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Abstract—A significant portion of current AI research is 

focused on ensuring that model decisions are fair and free of 

bias. Such research should consider not merely the algorithm 

but also the datasets, metrics and approaches used. In this 

paper, we work on several pre-processing techniques to achieve 

fair results for classification tasks by assigning weights, 

sampling and changing class labels. We used two well-known 

classifiers, Logistic Regression and Decision Tree, performing 

experiments on a popular data set in the fairness domain. This 

research aims to compare the effects of different pre-processing 

techniques on the resulting confusion matrix elements and the 

derived fairness metrics. We found that the Massaging 

technique with the Logistic regression classifier resulted in the 

Disparate Impact value that was closest to one. While, for the 

Decision Tree classifier, Reweighting and Uniform Sampling 

performed better than Massaging for all of our fairness metrics 

and both sensitive attributes.  
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I. INTRODUCTION  

Bias can be intentionally or unintentionally introduced 
into Artificial Intelligence (AI) systems or algorithms, or it 
can develop when they are employed in a particular 
application. The presence of negative bias in such systems 
can result in unfair outcomes, weakened public trust, legal 
and ethical challenges, and diminished human dignity [1]. 
The goal of bias mitigation research is to develop algorithms 
and/or other approaches that produce predictions that are 
considered fair for both privileged and underprivileged 
groups, particularly in relation to sensitive attributes. 

Debiasing algorithms can, in general, be divided into 
three categories. Pre-processing algorithms modify data 
before it is presented to a processing algorithm [2]. One of 
the advantages of these techniques is that they are employed 
early in the life cycle, so if the data incorporates biases, the 
classification model could learn this bias and possibly 
mitigate against it. In-processing algorithms change the 
procedure of the algorithm to make fairer results [2]. Post-
processing algorithms alter the predictions made by 
algorithms to mitigate the anticipated impact of bias [3]. The 
effectiveness of these strategies has been investigated using 
several fairness metrics and datasets, determining that there 
is no single algorithm that performs better than all other 
algorithms with all fairness measures across all datasets [4]. 
Each mechanism has its benefits and drawbacks. Pre-
processing mechanisms can be applied to most classification 
algorithms, but there is a great deal of uncertainty regarding 
the level of accuracy that will be attained. Additionally, they 
might challenge the results' explainability [1]. Although post-
process techniques can be used with any classification 
algorithm, they often produce inferior results since they are 

added relatively late in the learning process. In-processing 
techniques may explicitly enforce the necessary trade-off 
between accuracy and fairness in the goal function, but the 
selection of methods varies with parameters. In this study, we 
conducted experiments on several pre-processing bias 
reduction strategies based on Kamiran and Calders' studies 
[5]–[7].  

The next two sections look at the popular fairness metrics 
definitions with their formula and the key information about 
the Adult Income dataset. Section IV describes the 
methodology that has been used in this research. Section V 
discusses the results obtained and some conclusions and 
future work are proposed in Section VI.  

II. METRICS 

Most of the research into fairness in algorithms examines 
the amount of bias that is formed, influenced, or mitigated. In 
the case of the binary classification task, there are four 
possibilities based on the confusion matrix comparing model 
predictions with the actual results, True Positive (TP), False 
Positive (FP), True Negative (TN) and False Negative (FN). 
These values are calculated for both privileged and 
unprivileged groups and they can help to make measurements 
resulting from various definitions of fairness conceptualized 
in ML applications [8]. True Positive Rate (TPR) is the 
probability of an actual positive individual being correctly 
identified [9]. The False Positive Rate (FPR) is the 
probability of anegative event being wrongly categorized as 
positive. True Negative Rate (TNR) is the probability of 
actual negative correctly identified [9]. The most popular 
measurements for classifying ML fairness and their 
definitions based on core measurements are given below. In 
the following formulae, the number of members of dataset is 
denoted by N, the number of members of the unprivileged 
group is denoted by NU and the number of members of the 
privileged group is denoted by NP.  

A. Disparate Impact  

Disparate Impact (DI) gives a measure of how similar the 
percentage of positive predictions is among groups. The ideal 
value is one [10]. Equation (1) is used for calculating this 
measurement. 

DI =
(TPU + FPU)/NU

(TPP + FPP)/NP
 (1) 

B. Demographic/Statistical Parity 

Statistical Parity (SP) resembles DI but instead of using 
the ratio, the difference is taken [10]. Regardless of whether a 
person belongs to the sensitive category, the likelihood of a 
positive outcome should be the same. The ideal result is zero. 
Equation (2) shows the calculation of SP. 



SP = (
TPU + FPU

NU
) − (

TPP + FPP

NP
) (2) 

C. Average Odds Difference 

Average Odds Difference (AOD) calculates the 
inequality between groups on the combination of the TPR and 
the FPR. In other words, the rates of true positives and false 
positives should be the same for the privileged and 
unprivileged groups [10]. The ideal result for this is zero. 
Equation (3) is used for calculating AOD. 

AOD =
(FPRU − FPRP) + (TPRU − TPRP)

2
 (3) 

D. Equal Opportunity  

Equal Opportunity (EO) ensures everyone is treated 
similarly and satisfies the same requirements [11]. It 
mandates that the privileged and unprivileged groups should 
have similar TPR. The ideal result is zero. Equation (4) shows 
the calculation of EO. 

EO = TPRU − TPRP (4) 

The Accuracy (ACC) of an algorithm is the most common 
measure of performance [12]. ACC measures the number of 
correct predictions divided by the number of total predictions. 
In dealing with an imbalanced dataset Balanced Accuracy 
(BA) can be used [13]. BA calculates the average of TPR and 
TNR [13]. Equations (5) and (6) were used for calculating 
ACC and BA respectively. 

ACC =
TP + TN

TP + TN + FP + FN
 (5) 

BA =
1

2
 (

TP

TP + FN
+

TN

TN + FP
) (6) 

III.  DATASET 

The Adult Income dataset was extracted, pre-processed, 
and donated to the UCI Machine Learning Repository in 1996 
from the census database by Ronny Kohavi and Barry Becker 
[14]. The target of the prediction task was a binary variable 
indicating whether the respondent’s income exceeded 
$50,000. The size of this dataset is 48,842. This dataset is 
imbalanced in terms of class labels. The total number of 
people who earn more than 50k is 11687 (24%) whereas the 
number of people who earn equal or less than 50k is 37155 
(76%). Moreover, the Adult Income dataset suffered from 
representation bias [1]. This arises when populations are not 
fairly portrayed in comparison to reality. This is driven by 
incorrect sampling procedures that leave out portions of the 
population or by population changes [15]. Classifiers usually 
are configured to optimize accuracy which often reinforces 
bias patterns that are already present in the dataset [15]. The 
favorable outcome for this dataset is income greater than 
50K. Table I shows the distribution of favrable and unfavorable 

TABLE I.  DISTRIBUTION OF CLASS LABELS IN SENSITIVE ATTRIBUTES 

Class Label/ 

Sensitive Attribute 

𝑌 = 1 

income>50k 

𝑌 = 0 

income<=50k 

sex 
male 9,918 22,732 

female 1,769 14,423 

race 
white 10,607 31,155 

non-white 1,080 6,000 

each of the sensitive attributes. One of the sensitive attributes 
in the Adult Income dataset is sex, for which the privileged 
group is male, and the unprivileged group is female. The 
privileged group attains a favourable position in comparison 
to the unprivileged group [16]. The other sensitive attribute 
is race. 

I. METHODOLOGY 

This paper aimed to evaluate four pre-processing bias 
mitigation approaches, namely Reweighting, Uniform 
Sampling (US), Preferential Sampling (PS), and Massaging. 
All of these methods were implemented based on Kamiran 
and Calders' papers [5]–[7]. In this experiment, the outcome 
of these pre-processing techniques was compared with two 
baselines, LR and DT classifiers in terms of core metrics then 
popular fairness metrics. Two algorithms were employed to 
compare how pre-processing mitigation techniques impact on 
different models. 

The original Adult Income dataset was split into three 
sets: 70% training set, 15% validation set, and 15% test 
dataset. First, a baseline experiment with a standard LR and 
DT on an Adult Income dataset was performed to compare 
and benchmark the results of the debiasing experiments. We 
trained the model on the training set and then through the 
validation set we found the optimal classification threshold 
which led to the best-balanced accuracy. As Adult Income 
datasets are imbalanced toward class labels by 76% class 
label 0 (income<50k) and 24% class label 1 (income >50k) 
using traditional accuracy as a performance metric can be 
misleading. Therefore, we aimed to maximize the balanced 
accuracy to let the model have a balanced view of a model's 
performance across different classes. 

The first method to reduce bias was Reweighting. 
Weights were assigned to every object of our training set 
based on the tuple of sensitive attributes and class labels 
according to one of these groups. For the sensitive attribute 
Sex: 

• Privileged Positive (PP): (male, income>50k) 

• Un-privileged Positive (UP): (female, income>50k)  

• Privileged Negative (PN): (male, income <=50k) 

• Un-privileged Negative (UN): (female, income <=50k). 

The objects in UP were assigned higher weights than the 
objects in UN and the objects in PN were assigned higher 
weights than the objects in PP [5]. The classifier used these 
weights in the learning process. Table II displays the 
membership count for each group within the original training 
set (OTS) alongside the corresponding weight values 
calculated for each group (weights).  

Sampling techniques were introduced as not all classifiers 
directly take in a weighting vector [5]. These techniques 
impacted the training data similar to Reweighting by 
changing the distribution of samples [7]. In the Sampling 
method, the dataset was modified by using replacement 

TABLE II.  ADJUSTMENT FOR EACH TECHNIQES 

Parameter PP UP PN UN 

OTS 6,881 1,253 15,986 10,069 

weights 0.79 2.15 1.09 0.86 

STS 5,440 2,694 17,427 8,628 

M -1441 +1441 +1441 -1441 



samples to sample the objects based on their weights [5]. The 
PP and UN groups as their weights were less than one were 
undersampled (remove samples) while the PN and UP with 
weights more than one were oversampled (duplicate samples) 
[5]. Table II illustrates the new membership counts for each 
group in the sampling training set (STS). 

There are numerous methods for oversampling (e.g. 
SMOTE) [17], undersampling (e.g. UECMS) [18] or hybrid 
sampling in a mix of both (e.g. CDSMOTE) [17] to reduce 
the effect of class imbalance. In this research, two methods, 
US and PS were used. In the case of US objects in each group 
had the same chance to be duplicated or removed [5]. On the 
other hand in PS a ranker algorithm was used to sort the 
training data based on their positive class probability [6]. In 
this study, we used LR as the ranker to sort the data objects 
based on the positive probability estimates. This ranker was 
used as the objects close to the decision boundary are more 
likely to be biased [6]. The objects in UP and PP were sorted 
in ascending order and UN and PN in descending order. Then 
for the sampling, the top objects of UP and PN were 
duplicated, and the top objects of PP and UN were skipped. 
For the sensitive attribute sex, this led to: 

• (female, income>50k) with lowest probability to be 
predicted income>50k were duplicated 

• (male, income>50k) with lowest probability to be 
predicted having income>50k were skipped.  

• (female, income<=50k) with highest probability to 
be predicted having income>50k were skipped  

• (male, income<=50k) with highest probability to be 
predicted having income>50k were duplicated. 

The last technique that was used in this research is 
Massaging. In the Massaging method, the class label for 
limited objects of the privileged group was changed from 
positive to negative. The same number from the unprivileged 
object was changed from a negative label to a positive label 
[5]. The number of class labels that were changed (M) is 
provided in Table II. Equation (7) is used for calculating M. 

M =
|SP| ∗ NU ∗ NP

N
 (7) 

1441 males who earned more than 50k were changed to the 
males who earned less than 50k. Also, 1441 females who 
earned less than 50k were changed to females who earned 
more than 50k. Changing the label class of the objects was 
not done randomly. The same ranker in PS which sorted the 
training data based on their positive class probability was 
used. The training data was divided into two groups. The 
Promotion group was sorted descending, and the Demotion 
group was sorted ascending: 

• Promotion: (female, income<=50) 

• Demotion: (male, income>50k) 

Selecting the top objects from each group which were the 
closest objects to the decision boundary can help to have less 
impact on the accuracy performance [7].  

II. RESULTS AND DISCUSSION 

The LR and DT classifiers for the unmitigated Adult 
Income dataset both resulted in an accuracy of 0.74 and a 
balanced accuracy of 0.74.  

Table III shows core metrics for LR and all pre-processing 
techniques mitigating against bias. As we see, mitigation 

techniques led to a decrease in the difference between 
females' value and males' value in the positive predictions 
(TP and FP). The reason is that as the algorithm was biased 
against females, the pre-processing techniques through higher 
weights, adding more samples, or changing the class labels 
from negative to positive, tried to fit the model to be fairer 
toward females. Therefore, as an effect of pre-processing bias 
mitigation techniques, the number of positive predictions for 
the test dataset increased for the females and decreased for 
the males. On the other hand, the difference between females' 
value and males' value in the negative prediction (TN and FN) 
increased through the pre-processing mitigation techniques. 
This occurred as, during the mitigation techniques, we trained 
the model on fewer negative class (unfavourable) labels for 
the females and more negative class labels for the males. 
Therefore, the number of negative predictions was reduced 
for the females and increased for the males and, as a result, 
the gap between the males and females in these metrics rose. 

Finally, because of the reduction in the difference 
between the TP predictions for the males and females, the DI 
metrics became close to one and SP close to zero. The results 
with the LR classifier are provided in Table III. It shows that 
Massaging gave the fairest results for DI and SP in this 
experiment with a final result of 1.06 and 0.02 respectively. 
However, the US performed the fairest in regard to AOD and 
EO. There is a decrease in balanced accuracy, albeit slight, 
when each of the mitigation methods is applied. Results for 
US and Reweighting were similar which is unsurprising as 
they are both implemented according to the calculated 
weights. A negative value for SP in Reweighting and US 
means this classifier was still slightly biased against the 
females. Positive values for AOD and EO, after applying all 
the techniques, show the improved fairness of the classifier 
towards the females when these techniques are employed. 

Table IV provides the results for the DT classifier. It 
showed that the application of the pre-processing mitigation 
techniques generally had a similar effect as in the case of the 
LR classifier, with the differences between the number of 
positive predictions for the males and females decreasing and 
the differences between the negative predictions increasing. 
However, applying PS and Massaging techniques did not 
decrease the differences between females and males for TP 
and FP as much as they did in the LR classifier, and they did 
not increase the difference between females and males in TN  

TABLE III.  LR WITH SEX SENSITIVE ATTRIBUTE METRICS 

Techniq

ues 
Baseline 

(LR) 
Reweigh

ting 
US PS Massagi

ng 

TP 
U=117 
P=1217 

U= 175 
P=926 

U= 171 
P=926 

U=215 
P=920 

U=197 
P=924 

FP 
U=214 

P=1239 

U=416 

 P=648 

U=403 

 P=648 

U=641 

 P=637 

U=609 

P=646 

TN 
U=1898 
 P=2196 

U=1696 
P=2787 

U=1709 
 P=2787 

U=1356 
 P=2798 

U=1503 
 P=2789 

FN 
U=155 

P=291 

U=97 

P=582 

U=101 

P=582 

U=57 

P=588 

U=75 

P=584 

DI 0.28 0.78 0.76 1.29 1.06 

SP -0.36 -0.07 -0.08 0.09 0.02 

AOD -0.32 0.02 0.01 0.18 0.11 

EO -0.38 0.03 0.01 0.18 0.11 

ACC 0.74 0.76 0.76 0.72 0.74 

BA 0.74 0.71 0.71 0.69 0.7 



TABLE IV.  DT WITH SEX SENSITIVE ATTRIBUTE METRICS 

Techniq

ues 
Baseline 

(DT) 
Reweigh

ting 
US PS Massagi

ng 

TP 
U=117 

P=1218 

U=177 

P=1010 

U=175 

P=939 

U=157 

P=1119 

U=143 

P=1119 

FP 
U=215 
P=1254 

U=489 
P=785 

U=416 
 P=696 

U=347 
P=1051 

U=304 
P=1051 

TN 
U=1897 

 P=2181 

U=1623 

P=2650 

U=1696 

P= 2739 

U=1765 

P=2384 

U=1808 

P=2384 

FN 
U=155 
 P=290 

U=95 
 P=498 

U=97 
 P=569 

U=115 
P=389 

U=129 
P=389 

DI 0.28 0.77 0.75 0.48 0.43 

SP -0.36 -0.08 -0.08 -0.23 -0.25 

AOD -0.32 -0.01 0.01 -0.15 -0.19 

EO -0.38 -0.02 0.02 -0.16 -0.22 

ACC 0.74 0.75 0.76 0.74 0.74 

BA 0.74 0.72 0.71 0.73 0.73 

and FN as much as they did in the LR classifier. Therefore, 
applying these two preprocessing techniques prior to running 
a DT classifier for this dataset did not have as significant an 
effect on the fairness measures as you might expect based on 
the LR classifier results. The values for PS and Massaging for 
all four metrics deviated from the ideal fairness ranges. For 
example, the value of DI for PS was 0.48 which for a metric 
with an ideal value of 1 can considered unfair due to the high 
deviation. Nevertheless, Reweighting and Sampling had 
almost the same positive effect on fairness metrics with the 
DT as they had using LR. 

These experiments were repeated for the other sensitive 
attribute in the Adult Income dataset, race, but space 
restrictions prevent us from presenting these results here.  

Our findings show Reweighting and Sampling have a great 
improvement for DI, ST, AOD and EO as the fairness 
metrics. For example, they enhanced DI as a metric with an 
ideal value of 1, from 0.28 to over 0.75 for all four combinations 
of classifier and sensitive attribute. Applying PS and Massaging 
did not show such constant improvement in all results, which 
is surprising as Kamiran and Calder assert in their paper that 
"PS always outperforms the Reweighing". This may be due 
to their use of different classifiers and rankers. Also, they 
performed their experiments on a random sample of 1/3 Adult 
Income dataset, whereas we used the LR as our ranker and 
applied techniques to the whole Adult Income dataset. 
Moreover, defining the optimised threshold to find the best-
balanced accuracy, may have affected PS and Massaging 
techniques' performance as this can impact the model's 
behaviour, making it more sensitive to different groups' outcomes. 

III. CONCLUSION AND FUTURE WORK 

In this paper, we examined four preprocessing bias 
mitigation techniques, namely Reweighting, US, PS and 
Massaging which we applied to LR and DT classifiers. This 
work was conducted on the Adult Income dataset, and we 
examined both the confusion matrix measure and some 
popular fairness measurements. Our results showed that with 
the LR classifier, the Massaging technique achieved the 
highest DI. However, for the DT classifier,  Reweighting and 
US preformed better than Massaging in all of the presented 

fairness metrics. For our future work, we are keen to conduct 
experiments to uncover the underlying reasons for this 
discrepancy in our results not aligning with Kamiran's and 
Calder’s studies.  Moreover, we plan to investigate the impact 
of the choice of ranker on PS and Massaging as bias 
preprocessing techniques. It is also planned to explore new 
Sampling techniques to deliver improved fairness measures.  
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