
40 
 

NETLAKE toolbox for the analysis 
of high-frequency data from lakes  
 

Factsheet #8 

Bayesian calibration of mechanistic models of lake metabolism 

Mark Honti 

 
 

Objective 

Resolve the identification issue (different pairs of production and respiration rates produce 

very similar dissolved oxygen time-series) that arises when complex mechanistic (process-

based) metabolic models are calibrated against high-frequency dissolved oxygen (DO) 

measurements.  

 

Specific application  

Changes in DO are primarily related to net ecosystem production (NEP), and as such the time-

dynamics of DO shows an aggregated picture on lake metabolism. Physical (e.g. gas exchange 

with the atmosphere, transport in the water) and chemical (e.g. many redox reactions) 

processes also contribute to these changes. Thus, it is difficult to disentangle major metabolic 

processes such as gross primary production (GPP) and ecosystem respiration (R). Several 

combinations of GPP and R result in very similar DO dynamics resulting in uncertain estimation 

of photosynthetic and respiration parameters. Instead of seeking for the parameter 

combination best fitting the data, Bayesian calibration narrows the domain of parameter 

combinations that yield similarly good fit on the basis of your prior expectations about 

parameter values. Sampling of posterior parameter distributions yield uncertainty distributions 

for each parameter.  

 

Background  

 Understanding lake metabolism. 

 Experience in mechanistic modelling. 

 Basic experience in programming. 

 Understanding basic statistics (concepts of probabilities, probability distributions). 

 



41 
 

Type of data and requirements  

For the most basic metabolic model, high frequency (30 min or less) records of DO, water 

temperature (vertical temperature profile), Photosynthetically Active Radiation (PAR), and 

wind velocity are needed. In shallow lakes, the coefficient of diffuse light attenuation 

(~turbidity) is used. 

Extended metabolic models may use a set of additional data: 

 Phytoplankton biomass (~chlorophyll fluorescence) 

 Eddy diffusivity in stratified lakes 

 Flow velocity and direction 

 Wind direction 

 pH, conductivity, alkalinity, CO2 concentration 

 

Basic procedures 

Bayesian parameter inference is an advanced calibration technique, so it is assumed that a 

mechanistic metabolism model is already up and running. 

The first step is to formulate expectations on the parameter values that is to set up the so-

called prior distributions. This is usually done by explicitly listing the expected range and 

expected high probability region (if any) for each parameter based on literature values, expert 

opinion and domain of meaningfulness (e.g. values below or above a threshold are accepted or 

not). This information is then compiled into a proper statistical distribution for each 

parameter. The types and parameterisations (like: mean, standard deviation, etc.) of prior 

distributions express your subjective willingness to accept a certain value for the parameter in 

question. 

Common prior distribution types are: 

 uniform (there is a strictly defined meaningful domain, but there is no preferred choice 

within that domain),  

 beta (the domain of meaningfulness is between 0 and 1 with a peak somewhere in 

between),  

 normal (there is a preference for the mean value, there are no limits, deviations from 

the preference are accepted in both directions with the same decreasing probability),  

 log-normal (negatives are not accepted, a certain deviation above the preference is 

accepted with higher probability than below it) 

Besides these typical examples, any proper unimodal (=having a single peak) statistical 

distribution will do, if it properly expresses your subjective scientific expectations against the 

parameter.  

The core of the procedure can either be done by modifying your present calibration routine or 

by plugging your model into a Bayesian calibration framework (e.g. JAGS or BUGS). The first 

option is discussed below.  

http://mcmc-jags.sourceforge.net/
http://www.mrc-bsu.cam.ac.uk/software/bugs/
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Bayesian parameter inference requires the goodness-of-fit measure to be a proper statistical 

likelihood function. Therefore, if you previously used RMSE, Nash-Sutcliffe or similar informal 

measures, you have to modify the evaluation module of your script. For high-frequency DO 

data equidistantly sampled in time the best-suited formal statistical likelihood function is the 

first-order autoregressive error model. This has 2 parameters: the standard deviation of error 

innovations (e.g. the change of error from one timestep to the other) and the one-step 

autocorrelation coefficient. The log-likelihood (log L) of a certain parameter combination is 

calculated from the residual time-series (E) as follows: 
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where n is the length of the residual series, and Ii are the scaled innovations of the residual 

series at each timestep except the very first one (𝐼𝑖 =
𝐸𝑖−𝜌∙𝐸𝑖−1

𝜎
, where ρ is the autocorrelation 

between steps and σ is the standard deviation of error innovations). The likelihood is used in 

combination with the prior probability to evaluate model performance: 

𝑃post ∝ 𝑃prior ∙ 𝐿 

Ppost is the posterior probability function that should be used as a new objective function in the 

calibration procedure. In practice, log posterior probability is used to prevent numerical 

underflows (when small numbers are accidentally rounded to 0) during computation: 

log 𝑃post ∝ log 𝑃prior + log 𝐿 

Using the autoregressive error model one arrives at the following equation for log posterior 

probability: 

log 𝑃post =  −
𝑛

2
log(4𝜋) −

1

2
∑ 𝐼𝑖

2

𝑖

+ ∑ log 𝑃𝑗,prior

𝑗

 

where j iterates over the model parameters. The log prior probability of individual parameters 

(Pj,prior) couldn’t be expanded further in the above equation as it depends on the type of the 

prior distribution (e.g. normal, lognormal, uniform, etc.) assumed for the given parameter. 

The optimal parameter combination will be a compromise between model fit and your 

subjective expectations. When parameter identification is poor, this compromise usually fits 

almost as well as unconstrained calibration. It is worth noting that unconstrained calibration 

does not deliver the objective truth, which may or may not be revealed by unrealistic 

parameter values.  

The uncertainty of posterior parameters can be derived by producing a numerical sample from 

the posterior parameter distribution using Markov Chain Monte Carlo (MCMC) sampling. The 

core of this rejection sampling algorithm (Metropolis-Hastings sampler) is: 
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1. Start with any arbitrary parameter combination. For practical reasons, the 

combination that belongs to the maximum posterior probability is preferred, if 

available. 

2. Create a new parameter combination from (1) by using a “jump” or “proposal” 

distribution: Generate a random normal number for each parameter with mean 

centred at the previous parameter value. 

3. Evaluate the log posterior with the new parameter combination. If it is higher than the 

log posterior of the previous combination, accept the new parameter values and go 

back to 2. If the new posterior probability is lower, accept the new parameter 

combination with Ppost,new / Ppost,previous probability (or exp{log 𝑃post,new − log 𝑃post,old} 

when log probabilities were used) and go back to step 2.  

Repeating this cycle sufficient times (103 to 104 iterations), the set of parameter values that 

have been accepted at step 3 will converge to a proper sample from the posterior parameter 

distribution. The first portion of the sample is usually discarded because it is distorted by the 

stabilisation of the sample. The second part of the sample should look like thick noise bands in 

terms of both posterior probability and parameter values. 

The posterior uncertainty of individual parameters can be visualized by extracting the 

posterior marginal distributions from the sample in plots of density functions of each 

parameter (Figure 1). 

 

Figure 1. Selected posterior parameter marginals (black shading) from an MCMC sample. r20: 
community respiration rate at 20˚C, Pmax: maximal rate of gross primary production. The thin 
grey lines show a fitted lognormal distribution. 

 

Although the principle of MCMC is simple and any implementation following the basic 

algorithm will work, there are several intricate tricks to make the sampler more efficient. 

These include a gradual fine-tuning of the proposal distribution to reflect the size and 

correlation structure of the posterior, thinning the sample to reduce serial correlation, and 

many others. Therefore, it is generally advisable to use the many existing MCMC 

implementations of ‘R’ or any other statistical environment. 
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Pitfalls and tips 

Bayesian calibration does not resolve the identification problem of metabolic parameters in an 

objective way. As priors are subjective, posteriors represent a subjective compromise. 

Different priors would lead to different posteriors.  

Bayesian calibration suffers from the general issue of parameter interpretability just like any 

other calibration method used for any type of mechanistic model: parameters are optimised 

during the calibration to compensate for structural deficiencies of the model. Therefore, 

parameters are biased and hence should be considered as abstract quantities with limited and 

uncertain physical, chemical or biological meaning. This limits the confidence in analysing 

calibrated parameter values.  

 

Figure 2. Residual diagnostic plots. Top left: sequence or trace plot; top right: 
residuals as function of the predicted (DO) value; bottom left: histogram of 
standardised residuals and a fitted normal distribution; bottom right: Q-Q plot. 

 

Tips 

 Validating the error model. In formal statistical approaches the likelihood function has 

to be validated against the posterior residuals to ensure that the statistical 

assumptions behind the error model are correct or at least not far from reality. This is 

usually done by testing each assumption on the residuals between observations and 

the maximum posterior probability solution. In the case of a metabolic model and 

autoregressive errors, this means testing if residuals have no significant 

autocorrelation beyond a 1-step lag (acf plot), and that innovations are normally 

distributed with a mean of zero (Q-Q plot). Figure 2 shows a thorough analysis for 
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independent, normally distributed residuals via plotting their sequence, their 

dependence on the predicted variable, their density function and a Q-Q plot (layout 

courtesy of Peter Reichert, EAWAG). 

 Checking MCMC progress. To assure that MCMC converges successfully, it is common 

to launch parallel chains and observe whether they converge to the same region. 

Typical chain lengths are in the range of 2,000–100,000 iteration cycles. It can be 

shown that the proposal distribution is acceptably tuned if the mean acceptance 

probability is between 15 and 40 %. 

 Interpreting posteriors. Posteriors may show two typical relations to priors. If they are 

very similar to priors, the calibration data did not contain any new and meaningful 

information about the parameters. This indicates weak identifiability. If posterior 

distributions are significantly narrower than prior ones, data contained useful 

information on parameters and hence, priors were suppressed to some degree. 

Nevertheless, posteriors still remain conditional on priors unless an infinitely long 

dataset is used for calibration.  

 

Further reading 

Key References: 

As Bayesian statistics is a fully-fledged discipline within statistics, there are dozens of thick 

textbooks on the topic. A good example is:  

Gelman A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B. 2013. Bayesian Data 

Analysis. 3rd edition. CRC Press. 

 
Other useful references: 

Application examples related to advanced calibration of metabolic models include 

Use of first-order autoregressive error model in calibration:  

Van de Bogert, M.C., Carpenter, S.R., Cole, J.J. Pace, M. 2007. Assessing pelagic and benthic 

metabolism using free water measurements. Limnology and Oceanography: Methods 5: 145-

155. 

Use of first-order autoregressive error model in calibration, parameter uncertainty assessed 

with bootstrapping:  

Solomon, C.T., Bruesewitz, D.A., Richardson, D., Rose, K., Van de Bogert, M., Hanson, P., Kratz, 

T., Larget, B., Adrian, R., Babin, B.L., Chiu, C.Y., Hamilton, D.P., Gaiser, E., Hendricks, S., 

Istvánovics, V., Laas, A., O'Donnell, D.M., Pace, M., Ryder, E., Staehr, P.A., Torgersen, T., Vanni, 

M.J., Weathers, K., Zhu., G. 2013. Ecosystem respiration: Drivers of daily variability and 

background respiration in lakes around the globe. Limnology and Oceanography 58: 849-866. 

Use of first-order autoregressive error model in calibration, parameter uncertainty assessed 

with PEST (informal likelihood procedure with Monte Carlo):  

Hanson, P.C., Carpenter, S.R., Kimura, N., Wu, C., Cornelius, S.P., Kratz, T.K. 2008. Evaluation of 

metabolism models for free-water dissolved oxygen methods in lakes. Limnology and 

Oceanography: Methods 6: 454-465. 
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Use of Kalman filter (an example of linearised Bayesian updater) with independent, identically 

distributed error:  

Batt, R.D., Carpenter, S.R. 2012. Free-water lake metabolism: Addressing noisy time series with 

a Kalman filter. Limnology and Oceanography: Methods 10: 20-30.  

BaMM - Proper Bayesian inference with independent, identically distributed error and simple 

multi-objective calibration:  

Holtgrieve, G.W., Schindler, D.E., Branch, T.A., A'mar, Z. 2010. Simultaneous quantification of 

aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen 

dynamics. Limnology and Oceanography 55: 1047–1063.  

A complex Bayesian error model demo on DO data from a Swiss river:  

Reichert, P., Schuwirth, N. 2012. Linking statistical description of bias to multi-objective model 

calibration. Water Resources Research 48: W09543.  

 

Code 

Due to the task-specific requirements there aren't any ready solutions that would meet all 

limnological needs, but there are solid frameworks which help to carry out the basic steps of 

Bayesian parameter inference and uncertainty analysis. It is advised to start with the examples 

attached to these frameworks and develop your own likelihood function, etc. 

Rpackages for Bayesian inference can be downloaded from CRAN (by the 'install.packages' 

command): mcmc, rjags. 

The LakeMetabolizer Rpackage can help you to assemble your metabolic model. 
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