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Abstract. Artificial Intelligence systems add significant value to decision-mak-

ing. However, the systems must be fair because bias creeps into the system from 

sources like data and preprocessing algorithms. In this work, we explore fairness 

metrics discussing the shortfalls and benefits of each metric. The fairness metrics 

are demographic, statistical, and game theoretic. We find that the demographic 

fairness metrics are independent of the actual target value and hence have limited 

use. In contrast, the statistical fairness metrics can provide the thresholds to max-

imize fairness. The Minimax criterion was used to guide the search and help rec-

ommend the best model where the error among protected groups was minimum.  
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1 Introduction 

Fairness becomes a key factor when machines use algorithms to make decisions. This 

is important when we have privileged groups due to social, demographic, economic, or 

other factors. Privileged groups can have an unfair advantage over unprivileged groups, 

also called protected groups. This leads to bias and sometimes severe harm to protected 

groups.  It is possible that some protected groups can be mistreated if nothing is done 

to ensure fairness. In this context, we study the various fairness metrics and attempt to 

understand the limitations or benefits. We must gain the theoretical background to en-

sure we use the correct metrics. As is often the case, there is no one solution or fix, but 

if we understand the basics, it’s a much more informed decision. Some work has been 

done to evaluate fairness metrics, but it is geared towards evaluating metrics from the 

perspective of data or algorithms [1].  

Fairness definitions can be grouped as statistical and individual fairness definitions 

[2]. Statistical fairness definitions divide the protected groups to ensure equalized in-

fluence using some statistics like error rate etc. Individual fairness definitions seek to 

ensure that similar individuals are given similar treatment. 
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In this study, we focus on three different fairness measures: demographic, statistical, 

and minimax. Metrics based on a dataset demographic include statistical parity differ-

ences and disparate impact [3]. The statistical distribution of the predictions determines 

the equal opportunity and receiver operator characteristic curve/ area under the curve 

metrics. The minimax fairness criteria provide a notion of fairness focusing on the 

groups and ensuring that each group is not worst off [4] [5]. 

This paper is organized as follows: Section 2 offers mathematical background and 

explains the metrics used. Section 3 details the experiment, Section 4 gives the results, 

Section 5 discusses the results, and Section 6 provides the conclusions and future work.  

2 Mathematical Background 

2.1 Binary Classification Problem 

We consider a binary classification problem defined by features to understand fairness 
metrics. The population is classified into two classes based on one feature. The classes 
are sometimes referred to as positive and negative, depending on the domain context. 
For example, if we deal with credit approval, a positive class will be where the credit is 
approved, and a negative would be where the credit is not approved. An example sce-
nario is shown in Figure 1. Here, the two classes are shown in orange and blue. For the 
sake of simplicity, the two classes are assumed to have Gaussian distribution.  Classifi-
cation algorithms are trained to predict which class an unseen sample of data is likely to 
belong to  [6].  

 The true positive rate (TPR), or the hit rate, is the rate at which the classifier correctly 
predicts the positive class. The false positive rate (FPR) is the rate of incorrect positive 
classification by the classifier.   

 

Fig. 1. Binary Classification 
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2.1.1 Receiver Operating Characteristic (ROC) Curve  

The receiver operating characteristic (ROC) curve helps determine the classifier accuracy [6]. 

The ROC shows the values of TPR against FPR for different classification threshold values. As 

the threshold between the two separate classes’ changes, the TPR and FPR change. Table 1 in-

dicates the relationships between the limits of TPR and FPR 

 

Table 1. TPR vs FPR  

TPR FPR Comments 

0 0 Every point classified as negative 

0 1 Every negative point classified as positive, while positive as neg-

ative. (Simple class inversion makes this optimal) 

1 0 Optimal point (not necessarily achievable) 

1 1 Every point is classified as positive 

 

Figure 1 displays the plot between the TPR and FPR for an example classifier which 

defines the ROC., The area under the curve (AUC) is a measure of accuracy of the 

given classifier.  Ideally the area should be 1.0 (meaning a TPR=1, FPR=0). 

 

 
 

Fig. 2. Receiver Operating Curve ROC and Area Under Curve (AUC). 

In the following sections, we demonstrate how the ROC and AUC provide the basis of 
fairness. The ROC helps in identifying equalized Odds and Equal Opportunity thresh-
olds. While the AUC provides the overall accuracy of the classifier. If used for protected 
attributes, the AUC can lend an idea about the bias present in the system [7]. 
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2.2 Demographic Fairness Metrics 

2.2.1 Statistical Parity Difference 

Statistical Parity Difference (SPD) measures the difference between the probability of 

the privileged and unprivileged classes receiving a favourable outcome. This measure 

must be equal to 0 to be fair. 

 

    𝑆𝑃𝐷  =  𝑃(𝑌̂ = 1  ∣  𝐴 = 0) − 𝑃(𝑌̂ = 1  ∣  𝐴 = 1)       (1) 

 

Where 𝑌̂ is the model predictions, and A identifies the protected attribute (A=0 for un-

privileged class, A=1 for privileged class). 

2.2.2 Disparate Impact 

Disparate Impact (DI) compares the proportion of individuals that receive a favourable 

outcome for two groups, a privileged group and an unprivileged group. This measure 

must be equal to 1 to be fair. 

 

𝐷𝐼 = 𝑃(𝑌̂ = 1  ∣  𝐴 =  0) / 𝑃(𝑌̂ = 1  ∣  𝐴 = 1)      (2) 

 

Where 𝑌̂ is the model predictions, A identifies the protected attribute (A=0 for unprivi-

leged class, A=1 for privileged class). 

2.3 Statistical Fairness Metrics 

2.3.1 Equalized Odds 

The equalized odds definition, according to [8], is given by the following. Let A=1 and 
A=0 represent the privileged and unprivileged demographics, respectively.  

      𝑃[𝑌̂ = 1|𝑌 = 𝑦, 𝐴 = 0] = 𝑃[𝑌̂ = 1|𝑌 = 𝑦 , 𝐴 = 1], 𝑤ℎ𝑒𝑟𝑒 𝑦 ∈ {0,1}       (3) 

Considering the above equation for y=1, the equation shows TPR across privileged 
and unprivileged groups.  While if we consider y=0, the equation represents the false 
positive rate (FPR) across privileged and unprivileged groups. This represents the thresh-
old in ROC where both TPR and FPR are equal for privileged and unprivileged de-
mographics.   

2.3.2 Equal Opportunity 

In this case, the equal opportunity fairness criteria are met when the TPR for both 

groups is the same. Regarding ROC, this means that the TPR is equal for both the priv-

ileged and unprivileged groups. 
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           𝑃[𝑌̂ = 1|𝑌 = 1 , 𝐴 = 0] = 𝑃[𝑌̂ = 1|𝑌 = 1 , 𝐴 = 1].          (4) 

2.4 Game Theoretic Fairness 

2.4.1 Minimax Fairness Criteria 

Equal Opportunity and Equalized Odds work well for groups; however, they only guar-
antee when we need individuals [9]. Game Theory is an economic framework that helps 
model economic problems as games [10]. Nash Equilibrium is the solution of the games 
when n- players engage in a non-cooperative zero-sum game [11]. Recent research has 
proposed to model learning with fairness as minimax group fairness [5, 4]. 

Let (𝑥𝑖 , 𝑦𝑖)|𝑖=1
𝑁 , where 𝑥𝑖 is the feature vector divided into K groups {𝐺!, 𝐺2, … . , 𝐺𝐾}. 

A class H of models map features to predicted labels, 𝑦𝑖 . The minimax problem is with 
the following constraints defined with L, the loss function taking values in [0, 1].  

                                        ℎ∗ = arg min
h ∈ΔH

{ max
1<k≤K

𝜖𝑘(ℎ)}                                         (5) 

The average population error 𝜖(ℎ) and average group error 𝜖𝑘(ℎ) are defined as follows. 

𝜖(ℎ) =  
1

𝑛
∑ 𝐿(ℎ(𝑥𝑖), 𝑦𝑖)𝑛

𝑖=1     (6) 

𝜖𝑘(ℎ) =
1

|𝐺𝑘|
∑ 𝐿(ℎ(𝑥), 𝑦(𝑥,𝑦) ∈𝐺𝑘

)         (7) 

The algorithm described in [4] is to minimize 𝜖(ℎ), ℎ ∈  ∆𝐻 subject to 𝜖𝑘(ℎ) ≤ 𝛾, 𝑘 =
1, . . , 𝐾.   

The algorithm iterates over the scenarios where two players, Learner and Regulator, 
are engaged in zero-sum games. At each iteration, the regulator determines a weighting 
over groups, and the learner responds by computing model ℎ𝑡 to minimize the weighted 
prediction error. The regulator updates the weights by using the Exponential Weights 
Algorithm. The algorithm converges to Nash Equilibrium [11], and the solution space 
iterates over Pareto Fronts [12], which means no group is worse off due to any change. 

3 Experiment 

3.1 Dataset 

We use the German Credit Dataset [13] to perform the analysis. The original dataset 

has a large set of possible values. It is selected because it has a binary target (Good/ 

Bad Risk), and the dataset has two protected attributes i.e., age and sex. We use the 

reduced dataset attributes and values. For example, the original dataset had bank bal-

ance limits instead of little, moderate, rich, and quite rich.  The dataset’s attributes are 

as follows.  

Table 1. Attributes of German Credit Dataset 

Attribute Possible Values 
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Age Integer values 

Sex Male, Female 

Job Employed, unemployed 

Housing Own, Free, Rent 

Saving accounts Little, moderate, rich, quite rich  

Checking accounts Little, moderate, rich, quite rich 

Credit Amount Integer Values 

Duration Duration in month 

Purpose Business, car, domestic appliances, education, furni-

ture/equipment, radio/TV, repairs, vacation/others 

Risk Good, bad 

 

The risk attribute is the binary target attribute which is good or bad. We clean the data 

before using it and transform it into numeric attributes. The protected attributes are age 

and sex. The dataset’s loss function provided in the dataset is the following. The loss 

function allows to optimize the training of the model. The loss function stipulates that 

a false positive is five times more damaging than a false negative. 

Table 2. Loss Function of German Credit Dataset 

Actual/Predicted Good Bad 

Good 0 1 

Bad 5 0 

 

3.2 Fairness Metrics 

Fairness metrics are used to measure the fairness of classification algorithm [14]. We 

use the following metrics to evaluate fairness. As described above in section 2, the 

fairness metrics are interpreted by their values. Here is a summary of all the metrics 

used in this experiment.  

 

Table 3. Fairness Metrics and Criteria 

Fairness Metric Criteria 

Statistical Parity Difference 0 means demographic fairness 

Disparate Impact 1 means demographic fairness 

Equalized Opportunity TPR is the same for both groups 

ROC Closer to (1,1) is better 

AUC Higher is better and closer to 1.0 

Minimax-Fairness Models weights uniform distribution 
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3.3 Classifiers 

In this experiment, we use the Support Vector Classifier (SVC), Gaussian Process Clas-

sifier (GPC), Gaussian Naïve Bayesian (GNB), and Linear Discriminant Analysis 

(LDA) Classifiers to do a comparative analysis. These classifiers have been chosen 

because they represent diverse types. The Support Vector Classifier is kernel-based, 

while Gaussian Process Classifier and Naïve Bayesian are probabilistic, and finally, 

Linear Discriminant Analysis is a dimensionality reduction technique. Thus, we have 

attempted to cover different types of classification.  

 

4 Results  

We ran a series of experiments described above on the German Credit Dataset. The 

results are detailed in this section. The objective of the experiments was to evaluate the 

fairness metrics to determine which metrics are most helpful in building fairness into 

the system. We use multiple classifiers on the same dataset. This approach enables the 

determination of the fairness metrics performance across classifiers.  

 

4.1 Demographic Fairness Metrics 

First, we consider the demographics within the data itself. If we look at the Statistical 

Parity Difference (SPD), the values are not equal to zero, as described in section 2.2 for 

fairness. The situation is better for protected attribute sex as compared to age. As the 

table 4 shows that the values for attribute sex is closer to zero compared to age. It means 

that unfairness is present with respect to attribute age.  

However, the disparate impact (DI) is relatively high (the ideal is 1) for both pro-

tected attributes. Since these metrics don’t consider the actual values but rely only on 

the predicted target values, this is a shortcoming because of reliance on the model’s 

prediction.  

Table 4. Demographic Fairness Metrics Results 

Metric Age Sex 

Statistical Parity Difference -0.1285 -0.0748 

Disparate Impact 0.8212 0.8965 

 

4.2 Statistical Fairness Metrics 

4.2.1 Equal Opportunity Analysis 

Ideally, as we know that the TPR should be the same for both attributes. The equal 

opportunity fairness metric, shown in Table 5, shows that the Gaussian Process Classi-

fier performs less fairly than the other three classifiers.  Gaussian Process Classifier is 
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slightly fairer in relation to the protected attribute sex compared to the age. As we can 

see that the GPC is less fair and not accurate because of low values of TPR.  

Table 5. Equal Opportunity for classifiers 

Classifier Age Sex 

 Old Young Male Female 

Support Vector Classifier 0.97   1 1.0 0.92 

Gaussian Process Classifier 0.26 0.071 0.24 0.095 

Gaussian Naïve Bayesian 1 1 1.0 1 

Linear Discriminant Analysis 0.91 0.85 0.90 0.88 

 

4.3 ROC /AUC Analysis 

The ROC curve and AUC analysis were performed separately for each protected attrib-

ute. As discussed in section 3, the ROC and AUC identify the best classifiers [6] and 

find the equal opportunity fairness [8], respectively.  

The ROC curves in Figures 3 and 4 show how the TPR and FPR change across the 

curve as the threshold changes. The AUC for each classifier calculated on both sensitive 

attributes is shown in Table 6. These values correspond to the ROCs shown in Figures 

3 and 4. We can note that the AUC for GPC is 0.5, and the ROC is a diagonal line for 

both Age and Sex. This means that the GPC is only as good as a random guess. A 

similar conclusion was also observed in the Equal Opportunity metric.  The GNB is the 

best among the classifiers, with an AUC value of 1.0, while LDA is better than SVC.  

Table 6. AUC for each protected attribute for classifiers 

Classifier Age Sex 

 Old Young Male Female 

Support Vector Classifier 0.59 0.47 0.69 0.42 

Gaussian Process Classifier 0.5 0.5 0.50 0.50 

Gaussian Naïve Bayesian 1.0 1.0 1.0 1.0 

Linear Discriminant Analysis 0.76 0.87 0.82 0.72 
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Fig. 3. ROC and AUC for the sensitive attribute sex. 

 

 
 

  

Fig. 4. ROC and AUC for the sensitive attribute age. 

4.4 Minimax Fairness  

A Minimax Fairness criterion was implemented as described in [3]. The scheme was 

used to find optimal weights for a classifier such that the discrepancy among prediction 

accuracies of the different groups is minimized along with the minimization of the over-

all prediction error. 
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Logistic Regression was used in these three classifiers, and the results for the two 

protected attributes show the errors converging in both cases. The sample weights are 

updated such that the average population and group errors defined by equations 6 & 7 

are minimized. The plots in figure 5 show that as the algorithm proceeds, the values of 

errors for protected attributes age and sex are minimized, and their difference is also 

reduced. 

 

  

Fig. 5. Minimax errors for the sensitive attributes sex and age . 

 

4.5 Discussion 

The Ethics Guide for Trustworthy AI builds a framework to create trustworthy systems 

using AI. It stipulates the development of lawful, robust, and ethical systems to achieve 

the purposes [15]. Systems that achieve fairness are the cornerstone of this endeavor. 

One aspect of Ethical AI is to ensure it acts fairly without detrimental bias against cer-

tain individuals and groups. In this paper, we evaluate the fairness criteria to identify if 

bias is present.  

 We performed a preliminary fairness analysis using demographic fairness metrics 

on the German credit dataset. The SPD and DI indicated that protected attribute sex 

was better than attribute age. It is imperative to understand that due to the lack of in-

clusion of actual target values, the metrics rely solely on the model’s predictions. This 

means these metrics cannot be used to determine if the bias is because of the model or 

data. 

 The second set of fairness metrics involved equal opportunity and ROC/AUC. Since 

equal opportunity is calculated from the TPR and FPR, these are very good in giving 

the behavior of the classifier and the dataset. We used only one dataset in our experi-

ments using four classification algorithms. We found that GNB was the best, while 

GPC was the worst.  

The minimax fairness criteria provided weights for a model for adequate fairness. 

The minimax criteria ensured that, in the end, we had a set of weights that guaranteed 

the lowest maximum error. The results show that the errors in the protected attributes 
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of age and sex groups were minimized after the algorithm ended.  In addition, the min-

imax resulted in a decrease in the difference between protected group errors. Hence it 

can be used as a fairness-enhancing metric among protected groups. 

5 Conclusions and Future Work 

In this work, we considered a series of fairness metrics applied to the German credit 

dataset. We calculated the SPD, DI, Equal Opportunity, ROC/AUC, and minimax met-

rics and analyzed the results. We have analyzed the fairness metrics to determine the 

biases against potentially protected groups.  

In future work, we aspire to provide methods for mitigating bias and improving fair-

ness metrics by comparing different datasets and algorithms. 

Future work will also explore new fairness metrics from literature, evaluate other 

datasets and compare the results. The minimax fairness criterion is relatively new, and 

apart from the original algorithm proposed in [5], two algorithms have been proposed 

by [4]. We plan to further investigate this, among other new metrics for fairness, to 

reduce or eliminate detrimental biases in classification and machine learning systems. 

It would be an excellent exercise to use the minimax fairness criteria to compare its 

performance with datasets from different types of computational problems and classi-

fiers.    
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