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NETLAKE toolbox for the analysis 
of high-frequency data from lakes  
 

Factsheet #4 

Lake Metabolizer 

R. Iestyn Woolway 

 
 

Objective 

Metabolism is a fundamental ecological process that occurs at scales ranging from individual 

organisms to whole ecosystems. Whole ecosystem metabolism represents the balance 

between carbon fixation (gross primary production; GPP) and biological carbon oxidation 

(ecosystem respiration; R) in an ecosystem. At an ecosystem scale, metabolism estimates 

provide insight into the support of food webs through primary productivity, rates of carbon 

accumulation or loss in an ecosystem, and anticipating changes in ecosystem state. Lake 

metabolism can be estimated from high frequency free-water dissolved oxygen (DO) 

concentrations (e.g., Staehr et al. 2010). The value of quantifying lake metabolism and the 

availability of the necessary data has led to a rapid proliferation of computational 

methodologies for estimating metabolism. While technological advances in automated sensors 

and the expansion of cross-site collaborations have increased greatly the accessibility of high 

frequency DO time series, barriers are presented by the statistics, programming, and multitude 

of models used to convert sensor observations into estimates of lake metabolism. This 

analytical barrier may be overcome by the use of a new RPackage called Lake Metabolizer, 

which is designed to estimate lake metabolism from commonly collected sensor data. 

Lake Metabolizer is an Rpackage for estimating lake metabolism and related terms from data 

collected by high frequency, in situ lake monitoring stations with relative ease. The package 

can be used to calculate lake metabolism using five different methods: bookkeeping, ordinary 

least squares, maximum likelihood, Kalman filter, and Bayesian (Table 1). For further 

information of the differences between the metabolism models, see Winslow et al. (in press) 

and Honti (2016). In addition, each of these five methods can be combined with one of seven 

models for computing the gas transfer coefficient, which influences the rate of gas exchange at 

the air-water interface. Lake Metabolizer also includes a number of functions that compute 

conversions and calculations that are commonly applied to raw data prior to estimating lake 

metabolism (e.g. optical conversion models). This package contains example data, example 

use-cases, and function documentation.  
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Model 
Underlying 
statistics 

Error 
structure Error type 

Bookkeeping Algebra None None 
Bayesian Bayesian Gaussian Process and Observation 
Kalman filter Maximum 

likelihood and 
Kalman filter 

Gaussian Process and Observation 

Maximum likelihood Maximum 
likelihood 

Gaussian Process and observation 

Ordinary least squares Linear regression Gaussian Observation 

Table 1. Table comparing the structure of the five different metabolism models included 
in LakeMetabolizer.  

 

Specific application  

The main application of this program is the calculation of lake metabolism using a number of 

different approaches published in the scientific literature. An example is the calculation of net 

ecosystem production (NEP), which is the difference between GPP and R, and is used to 

delineate heterotrophic systems (negative NEP) from autotrophic systems (positive NEP). 

Example output calculations for NEP and the gas transfer coefficient (k600, which estimates 

the amount of gas exchange at the air-water interface) for Sparkling Lake are shown in Figures 

1 and 2 below. The example dataset from Sparkling Lake is included in the package and can be 

accessed in ‘R’. In addition, the ‘R’ code used to generate metabolism estimates and figures for 

Sparkling Lake is available within the package as a demo (access using 

demo(package='LakeMetabolizer') ‘R’ function call). 

 

 

Figure 1. Comparison of four different metabolism models (OLS = ordinary 
least squares; MLE = maximum likelihood; Kamlan = Kalman filter; bookkeep = 
Bookkeeping) for estimating Net Ecosystem Production (NEP).  

 
 

As all methods can be run using the same input files, Lake Metabolizer allows comparisons 

between methods. For example, in Figure 1 we can see that each of the methods can return 

different estimates, where even the sign of NEP can vary between the different methods. 

Furthermore, using the example dataset provided we see that the different gas transfer 

coefficient models can return very different estimates of k600 (Fig. 2); see Dugan et al. (in 
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press), with averages ranging from a minimum of approximately 0.5 m day-1 to a maximum of 

approximately 3 m day-1. Lake Metabolizer provides a means of estimating lake metabolism 

and related terms using a consistent method, thereby facilitating global comparisons of high 

frequency data from lake buoys.  

 
 

 
Figure 2. Comparison of the seven different gas transfer coefficient models included 
in the Lake Metabolizer package. Grey regions illustrate night-time, which can also be 
estimated by the Lake Metabolizer package (i.e. sun rise and sun set times).  

 

Background  

The package requires some experience of using ‘R’. However, the user manual (see link below) 

does provide a number of examples for using the different functions.  

Having these methods in an ‘R’ environment allows them to be calculated with relative ease. 

However, while the tool can be used without having any prior knowledge of lake metabolism, 

interpretation of the results does require some understanding of the principles behind aquatic 

metabolism. 

 

Type of data and requirements  

At a minimum, high frequency DO (at least hourly observations), irradiance (typically 

photosynthetically active radiation [PAR]), wind speed, and water temperature at the depth of 

the DO sensor are required for estimating metabolism (using the free-water oxygen technique 

- see Staehr et al. 2010). However, to use all of the available gas transfer coefficient models, 

the user will need additional data. The data required for each gas transfer coefficient model 

are shown in Table 2. 
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Wind speed        

Air temperature        

Relative humidity        

Short-wave radiation        

Water temperature 
profile 

       

Wind height        

Atmospheric pressure        

Net Long-wave radiation        

Latitude        

Area        

Wind height        

Table 2. Data required for each gas transfer coefficient model included in Lake Metabolizer. 
References for the most relevant publication associated with each gas transfer coefficient is provided 
in brackets. k.read.soloviev is a new gas transfer coefficient model used by Dugan et al (in press) 
where the model of Read et al. 2012 is modified to include the influence of breaking waves, from 
Soloviev et al. 2007, on the gas transfer coefficient.  

 

Formatting of the input files is detailed in the user manual. Note that the formatting of the 

input files is important, as the functions used by the package to load the data assumes that the 

user has followed the examples provided in the user manual. For example, DO data must be 

formatted as a tab-delimited text file as: 

 

This file format is the same as that required by Lake Heat Flux Analyzer (Woolway et al. 2015, 

see Jones 2016) and Lake Analyzer (Read et al. 2011), thus allowing them to be used by a 

number of programs to provide specific details of the lake.  

 

Basic procedures 

The procedure to follow is detailed in the user manual of the ‘R’ package for Lake Metabolizer 

(see link below), and differs depending on the chosen model. Only a brief synopsis is given 

here: 

1. Collect and clean high frequency data (see de Eyto and Pierson 2016). 

2. Determine which types of data and metadata are available (e.g. wind speed, air 

temperature, short-wave radiation, lake latitude, lake area, etc.). 
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3. Compare list of data available to determine which model(s) are available for use (see 

user manual). 

4. Choose gas transfer coefficient and metabolism methods for estimating metabolism 

and related variables. 

5. Load necessary time series and metadata in ‘R’ using the helper functions provided 

(see user manual) 

6. Run metabolism model using the helper function for that particular model. 

 

Pitfalls and tips 

 The package estimates metabolism with the most widely used modelling techniques. 

However, there are a number of areas where implementation differs and it is unclear if 

there is community consensus that point to a single model strategy.  

 As defined, negative Gross Primary Production (GPP) and positive Respiration (R) are 

ecologically impossible. Unfortunately, unconstrained metabolism estimates using 

free-water oxygen can return negative GPP and positive R. There are generally two 

strategies for handling such model output, (i) the model can be run unconstrained and 

the impossible estimates can be removed, and (ii) the model can be written to 

constrain the parameters and force the estimation of positive GPP and negative R.  

 All methods, except for the bookkeeping method, estimate GPP using a linear light 

dependency of primary production. Although this approach may be adequate for many 

lakes, there is evidence that light saturation or even inhibition may more accurately 

model metabolism in some lakes. Integration of non-linear primary production 

relationships with light may be included in later versions of the package. 

 Currently, LakeMetabolizer supports estimates of metabolism from a surface DO 

sensor at a single location. Future versions of the package may include calculation of 

whole-lake metabolism across multiple DO sensors (Obrador et al. 2014, see Obrador 

et al. 2016). 

 

Further reading 

Key References: 

The reference for the paper describing the code and its uses is: 

Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R., Hanson, P. 

C., Read, J. S. LakeMetabolizer: An R package for estimating lake metabolism from free-water 

oxygen using diverse statistical models. Inland Waters (in press) 

 
Lake Metabolizer Manual: 

http://cran.r-project.org/web/packages/LakeMetabolizer/LakeMetabolizer.pdf 

 
 

http://cran.r-project.org/web/packages/LakeMetabolizer/LakeMetabolizer.pdf
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Heiskanen, J.J., Mammarellam I., Haapanala, S., Pumpanen, J., Vesala, T., MacIntyre, S., Ojala, 
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Code 

The code for LakeMetabolizer has been released under the GPL version 2 open-source license. 

It is available both as an ‘R’ package on CRAN, using the command 

install.packages(‘LakeMetabolizer’) and under the version management repository used for 

development (https://github.com/GLEON/LakeMetabolizer).  
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