| = 34k(3k−1)2

(3k−1)2
= 34k by Theorem 2.7 and Ex-

ample 2.5. Therefore H = CH(x).T .

Theorem 3.5. U(F3kD6) ∼= ((C3
3k

⋊ C3
k) ⋊ C3k−1) × C3k−1.

Proof. Recall that U(F3kD6) ∼= H⋊U(F3kC2). Note that |H| = 34k. There-
fore H ∼= CH(x) ⋊ T ∼= C3

3k
⋊ C3

k. Thus by Example 2.5. we have that
U(F3kD6) ∼= H⋊U(F3kC2) ∼= (C3

3k
⋊C3

k)⋊ (C3k−1×C3k−1)
∼= ((C3

3k
⋊C3

k)⋊

C3k−1) × C3k−1.

After submission of this paper, the authors became aware of [4]. In [4] the
subgroup V1 of U(F3kD6) is studied, where V1 = 1 + J(F3kD6) and J(F3kD6)
is the Jacobson radical of F3kD6. They show that V1 and V1/Z(V1) are both
elementary Abelian 3-groups, where Z(V1) is the center of V1.
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