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Abstract: The structure of the unit group of the group algebra of the dihedral
group of order 6 over any finite field of chracteristic 3 is determined in terms
of split extensions of cyclic groups.
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1. Introduction

The set of all the invertible elements of a ring S form a group called the unit
group of S, denoted by U(S). Let F,x Dapm be the group algebra of Doym over
F,x, where Fx is the Galois field of pF-elements, Do,m is the dihedral group of
order 2p"™ and p is a prime. For further details on group algebras see [5]. In
2], the order of U(IF,x Dapm) is established to be 2@ =D (pF — 1)2 where p is
an odd prime and m € Ny.

Let C), be the cyclic group of order n. Let M, (R) be the ring of n x n
matrices over a ring R. Using an established isomorphism between RG and a
subring of M, (R) and other techniques, we establish the structure of U (IF5x Dg)
to be ((Cg3k A C3k) X Cgk_l) X C3k_1.
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2. Background

Definition 2.1. A circulant matrix over a ring R is a square n X n matrix,
which takes the form

ai as agz ... Qp

Qg ay a2 ... Qp-—1
circ(ar,as,...,ap) =] -1 Gn a1 ... ap-2 |

a9 as a4 ... aq

where a; € R.

For further details on circulant matrices see Davis [1].

Let {g1,92,...,9n} be a fixed listing of the elements of a group G. Then
the following matrix:

a'a 0l gty o g lon
2 r'a 9l 9 les . 92 lon
a3t 937l g93Tgs .. 93 lom
g tor g te2 gn'gs o gnlgn

is called the matrix of G (relative to this listing) and is denoted by M (G). Let

n
w = Z ag,9; € RG, where R is a ring. Then the following matrix:

=1
Qgi—lg; CQgy—lgy Qgi—lgg Qgi~1g,
a92_191 a92_192 agz_lg:a agz_lgn
Qgs—lg CQgg—lg, Qgz—lgg Qgs—lg,
Qg ~1g, Qg ~1g, Qg ~lgs ... Qg —1g

is called the RG-matrix of w and is denoted by M (RG,w).

The following Theorem can be found in [3].

Theorem 2.2. Given a listing of the elements of a group G of order n
there is a bijective ring homomorphism between RG and the n x n G-matrices
over R. This bijective ring homomorphism is given by o : w — M(RG,w).

Example 2.3. Let Dy, = (z,y|2" = 1, = l,yz = 2~ y) and k =
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n—1 n—1

Zaixi + ijxjy € Fx Dy, where a;,b; € Fpr and p is a prime, then

i—0 =0
A B
o) = gr 4 ).

where A = circ(ag,aq,...,a,-1) and B = circ(bg, by, ..., by—1).

The next result can be found in [5].

Lemma 2.4. Let G be an Abelian group of order n and K a field such
that the characteristic of K does not divide n. If K contains a primitive root
of unity of order n then KG= K & ---® K.

—_———

n

Example 2.5. U(F,:Cq) = Cpr_y X Cpr_y when p # 2.

Proof. Since p # 2, Fx contains primitive roots of unity of order 2. There-
fore FkaQ = ]Fpk @ Fpk and U(FkaQ) = Cpkil X Cpkil. Ol

The next two results appear in [2]

Proposition 2.6. Let A = circ(a1,as,...,a,n), where a; € For, pis a
prime and m € Ng. Then

pm
m m
Ap = E (Iip .Ipm.
=1

Theorem 2.7. |U(F . Dypm)| = p**@" =V (pk — 1)2, where p is an odd
prime and m € Ny.

3. The Structure of U(F3rDg)

Define the ring homomorphism 6 : F3x Dg — F31C by
2 2 2 2
Zaix’ + ijx]y — Zai + ij .
i=0 =0 i=0 j=0

Now define the group epimorphism 6’ : U(FqrDg) — U(F35:Co), where
0’ is 0 restricted to U(FsxDg). Let ¢ : U(F3:Cy) — U(F5:Dg) be the group
homomorphism defined by a+b.5 — a+b.Y. Then §'o¢)(a+b.7) = 0 (a+b.Y) =
a+ b.y. Therefore U(Fsx Dg) is a split extension of U (F41Cy) by ker (#7). Thus
U(F3:Dg) = H x U(F41.Co), where H = ker (07).
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Lemma 3.1. H has exponent 3.

2 2
Proof. Let a = Zaimi + ij:vjy € H, where a;,b; € Fz.. Note that
i=0 j=0

2 2
Zai =1 and ij =0 since o € H. Then
i=0 j=0

3
A B
0@ =g 1) -
A3 +2ABBT + ATBBT A?2B+ AATB + B*BT + (AT)?B
A?2BT + B(BT)? + AATBT + (AT)?BT ABBT +2ATBBT + (AT)3 ’

where A = circ(ag, a1, az) and B = circ(bg, by, b2). Note that A, B, AT and BT
commute, since they are circulant matrices.

111
Define E = [1 1 1,. Now BBT = v E, where 71 = 2b% + 2b1by + 2b3.
111

2
Thus ABBT = AyE = 4 Y a;E = nE. Similarly ATBBT = yE. Also

1=0
2

B?BT = ByiE =) _bjE =0. Similarly A?B + AATB + (AT)?B = B(A® +
j=0
2

AAT+(AT)2) = CiI‘C(bo, bl, bg)’)/QE = ’)/QijE = 0, where Yo = a02+a0a2+a22.
j=0
2
Finally A% = (AT)3 = Zaigfg, = I3 by Proposition 2.6. Thus (o(a))? =

i=0
Is. O

2 2 2
Lemma 3.2. Cy(z) = {Zaimi—l—bejy ‘ Zai =1, a;,b € F3k} ~ O3k
i=0 =0 =0
and Cy(z) < H.
2 2

Proof. Cy(x) ={h € H|hx =zh}. Let h = Zai:z:i —i—ijacjy € H where
=0 j=0
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2 2
ai,bj € Fa, Zai =1 and ij = 0. Then
i=0 §=0

2 2 2 2
hx —xh = Zaimi—i-ijxjy r—x Zaixi—l-ijmjy
i=0 j=0 } i=0 j=0 }

2 2 2 2 2 2
_ ZW”“PZ bjl'jily—zail'wrl—z bjxij — ijxjfly_z bjijrly
i=0 j=0 i=0 j=0 j=0 j=0
= (by — bo)y + (b2 — bo)zy + (bg — b1)z’y = 0 <= by = by = by.

2 2
Thus every element of Cp(x) is of the form Zaimi + mejy, where
i=0 5=0

2 2
Zai =1and b € Fqr. Let a = cha:l + demy € Cy(x), where ¢,d €
i=0 1=0 m=0

Fye. Then o(ah) = o(h—Y)o(a)o(h) = (;T fT>2 <g £T> (;T ﬁ) _

<§ §T>, where A = circ(ag, a1, a2), B = circ(bg, b1, b2), C = circ(co, c1, ¢2),

D = cire(d, d,d), F = circ(vs,73,73) and v3 = d + 2bycy + bycg + 2baca + bacy.
Therefore Cy(x) < H. It can easily be shown that Cy(x) is Abelian. O

2

Lemma 3.3. Let T be the set of elements of H of the form 1+ r E it +
i=1
2

ij:z:j_ly, where r € F3.. Then T is a group and is isomorphic to CsF.
j=1

2 2
Proof. Let a« = 1 + TZi:Ci + ijxj_ly €T and f =1+ SZiwi +
i=1 j=1 i=1
stacJ*ly € T, where r,s € Fgx. Then af = 1+ (r + S)Zix’ + (r +
j=1 i=1
2 .
S)Zjl‘] ~Ly. Thus T is closed under multiplication. It can easily be shown

7j=1
that T is Abelian. O
Lemma 3.4. H =Cg(x)T.
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Proof. Clearly Cy(z) N T = {lp}. By the Second Isomorphism The-
orem T/T N Cy(x) = T.Cy(z)/Cx(x). Thus |T.Cy(x)/Cx(z)| = 3F and
Cr(w).T| = 3%. Note that |H| = L& = 3% by Theorem 2.7 and Fx-
ample 2.5. Therefore H = Cy(x).T. O

Theorem 3.5. U(F5:Dg) = ((C33F x C5F) % Cge_) x Cqr_.

Proof. Recall that U (Fs:Dg) = H 31U (F4.Cs). Note that |H| = 3. There-
fore H = Cy(x) x T = C3%f x C3F. Thus by Example 2.5. we have that
U(ngDﬁ) &2 H NU(ngCQ) = (033k X Cgk) X (Cgk,l X C3k,1) = ((Cg3k X Cgk) X
C3k_1) X C3k_1. U

After submission of this paper, the authors became aware of [4]. In [4] the
subgroup Vi of U(Fsr Dg) is studied, where Vi = 1+ J(F3:Dg) and J(IF3x Dg)
is the Jacobson radical of FqrDg. They show that Vi and Vi /Z (V1) are both
elementary Abelian 3-groups, where Z(V}) is the center of Vj.
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