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A B S T R A C T

Implementations of artificial intelligence and machine learning are becoming commonplace in multiple
application domains. This is in part due to advancements in computing hardware that have helped outsource
the computation of resource-intensive mathematics related to artificial intelligence and machine learning to the
chips of multi-core and parallel computing architectures. Partly it is due to the widespread appeal of machine
learning as a suite of handy tools to fix practical issues. Many fields have become beneficiaries of artificial
intelligence and machine learning and cardiorespiratory rehabilitation is no exception.

The aim of this paper is to review the current state of the art of the applications of artificial intelligence and
machine learning in cardiorespiratory rehabilitation. We have taken a multidimensional view to addressing the
needs and utility of artificial intelligence and machine learning in cardiorespiratory rehabilitation. We start
with the most primitive applications of machine learning reported in existing literature in making medical
devices for analyzing heartbeats and respiratory functions. We then discuss more recent approaches including
deep learning to analyze performance or suggest alternative choices for food or exercise. Applications and
utility of most recent feats such as explainable artificial intelligence are also discussed and conclusions around
the current state of the art and possible future directions are proposed.
1. Introduction

Exercise therapy is a proven way of prescribing a set of physical
activitys (PAs) to aid the treatment of certain medical conditions and
to recover from certain diseases [1]. The advent of AI and high-
performance computing systems coupled with the enhanced ability
to collect data has opened an opportunity in the health and fitness
sector with the hope that AI may be able to aid in recovery as well
as in the improvement of human health [2]. The overall scope of this
paper is to review previous literature on the applications of AI/ML in
multiple aspects of cardiac and pulmonary rehabilitation. Literature
about developing RSs for developing PA and exercise suggestions is
considered. Similarly, RSs for nutrition therapy in conjunction with PA
are suggested. Applications of X-AI in the context of healthcare are
also cited along with literature for developing adaptive AI systems.
A number of studies related to applied AI for developing systems
for ensuring a patient’s adherence to medication and exercise is also
reviewed.

Our main purpose in conducting this research was to figure out the
wide gamut of factors that influence cardiorespiratory health, fitness,
rehabilitation, and pre-habilitation. This knowledge, in turn, was neces-
sary to understand what kind of data, features, and metrics are required
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to develop a software-based solution (such as an app or a system) to
assist the general population to monitor, evaluate and improve their
cardiorespiratory health. Currently, there is no software application
available that takes a complete and holistic view of the various con-
ditions that affect cardiorespiratory health. Common cardiorespiratory
tools such as a Fitbit or a tracking app will typically take a few
numerical inputs such as the heart rate or breathing rate to reflect on
the overall heart and respiratory health of a user [3]. Consequently, a
wider range of actual factors that affect cardiorespiratory health is not
fed to the app. As a result, the readings given by the app are not true
reflections of the actual health of the user.

As we performed this survey, we found that the academic litera-
ture on the factors affecting cardiorespiratory health was lacking in
papers that collectively reflect on the factors affecting cardiorespiratory
rehabilitation. To this end, this paper contributes to this area in reveal-
ing valuable information concerning the application of AI and ML to
cardiorespiratory health.

The rest of this article is structured as follows. In Section 2 ap-
plications of AI/ML for cardiorespiratory rehabilitation are reviewed.
Section 3 considers how AI/ML may be used to help patients en-
gage with exercise and healthcare regimes. Some issues related to
vailable online 12 August 2023
352-9148/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.imu.2023.101327
Received 12 June 2023; Received in revised form 5 August 2023; Accepted 9 Augu
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

st 2023

https://www.elsevier.com/locate/imu
http://www.elsevier.com/locate/imu
mailto:adil.raja@dkit.ie
mailto:roisin.loughran@dkit.ie
mailto:fergal.mccaffery@dkit.ie
https://doi.org/10.1016/j.imu.2023.101327
https://doi.org/10.1016/j.imu.2023.101327
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 41 (2023) 101327M.A. Raja et al.
transparency and regulations around using AI/ML in healthcare are
presented in Section 4. Finally, Section 6 presents some discussions for
future works and conclusions.

2. AI in cardiorespiratory rehabilitation

Applications of AI/ML in the monitoring of cardiac and pulmonary
health are not new. Advances in deep learning technologies have paved
the way for more accurate monitoring of cardiac and pulmonary health,
along with applications of traditional learning approaches such as those
based on logistic regression, Artificial Neural Networks (ANNs) and
Support Vector Machines (SVMs).

2.1. AI in cardiac diagnosis/rehabilitation

Agliari et al. have proposed to compute biomarkers based on com-
puting beat-to-beat variability in the heart rate [4]. The biomarkers
are fed to a multi-layer feed-forward ANN to classify patients. They
found that their approach could have benefits in terms of social costs.
Moreover, they also found that the extension of their approach to
other pathologies could be feasible, so long as suitable data-sets were
available.

In [5], Hijazi et al. have proposed to filter patients’ Electroenceph-
elograms (ECGs) and to apply ML classifiers to estimate cardiac health
risks and severity. The ML algorithms they used were SVM, Decision
Trees (DTs), and k-Nearest Neighbors (K-NNs). Although there is no
evidence that their work was commercialized, it is well-cited. Tech-
niques that employ ECG signal analysis for cardiac health monitoring
are useful as continuous ECG sensors are becoming commonplace [6].
A range of wearable and other sensors exist that can be used either for
high efficiency or the comfort of use. Tripathy et al. have proposed a
personalized health care system [7]. A salient feature of the proposed
system is that it has a mobile heart-rate monitoring module. The
data can be sent to a doctor and based upon that treatment can be
prescribed remotely. Fu et al. have designed a hardware device that
can collect high-quality ECG data from the human body [8]. The data
is sent to a cloud-based deep-learning platform that can diagnose a
cardiovascular condition. Twenty types of diagnostic items including
sinus rhythm, tachyarrhythmia, and bradyarrhythmia are supported.
The main author, Zhaoj Fu, is the founder of Anhui HeartVoice Medical
Technology Co., a company dedicated to caring for the human heart
using AI.

2.2. AI in pulmonary rehabilitation

Similarly, AI and ML have been used increasingly in pulmonary
disease identification and rehabilitation in recent years. In [9], Blanc
et al. proposed an ML and deep learning-based approach to pulmonary
nodules using Computed Tomography (CT) scans. The proposed solu-
tion consisted of a fully functional software pipeline in which deep
learning was initially applied for nodule detection. The nodule classifi-
cation was later achieved by employing an SVM. The platform showed
good performance for nodule detection and patient diagnosis. Exact
statistics pertaining to the performance of the system are mentioned in
a reputable peer-reviewed journal. Rao et al. have surveyed approaches
for pulmonary diagnosis based on acoustic methods [10]. They have
noted methods for monitoring and measurement of sounds related to
Chronic Obstructive Pulmonary Disease (COPD) or asthma. Apart from
the traditional measurement device, such as the stethoscope, various
specialized microphones for acoustic measurement are discussed. Apart
from this, ultrasound is described as a way to estimate disorders in the
respiratory system. Signal processing algorithms for feature extraction
are mentioned. These include the discrete Fourier transform, Mel Fre-
quency Cepstral Coefficients (MFCCs) as well as the wavelet transform.
Moreover, ML algorithms for the classification of pulmonary health
conditions are also mentioned. These include SVMs, K-NN, ANNs, and
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Gaussian Mixture Models (GMMs). Jung et al. have proposed a scheme
to classify lung sounds using depth-wise separable Convolutional Neu-
ral Networks (CNNs) using spectrograms computed with short time
Fourier transform (STFT) and MFCCs [11]. The spectrograms are fed
to CNN as image data. Their approach is based on fusing the feature
data obtained from STFT and MFCCs. The results they achieved were
better than using either STFT or MFCCs features alone. They reported
that even though the performance of their proposed system was com-
parable with the state-of-the-art viz a viz accuracy of the model, the
computational performance was much better.

Palaniappan et al. have used auscultation data collected from a
stethoscope to compute MFCCs as features [12]. They use these features
to train an SVM classifier and a K-NN classifier to perform diagnosis.
They used auscultation audio data from a well-known database known
as RALE [13]. They reported a very high classification accuracy for
their proposed models.

A non-invasive method for measuring respiratory rate has been
proposed in [14] using the WiFi signal. The fact that the WiFi signal
undergoes an increase or decrease in amplitude while passing through
the human body while the lungs are deflated or inflated during res-
piration has been exploited. Their work has not been adopted widely.
Pulse oximetry is another way to measure oxygen saturation levels in
the bloodstream. Oxygen saturation level has been used to reflect on
cardiac and pulmonary health for a long time. Recent studies have
also begun to develop more accurate oximeters using ML techniques,
as shown by Venkat et al. [15].

In [16], Nicolo et al. have discussed the importance of measuring
respiratory rate in different contexts and situations including sports and
exercise. They have proposed a number of cases where there is a need
to assess the respiratory rate. They also propose technological tools and
sensors that are amenable to the measurement of respiratory rate in the
situations they have mentioned. Challenges encountered during sports
and exercise related to measurement in outdoor settings and moving
bodies are addressed. Some of these are ever-changing atmospheric
conditions due to rain, changing weather, different postures in different
exercises, and contact sports. Most of the challenges are related to the
calibration of the sensors and inaccurate readings due to environmental
factors and rapidly changing orientations and positions of devices.
Sensor fusion has been proposed as one of the possible solutions to
address these issues. In sensor fusion, data is gathered from a bunch
of sensors and fused together to make sense of it. However, making
sense of a large amount of data from different sensors is a challenge
and AI is seen as a possible cure for the future of fused sensor data.

Summary of Applications of AI/ML in Cardiorespiratory
Rehabilitation
In this section we discussed applications of AI/ML in car-
diorespiratory rehabilitation from a retrospective perspective.
More specifically, we discussed the applications of AI/ML for:

• Diagnosis of and rehabilitation of cardiac health.
• Pulmonary rehabilitation.
• ML algorithms used to develop rehabilitation systems

have been listed in Table 1.

3. AI for patient engagement

3.1. virtual reality (VR) applications for rehabilitation

In recent years there has been an interest in utilizing VR platforms
for cardiac and pulmonary rehabilitation [17]. VR systems exploit the
neuroplasticity of the human mind, which is the ability of the mind
to adapt to different environments. The idea is to use VR systems in
space-constrained environments, such as homes, where there is not

enough space to conduct outdoor activities. Moreover, role-playing
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games using VR can be quite interesting as shown by Garcia et al. [18].
Instead of focusing on the details of an exercise program, the subject
can focus on the challenges of the game and the exercise happens
as a byproduct. Thus, games that require walking, running, hiking,
or climbing a mountain can be played in VR. The user can exert
themselves physically for the duration of the game while not feeling
bored. VR augmented exercise systems have been found to be quite
effective when compared with traditional modes of physical exercise,
as shown by Da et al. [19]. In a related study, it was found that
rehabilitation that incorporates VR is more effective than standard
rehabilitation for improving walking speed, balance and stability after
a stroke [20]. The effect of VR augmented pulmonary rehabilitation
has been studied by Colombo et al. in [21] and it was found to be
quite effective. A related and cheaper alternative to VR is exergaming
in which there is a requirement to perform physical exercise inherent
to a video game’s structure, as proposed by Bond et al. [22].

3.2. RSs for exercise and rehabilitation

RSs in sports and exercise are also becoming common to help
individuals achieve better health viz a viz heart and lungs. One of
the key ideas in developing a good RS is to exploit the subliminal
human desire to partake in challenging activities. In [23], Mahyari
and Pirolli quote that human beings get motivated about goals only
if they are challenging enough. Similarly, they abandon activities if
they are too challenging. To this end, they have proposed an RS that
divides exercise-related activities according to their difficulty level. A
subject is recommended to perform something a bit more difficult if
they have successfully finished tasks recommended by a prior difficulty
level. On the other hand, if they fail to complete the tasks on a
particular difficulty level, they are recommended to choose tasks from
a lower difficulty level. The exercises and activities are also suggested
by computing a probability that the subject shall be able to complete
the task successfully. Their system is based on a Recurrent Neural
Network (RNN). mHealth is another RS developed for the Android
operating system as proposed by Wuttidittachotti et al. [24]. Ni et al.
have proposed an RS that uses heart rate and activity data for making
recommendations [25]. The system is based on a Long Short Term
Memory (LSTM) network.

In a recent article [26], Sato et al. have shown that exercise benefits
the body in different ways, depending on the time of the day. Given
such a variance in the effect of exercise in different scenarios, it be-
comes incumbent upon a good RS to take such factors into account. Last
but not least, the most recent and commendable RS for mHealth and
physical exercise is proposed in [27]. The proposed system is developed
using deep RNNs.

3.3. AI for adherence

Another important and interesting area of applied AI/ML in health-
care is to develop intelligent models that verify a subject’s or a patient’s
adherence to a specific exercise program or medication. In a highly
cited recent article by Emanuel et al. [28] the authors have argued
that in order for AI to live up to its hype in the healthcare domain, it
would be required to invent the so-called “the effector arm of AI”. The
term refers to the tangible tools and models developed using AI that
affect the subject’s behavior and bring about appropriate behavioral
changes among users. The rationale is that there is poor adherence
among people to behavioral suggestions. For instance, in [29], Nicolson
et al. compared self-reporting of exercise adherence by people to data
collected using accelerometers. It was found that there was a poor
correlation between the two and the people mostly overestimated their
exercise adherence. In a recent article [30], Bohlmann et al. have
reviewed considerable literature in which ML has been applied to de-
velop human competitive models to verify medication adherence. Burns
et al. [31] developed models using various ML algorithms to verify that
3

patients with shoulder injury adhere to physiotherapy exercises. In [32]
Lo et al. studied the perceived benefits of an AI-embedded mobile
app with evidence-based guidelines for the self-management of chronic
neck and back pain. They reported a significant reduction in pain levels
due to the use of the mobile app. In [33] Ferrante et al. proposed
to employ socially assistive robots to increase motivation, engagement
to treatment, and adherence among the patients of pediatric asthma.
Adherence to home exercise can be poor due to various reasons such
as a decline in motivation, disinterest, mundane exercise routines etc.
In [34], Argent et al. explored how connected health technologies could
offer numerous interventions to enhance adherence. They highlight
how well-designed connected health technologies, such as the use of
mobile devices, including mobile phones and tablets, as well as inertial
measurement units, provide us with the opportunity to better support
the patient and clinician, with a data-driven approach that incorporates
features designed to increase adherence to exercise such as coaching,
self-monitoring, and education, as well as remotely monitor adherence
rates more objectively.

3.4. AI for compliance

AI has recently been employed to develop systems that verify users’
compliance with prescribed exercise. To check whether a patient has
performed the prescribed exercise correctly and accurately is quite
important. This becomes a lot more important when the patient is
conducting exercises or alone or at home. A physiotherapist or a
coach cannot be present with a user all the time in all phases of
diurnal life. Having systems that can reflect on a user’s compliance with
prescribed physical activity is a convenience for both patients as well as
physicians. ML and the advent of deep learning have made it possible
to develop such systems that verify user compliance with prescribed
exercise. In [35], Kianifar et al. proposed a system for identifying
dynamic knee valgus as a user performs a single leg squat. Their system
uses data obtained from three inertial measurement units (IMUs) and
treats the data with various ML algorithms before producing the result.
The ML algorithms that showed the best performance were SVM, K-
NN, and Naive Bayes (NB) algorithms. Bavan et al. [36] evaluated the
feasibility of using a single inertial sensor to recognize and classify
shoulder rehabilitation activity using supervised ML techniques. Liao
et al. [37] have developed a deep learning framework to assess user
adherence and compliance viz a viz physical rehabilitation exercise.
Soellner et al. [38] found in their study that pairing AI and a physician
in a hypothetical scenario in which a user is supposed to perform exer-
cise is substantially beneficial as opposed to using AI alone for verifying
compliance. Fisher et al. [39] proposed a method for power wheelchair
exercise compliance. Their method employs spectral analysis as well as
Hidden Markov Models (HMMs).

Applications for recognizing sport-specific movement are becom-
ing commonplace [40]. Deep learning and ML are increasingly being
applied to develop frameworks that are used to verify if prescribed
exercise for rehabilitation is being done correctly or not [37]. There
exist applications that employ sensor data from IMUs alone for verify-
ing exercise compliance [41]. More sophisticated approaches also take
image data in conjunction with movement sensors to solve a typical
problem related to musculoskeletal or limbic movement by employing
a computer-vision-based solution [42].

3.5. RSs for nutrition therapy

Prescribing nutrition therapy in conjunction with physical activ-
ity and an exercise regime for rehabilitation is also common [43].
Nakahara et al. [44] have proposed aggressive nutrition therapy to
treat malnutrition and sarcopenia. The latter is marked as a medical
condition for gradual, progressive, and generalized skeletal muscle
disorder. Baguley et al. [45] have prescribed nutrition-exercise therapy
to treat cancer-related fatigue and to enhance the quality of life in men
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with prostate cancer. Literature related to the link between nutrition,
physical activity, and cardiovascular health is also not nonexistent. In
a slightly old but highly cited article Igarro et al. [46] have reflected
on the role of nutrition and physical activity in the prevention of
cardiovascular disease (CVD).

A few RSs for suggesting appropriate nutrition and diet also ex-
ist. Just like any typical RS, the dietary RS suggests diets based on
a person’s medical history and other user-specified data. The other
data, for instance, could be related to data coming from sensors that
monitor physical activity. AI and ML schemes are employed to instill
intelligence into the RS. A recent, highly cited, dietary RS is DIETOS,
proposed by Agapito et al. [47]. Another food RS is proposed in [48]
by Ge et al. It suggests recipes according to users’ preferences as well
as health data. Toledo et al. [49] have recently proposed a food RS
that considers the nutritional needs as well as the preferences of a
user to suggest food sources. They maintain a taxonomy of a myriad of
food sources arranged according to their nutritional profiles. A multi-
tier decision-making system employing optimization techniques as well
as AI/ML algorithms is developed. PREFer is another recent food RS
proposed by Bianchini et al. [50]. It uses a recipe dataset to generate
menus based on both medical prescriptions and a user’s short/long-
term preferences. Nag et al. [51] propose a live personalized nutrition
recommendation engine that uses multimodal contextual data includ-
ing GPS location, barometer, and pedometer output to calculate a live
estimate of the user’s daily nutritional requirements, which are then
used to rank the meals based on how well they fulfill the individual’s
nutritional needs. Ge et al. [48] proposed a food RS developed on a
mobile platform, which not only offers recipe recommendations that
suit the user’s preference but is also able to take the user’s health into
account, supported by wearable technologies. A very recent and quite
novel nutrition RS is MATURE [52]. This RS recommends items to
users based on the nutritional profiles of food items depending on the
nutrient constituents. It does not depend on a particular classification
technique as such. However, they have provided their own complete
algorithm for the system to work and that heavily leverages feature
classification.

Summary of Transparency and Regulation
In this section, we discussed applications of AI/ML in de-
veloping systems for patient engagement. In this regard, we
discussed utilization of AI/ML for developing:

• AI/ML for developing VR applications for rehabilitation.
• RSs for exercise and rehabilitation.
• applications for adherence.
• applications for compliance.
• RSs for nutrition therapy.
• ML algorithms employed by various studies have been

tabulated in Table 1.

4. Transparency and regulation

4.1. X-AI in cardiorespiratory rehabilitation

Nowadays customers and clientele of AI applications expect to
receive an explanation of the results produced by their AI tools. The
same is true about the domains of medicine and healthcare [53]. The
old days when the rather wizardly results of AI tools were accepted on
face value are long gone. X-AI is a rapidly emerging field that is making
inroads into healthcare [54], sports [55] and rehabilitation [56] too.
X-AI can help to answer many interesting questions related to cardiac
and pulmonary health also. X-AI is a newly emerging field, and it is
4

argued in [57] by Ghassemi et al. that the current explainability models
and frameworks do not fulfill the needs of the healthcare domain in a
reliable manner. To this aim, better models need to be developed that
represent a window of opportunity in this rapidly growing field.

Ghassemi et al. have particularly criticized the current inherent as
well as post-hoc explainability techniques. These are the two wide-
spread categories of achieving X-AI. Inherent explainability refers to
a model’s quality of being inherently explainable if it is a simple
model and the relationships between inputs and outputs can be figured
out easily by visual explanation. Examples of such models are those
achieved by linear regression or such simple techniques. However, the
model and the data of the current real-world problems are normally
too complex to be explained with inherent X-AI. Textual, image, video,
and speech data does not render itself for inherent explainability.
To address the limitations of inherent X-AI, the research community
has formed certain post-hoc explainability techniques. These include
heatmap analysis, Locally Interpretable Model-Agnostic Explanations
(LIME) and Shapley Values (SHAP). LIME, for instance, tries to learn the
importance of decisions at the individual level by tweaking the values
of various input values slightly. It tries to estimate which perturbations
change the decision of the model. They have reported some shortcom-
ings of the post-hoc explainability techniques. Not only the model itself
can be right or wrong, but so can the explanation be as well.

There is nonetheless an ever-growing urge in the healthcare com-
munity to transition from developing black-box models to explainable
solutions as highlighted by Abadi et al. [58]. An interesting applica-
tion of X-AI in healthcare is to develop online symptom checkers as
proposed by Tsai et al. [59]. Another interesting theme proposed by
Nazar et al. is to weave a synergy between X-AI and Human-Computer
Interaction (HCI) [60]. X-AI has also been recently deployed for the
diagnosis of coronary artery disease by Otaki et al. [61]. Similarly, X-
AI has been developed recently for pulmonary nodule classification by
Jiang et al. [62]. An interesting application of X-AI in recent literature
has been to predict the probability of hospital re-admission of frail
patients after discharge by Mohanty et al. [63]. This is expected to have
huge monetary benefits for the healthcare system. A similar approach
can be applied to estimate the risk of injury or illness after cardiac and
pulmonary rehabilitation. X-AI is also being employed in elite sports to
answer questions related to the risk of injury to athletes [55]. More-
over, X-AI has also been employed to answer questions related to the
effectiveness of stroke-related rehabilitative exercises by Lee et al. [56].
In a recent article by McCoy et al. [64], the authors have argued that
ML in healthcare does not need explainability to be evidence-based.
In particular, they mention that explainability is often achieved at the
cost of accuracy. To this end, they propose that explainability should
be sought where it is required. Other than that, black box models are
good to suffice for the prescribed job.

4.2. Adaptive AI in cardiorespiratory rehabilitation

AI-based medical device software is mostly static nowadays. This
means that once developed the software, no matter how good, smart,
and intelligent, remains fixed throughout the lifetime of the applica-
tion. In order to change the behavior of the software, continuous up-
dates and upgrades are required. A desire for developing self-adaptive,
self-improving, self-repairing AI systems is on the horizon of the med-
ical device software innovation community. According to Gilbert et al.
new regulations are underway for software that will be adapted in
real-time during its lifetime [65]. At the same time, the AI/ML com-
munity has taken great strides in terms of developing the ability to
automatically repair software according to Yuan et al. [66]. Genetic
improvement of software is also a promising enterprise that could
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be used for improving medical device software in use [67], allowing
automated software repair, bug fixing, and updating.

Summary of Transparency and Regulation
In this section, we discussed:

• The role of X-AI in systems for cardiorespiratory
rehabilitation.

• Adaptive AI in cardiorespiratory rehabilitation.
• ML algorithms cited by different studies have been

reported in Table 1.

5. The case of AI -based rehabilitation in post-covid world

COVID-19 has changed many aspects of healthcare, and of life,
across the world. Work cultures and personal lifestyles for many people
are drastically different now in the post-Covid world. We consider here
how AI and ML tools have bee used to address the cardiorespiratory
rehabilitation challenges posed by this worldwide pandemic. One of
the auspicious aspects of our present era is that while there are unique
challenges in almost any sphere of life, including healthcare, the speed
of innovation is also staggering [68]. Advances in telemedicine, re-
mote patient monitoring, and emerging wearable technologies have
been unprecedented during the COVID-19 pandemic. The role of mod-
ern technologies in post-COVID-19 cardiorespiratory rehabilitation has
been recently thoroughly studied by Doru et al. [69]. To this end, the
study focuses on post-COVID-19 patients who are in need of cardiores-
piratory rehabilitation. The authors have cited the role of video guides,
hybrid approaches in which the patient is initially treated in a hospital
facility and eventually encouraged to participate in a rehabilitation
program at home using various medical technologies. They also cited
literature related to telemedicine-based rehabilitation and noted its
importance. Moreover, the use of VR and video games for remote
rehabilitation are also considered as preferable tools. Results show an
increased resistance to fatigue as well as an improved quality of life
using these tools.

It is a well-known fact that post-COVID-19 infection, cardiorespi-
ratory fitness is impaired [70]. The level of impairment is a function
of the severity of the illness. In [70] Gomes-Neto et al. the authors
recommend the adoption of rehabilitation and therapeutic strategies
to address this issue. Similarly, apart from cardiorespiratory health
decline, skeletal muscle damage is also a serious matter [71], calling
for the need of urgent intervention.

A requirement in treating COVID-19 is for the patient to be quar-
antined. In the case of long COVID-19, it was impossible for hospitals
to host the patient for too long due to monetary and space constraints.
Ideally, there should be a way to continue to rehabilitate the patient
at home. In [72], Swarnakar et al. have reflected on this and related
issues. They conclude that it is most important to identify the rehabili-
tation needs of patients. They also highlight the need for further studies
on various rehabilitation interventions. They also highlight the need to
utilize AI-based systems for remote rehabilitation.

The crux of the above discussion is that the onset of COVID-19
could affect the cardiorespiratory health and brain function of patients.
Although post-COVID-19 recovery and rehabilitation are positively
correlated [73], according to Besnier et al. more studies are required to
assess the effectiveness of rehabilitation programs for the patients [74].

According to the World Health Organization (WHO) the COVID-19
pandemic is over, but its prolonged presence and long-lasting effects
across the world demand a readiness on our part to be able to tackle the
next pandemic of such proportions. Fortunately, mankind has learned
to catch up with such calamities with alacrity in technological terms
as discussed earlier [68]. While the capability and willingness to tackle
such problems when they arrive is necessary, it is also important to
contemplate systems and solutions for future global health crises before
they reach pandemic proportions.
5

6. Conclusions

In this paper, we have reviewed the applications of AI and ML in car-
diorespiratory rehabilitation as reported in high-quality peer-reviewed
literature. Table 1 shows the distribution of studies across various
problem domains and the AI/ML algorithms used to devise solutions.
We began with a review of different approaches that are used in the
diagnosis and monitoring of cardiorespiratory health issues. After that,
we reviewed some RSs that have been employed in cardiorespiratory
rehabilitation and offered a review of applications of VR systems for
exercise rehabilitation. X-AI is a newly emerging niche in AI/ML and we
have considered its applications in healthcare. We have also reviewed
techniques and technologies that are used in monitoring a subject’s
adherence and compliance with suggested exercise therapy procedures
and prescriptions. We also touched on the topic of nutrition therapy and
reviewed some state-of-the-art RSs for advice on nutrition. The COVID-
19 pandemic has had a significant impact on healthcare across the
world. We considered how AI and ML tools have been used to address
cardiorespiratory healthcare for COVID-19 and long COVID patients. As
the challenges arising from the COVID-19 pandemic continue to pose
issues for healthcare around the world, we anticipate that AI and ML
modules and tools could play a large part in addressing these issues
and be used to develop new approaches and solutions to this ongoing
global problem.

Combining data from various types of sensors such as an IMU, a
heart rate monitor, an oximeter, and/or any type of motion sensor, as
suggested by Nicolo et al. [16], can have the added benefit that cardiac
and pulmonary health could be measured in different contexts, such
as health, well-being or even elite sports. The role of AI/ML could be
crucial from multiple vantage points in this regard. Firstly, AI could
help analyze, annotate and understand the combined data more accu-
rately. Choosing which sensor’s data to trust in a particular scenario is a
challenge that could be addressed with applied AI. Similarly, analyzing
the data on different time scales and in different settings spread over
space could help to answer many important questions. For instance,
consider the heart health of a patient over a two-week period when they
alternate between high-intensity exercise and rest. What data could
be collected and analyzed every day, hour or even second? Similar
questions could be addressed such as: What is the effect of a sunny
day’s outdoor workout on the heart rate? Or, how has a particular set of
aerobic exercises combined with a resistance training workout helped
the blood oxidation level? X-AI can help to quantify explanations of
various phenomena that may help to address questions such as these.

Until now, much of the focus of the research community has been on
developing narrow-AI (n-AI). This means that specialized applications
for classified problems have been proposed using n-AI. Recently, there
has been an increasing interest in various research communities work-
ing with AI tools to develop generalized AI which, in theory, should be
more human-competitive. More powerful, generalized AI could have a
much higher impact on many real-world problems. This paper gave a
review of AI and ML as applied to approaches to address and assist
cardiorespiratory rehabilitation in recent years. With ongoing global
challenges such as the impact of the COVID-19 pandemic and an aging
population, our future work will build on this body of work to apply
new AI methods, especially those deemed X-AI, to further address and
alleviate the challenges identified here.

In [75] late Professor Marvin Minsky provided a practicable theory
of mind. He proposed that a mind could be thought of as composed
of a society of smart agents, each of which is ascribed to perform a
certain specialized task. Together, the whole society of agents could
function as a general intelligent agency. A whole academic discipline
of cognitive architectures exists in this regard that is dedicated to devel-
oping machines capable of Artificial General Intelligence (AGI) more or
less on these lines [76]. The discipline has been moribund for the past
few decades mainly for the reason that computing hardware of past

times had limited capabilities. Advent of modern High Performance
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Table 1
Distributions of citations across different disciplines and ML algorithms.
Learning Cardiac Pulmonary Exercise RS Adherence Compliance Nutrition RSs

SVM [5] [9,10,12] [30] [35,36,40] [52]
ANN [4] [10] [30,32]
DTs [5] [30]
K-NN [5] [10,12] [35] [50]
CNN [8] [9,11] [37,40,41]
RNN [8] [23,27]
LSTM [25] [37,40,42]
GMMs [10] [41]
NB [35]
HMM [39]
Computing (HPC) tools as well as advances in AI and ML now allow
for the adoption of the development of cognitive architectures for AGI.
Thus, it will be one of our future ambitions at Regulated Software
Research Centre (RSRC) to adopt cognitive architectures for AGI related
to medical devices.

Acronyms

Abbr. Meaning
AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
COPD Chronic Obstructive Pulmonary Disease
CT Computed Tomography
CVD cardiovascular disease
DT Decision Tree
ECG Electroencephelogram
GMM Gaussian Mixture Model
HCI Human-Computer Interaction
HMM Hidden Markov Model
IMU inertial measurement unit
K-NN k-Nearest Neighbor
LIME Locally Interpretable Model-Agnostic Explanations
LSTM Long Short Term Memory
MFCC Mel Frequency Cepstral Coefficient
ML Machine Learning
NB Naive Bayes
PA physical activity
RNN Recurrent Neural Network
RS Recommender System
SHAP Shapley Values
STFT short time Fourier transform
SVM Support Vector Machine
VR virtual reality
WHO World Health Organization
X-AI Explainable AI
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