

Conformance to Medical Device Software Development
Requirements with XP and Scrum Implementation

Ö. Özcan-Top1 and F. McCaffery1,2

1Regulated Software Research Centre, Dundalk Institute of Technology & Lero, Dundalk, Ireland
2 STATSports Group, Newry, Ireland

Abstract – A key challenge of medical device software
development companies is to maintain both conformance to
the strict regulatory requirements enforced by the safety
critical nature of the domain and achieve efficiency in
software development. Agile software development methods
provide promising solutions to overcome the efficiency issues
and the challenges of traditional software development
approaches. Even though Agile practices are being welcomed
by the medical domain, their suitability for conformance to the
regulatory requirements is still being questioned by the
medical industry. In our previous work, we investigated to
what extent the regulatory requirements defined in
MDevSPICE® (the software process assessment framework for
medical device software development) are met through using a
Scrum implementation and what additional practices have to
be performed to ensure safety and regulatory compliance in
the medical domain. In this paper, we extended the research to
include the XP method and provide a comprehensive and
quantitative analysis of its suitability for medical device
software development.

Keywords: MDevSPICE®, Scrum, XP, Safety Critical
Domain, Medical Domain, Agile Software Development

1 Introduction
Due to the potential risk of Medical Devices (MD) harming
patients’, strict regulations need to be in place in development
to ensure the safety of these devices. Depending on the region
that a MD is to be marketed, different standards or guidance
have to be followed. In the US, the Food and Drug
Administration (FDA) issues the regulation through a series
of official channels, including the Code of Federal Regulation
(CFR) Title 21, Chapter I, Subchapter H, Part 820 [1]. In the
EU, the corresponding regulation is outlined in the general
Medical Device Directive (MDD) 93/42/EEC [2], the Active
Implantable Medical Device Directive (AIMDD) 90/385/EEC
[3], and the In-vitro Diagnostic (IVD) Medical Device
Directive 98/79/EC [4] - all three of which have been
amended by 2007/47/EC.

The focus of this study is MD Software which is often an
integral part of an overall medical device. IEC 62304:2006
[5] is the main medical device software development
(MDSD) standard to establish the safety of medical device
software by defining processes, activities and tasks for

development so that software does not cause any
unacceptable risks. Whether medical device software is
marketed in the USA or EU, the challenges associated with
the development remain the same. Some of them are listed
below:

a) Adherence to a large number of regulatory requirements
specified in various international standards [6];

b) Establishing a full traceability schema from stakeholder
requirements to code [7, 8];

c) Performing changes to process artefacts (requirements,
code, documents) in a traceable way [9, 10];

d) Being able to embrace change during development;

e) Producing development evidence for auditory purposes
consistently and continuously and managing the
documentation process in an effective way so that it is not
overwhelming;

f) Ensuring reliability, safety and correctness of products;

g) Improving the quality of products and productivity of
teams;

h) The necessity of clinical software validation to be done
manually in some cases [10].

In relation to challenge (a), the MDevSPICE® framework
[11], which was previously developed by our research group
(RSRC), assists companies to efficiently prepare for the
demanding and costly regulatory audits as it combines
requirements from a wide number of medical software
development and software engineering standards. To
overcome the challenges listed from (b) to (h), usage of Agile
Software Development (ASD) practices with a combination
of traditional software development practices could provide
significant improvements.

In one of our previous studies [12], we evaluated one of the
most preferred agile methods, Scrum , to understand the level
of regulatory compliance when it is fully implemented as
described in the Scrum GuideTM [13]. We performed the
evaluation by mapping the Scrum roles and events with
MDevSPICE® base practices. The mapping results indicated
that Scrum implementation would provide full or partial
coverage in only five MDevSPICE® Processes: Project
Planning; Project Assessment and Control; Stakeholder
Requirements Definition; System Requirements Analysis and

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 99

ISBN: 1-60132-489-8, CSREA Press ©

Software Requirements Analysis. The significance of this
study was that for the first time, the degree of compliance to
the MDSD requirements for all of these processes was
provided in a quantitative way.

In this study, we aimed to extend this evaluation by including
eXtreme Programming (XP) [14], an agile method which
evolved from the issues caused by long development cycles of
plan-driven methods. Unlike Scrum, it focuses more on the
technical side of software development. Considering that both
XP and Scrum have been used in organizations, the evaluation
of their combination would provide a more comprehensive
perspective to organizations in terms of their compliance to
medical requirements.

The second purpose of this research is to reveal additional
practices that have to be performed to ensure compliance
when a combination of XP and Scrum are implemented.

The rest of the paper is structured as follows: In Section 2, we
provide the background for this research which includes brief
descriptions of MDevSPICE®, Scrum and XP. In Section 3,
we describe the research methodology. In Section 4, we
present the XP mapping analysis in great detail and discuss
additional practices that have to be considered Additionally,
we provide a summary of the Scrum mapping analysis which
we published previously in [12] . Finally, in Section 5, we
provide conclusions for this research.

2 Background
2.1 MDevSPICE®
 The challenge that medical software development
companies face when they want to market a device is in the
adherence to a large number of regulatory requirements
specified in various international standards that can often be
overwhelming. In order to help companies better prepare for
the demanding and costly regulatory audits, we previously
developed the MDevSPICE® framework [11]. MDevSPICE®
is an integrated framework of medical device software
development best practices.

MDevSPICE® was based upon the ISO/IEC 15504/SPICE
[15] (ISO/IEC 33000 series, now) process assessment
standard and includes requirements from a wide number of
medical software development and software engineering
standards, some of which were mentioned in the introduction
section. Requirements from different standards and guidance
are reflected in the process reference model (PRM) which
describes a set of processes in a structured manner through a
process name, process purpose, process outcomes and base
practices.

A base practice, which is one of the main components of this
study, an activity that addresses the purpose of a particular
process. Figure 1 shows the all processes of MDevSPICE®.

Figure 1 MDevSPICE® processes

2.2 Scrum
Scrum is mainly a management model for software

development, and was developed by Schwaber and
Sutherland [13]. Although, use of technical practices was
strongly supported by the creators of the model, it does not
present any specific technical practices for implementation.
The fundamental idea behind Scrum is to apply process
control theory to software development to achieve flexibility,
adaptability and productivity [16]. It relies on a set of values,
principles and practices which can be adopted based on
specific conditions. Scrum gives value on providing frequent
feedback, embracing and leveraging variability, being
adaptive, balancing upfront and just-in-time work, continuous
learning, value-centric delivery and employing sufficient
ceremony [17]. It offers effective solutions by providing
specific roles, artifacts, activities and rules.

A Scrum Team consists of a number of roles: Product Owner;
a Scrum Master; and the Development Team. Scrum Teams
are self-organizing and cross-functional so that they may
accomplish their work by themselves, rather than being
directed by others outside of the team and without depending
on others that are not part of the team [13]. There are special
events in Scrum which have been developed to create
regularity and to minimize the need for meetings and are time-
boxed.

2.3 eXtreme Programming (XP)
XP was developed by Kent Beck in 1999, it provides a

collection of software engineering practices [14]. Even though
the practices are not novel, XP brings them together to
facilitate change and to produce higher quality software at a
sustainable pace. XP is defined by values, principles and
roles. Some of the fundamental practices of XP are planning
game, small releases, metaphors, simple design, continuous
unit testing, refactoring, pair programming, collective code
ownership, continuous integration, work 40-hour-a-week, on-
site customer and coding standards. XP does not provide
much support for software project management activities [16].
The details of the XP practices are provided in the mapping
section below.

100 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

3 Research Approach
We applied the same research approach that we followed in
[12]. The purpose of this research is to reveal to what extent
the regulatory requirements defined in MDevSPICE® are met
when highly adapted agile software development methods, XP
and Scrum are implemented. We defined the following
research questions in relation to this purpose:

RQ1: Which processes of MDevSPICE® are covered by
implementation of XP and Scrum? RQ2: Which base
practices MDevSPICE® are covered by implementation of
Scrum or XP? RQ3: What additional practices regarding those
processes specified need to be performed in order to fully
achieve regulatory compliance in the medical domain?

Research steps
1. Listing XP and Scrum practices/events/roles and their

descriptions
2. Mapping the MDevSPICE® base practices with XP and

Scrum practices/events/roles.
3. Identifying which processes were affected from the

mapping.
4. Identifying the coverage ratio and deciding which

MDevSPICE® base practices need to be included for
those processes to satisfy a fully-achieved level.

Abrahamsson et al. provide a comparison of different agile
software development methods in [16] and specify which
phases of software development life cycle were supported by
these methods. Based on this research, Scrum covers project
management, requirements specification, integration test and
system test stages/activities. XP, on the other hand, presents
solutions for requirements specification, design, code, unit
test, integration test and system test stages/activities.

For the mapping we performed, instead of initially selecting
the processes mentioned above, and then checking their
coverage within MDevSPICE®, we performed the mapping
the other way around. We first listed the XP and Scrum
practices and then mapped them to the MDevSPICE® base
practices. With this approach we were able to identify which
MDevSPICE® processes were satisfied through adopting XP
and Scrum implementations.

Limitations of the Research

With the given descriptions of XP, we note it as a descriptive
method in which the practices are described from a high
abstraction level. Compared to XP, Scrum could be taken as a
prescriptive method with the descriptions of how the Scrum
events will be performed and how the artifacts will be
developed. However, both of them were not at the practice
description level provided by MDevSPICE®. Mappings of the
methods were limited to the information in the following
resources: The Scrum GuideTM by Ken Schwaber and Jeff
Sutherland [13] and the book: Extreme Programming
Explained: Embrace Change by Kent Beck [14].

Although twenty-two XP practices were described to the
same level of detail in the XP book [14], they show
significant differences in terms of their characteristics. For

example, “sit together” vs “continuous integration” or
“customer involvement” vs “incremental deployment”
practices. As the definitions of the practices are limited, we
needed to make some assumptions during the mapping.

4 The Systematic Mapping Process
In [12], we provided a very detailed analysis of the mapping
of Scrum’s activities, roles and MDevSPICE®’s processes and
base practices. Due to space limitations, we will summarize
the analysis of the Scrum mapping and detail the XP mapping.

For both of the XP and Scrum mappings and the coverage
evaluation, MDevSPICE® Class B requirements were taken
into account. Due to the descriptive characteristics of the
methods mentioned above, we assumed that process artifacts
such as project plans or project monitoring reports would be
developed during XP and Scrum implementation, as the
evidence for audits need to be collected. Although it is very
likely that some base practices would be performed during
software development with Scrum or XP, we couldn’t rate a
100% coverage for them, as they might not be performed at
the level of the detail that is required by MDevSPICE®.

The coverage ratio (CR) is calculated based on the formula of:

∑ (1)

In this evaluation, the base practices (BPs) are considered
either partially or fully achieved. For the calculation of the ∑
of the achieved base practices in a process, partially achieved
(PA) practices were weighted by 0.5, while fully achieved
(FA) BPs were weighted by 1.

4.1 XP Mapping
The XP method [14] is described in terms of roles, values,
principles and practices. The roles in an XP team are testers,
interaction designers, architects, project managers, product
managers, executives, technical writers, users, programmers,
human resources. They are suggested to have a flexible
structure rather than being fixed and rigid.

The values which are “communication, simplicity, feedback,
courage, respect, safety, security, predictability, and quality-
of-life”, shape the teams’ behavior and the development
environment. But, they don’t provide concrete guidance on
software development. The principles play a bridge role
between the values and the practices. Some of the XP
principles are “humanity economics, mutual benefit, self-
similarity, improvement and diversity”. As could be seen, they
are also at a very abstract level and do not provide advice for
software development. The XP practices, which are the main
component of this mapping, are presented in two categories:
the primary practices and the corollary practices. Based on
Kent [14], the primary practices aim at immediate
improvement and the corollary practices are difficult without
mastering the primary practices.

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 101

ISBN: 1-60132-489-8, CSREA Press ©

In Table 1 and Table 2, the mapping between the primary and
corollary practices of XP and the processes and base practices
of MDevSPICE® are provided (RQ1-RQ2). Due to space
limitation, the XP practice descriptions cannot be provided in
the below tables. The bold text in the 2nd columns of Table 1
and Table 2 show the mapped processes. The other text in the
same column cell refer to the mapped base practices (BPs).

Table 1 Mapping of the XP Primary Practices and the MDevSPICE®

Processes and Base Practices

Primary
Practices

MDevSPICE® Processes and Base
Practices

Weekly Cycle PRO.1 Project Planning
PRO.1.BP4: Define and maintain estimates for
project attributes
PRO.1.BP5: Define project activities and tasks
PRO.2 Project Assessment and Control
PRO.2.BP3: Report progress of the project
PRO.2.BP4: Perform project review
PRO.2.BP5: Act to correct deviations.
DEV.1 Software Requirements Analysis
DEV.1.BP2: Prioritize requirements.
DEV.1.BP7: Baseline and communicate software
requirements.

Quarterly
Cycle

PRO.2 Project Assessment and Control
PRO.2.BP3: Report progress of the project
PRO.2.BP4: Perform project review
PRO.2.BP5: Act to correct deviations.

Whole Team PRO.1 Project Planning
PRO.1.BP6: Define needs for experience,
knowledge and skills.

Informative
Workspace

No Corresponding Practice

Energized
Work

No Corresponding Practice

Sit Together No Corresponding Practice
Pairing and
Personal Space

PRO.1 Project Planning
PRO.1.BP6: Define needs for experience,
knowledge and skills.

Pair
Programming

DEV.4 Software Unit Implementation and
Verification
DEV.4.BP1: Implement the software units.

Slack PRO1.Project Planning
PRO.1.BP8: Define project schedule.
PRO.2 Project Assessment and Control
PRO.2.BP5: Act to correct deviations.

Ten Minute
Build

DEV.5 Software Integration and Integration
Testing
DEV.5.BP1: Integrate software units into
software items.
DEV.5.BP2: Verify that software integration
follows integration strategy.
DEV.5.BP3: Develop tests for integrated software
items.

Continuous
Integration

DEV.4 Software Unit Implementation and
Verification
DEV.4.BP4: Verify software units.
DEV.5 Software Integration and Integration
Testing
DEV.5.BP1: Integrate software units into
software items.
SUP.4 Software Release
SUP.4.BP1: Ensure the completeness of software

verification
Test First
Programming /
Continuous
Testing

DEV.4 Software Unit Implementation and
Verification
DEV.4.BP4: Verify software units.
DEV.5 Software Integration and Integration
Testing
DEV.5.BP3: Develop tests for integrated software
items.
DEV.5.BP4: Test integrated software items in
accordance with the integration plan and
document the results.
SUP.4 Software Release
SUP.4.BP1: Ensure the completeness of software
verification

Incremental
Design

Excluded from the analysis, as the definition of
this process was not clear

Story DEV.1 Software Requirements Analysis
DEV.1.BP1: Define and document all software
requirements.

Table 2 Mapping of the XP Corollary Practices and the
MDevSPICE® Processes and Base Practices

Corollary
Practices

MDevSPICE® Processes and Base
Practices

Real Customer
Involvement

PRO.1 Project Planning
PRO.1.BP6: Define needs for experience,
knowledge and skills.

Incremental
Deployment

SUP.4 Software Release
SUP.4.BP2: Define the software product for
release
SUP.4.BP3: Assemble product for release.
SUP.4.BP5: Deliver the release to the acquirer
and obtain a confirmation of release.

Team
Continuity

PRO.1 Project Planning
PRO.1.BP6: Define needs for experience,
knowledge and skills.

Shrinking
Teams

PRO.1 Project Planning
PRO.1.BP6: Define needs for experience,
knowledge and skills.

Root-Cause
Analysis

SUP.8 Software Problem Resolution
SUP.8.BP1: Identify and record each problem in a
problem report.
SUP.8.BP2: Provide initial support to reported
problems and classify problems.
SUP.8.BP3: Investigate and identify the cause of
the problem.
SUP.8.BP4: Assess the problem to determine
solution and document the outcome of the
assessment.
SUP.8.BP7: Implement problem resolution.

Shared Code/
Collective
Code
Ownership

DEV.4 Software Unit Implementation and
Verification
DEV.4.BP1: Implement the software units.

Code and Tests Contradicts with MDevSPICE®

Single Code
Base

DEV.5 Software Integration and Integration
Testing
DEV.5.BP1: Integrate software units into
software items.
DEV.5.BP2: Verify that software integration

102 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

follows integration strategy.

According to the mappings shown in Table 1 and Table 2, the
XP method, when implemented fully, is related to seven
processes of MDevSPICE®. Table 3 shows these processes
and the coverage ratio of each process.

Table 3 Coverage Ratios of the Mapped MDevSPICE® Processes
from XP Perspective

 Mapped MDevSPICE® Processes CR
1. PRO.1 Project Planning 0.32
2. PRO.2 Project Assessment and Control 0.50
3. DEV.1 Software Requirements Analysis 0.22
4. DEV.4 Software Unit Implementation and

Verification 0.375

5. DEV.5 Software Integration and Integration
Testing 0.80

6. SUP.4 Software Release 0.43
7. SUP.8 Software Problem Resolution 0.80

Below, we discuss why these processes in Table 3 did not
have a full coverage ratio and what additional practices are
required in order to achieve compliance to the medical
requirements (RQ3). XP practices are shown in italics and
underlined not to be confused with the MDevSPICE® base
practices.

The mapping illustrated that some of the primary XP practices
which are Informative Workspace, Energized Work and Sit
Together do not have specific correspondence at the
MDevSPICE® side. The practice called Code and Test favours
maintaining only the code and the tests as permanent artifacts
and generating other documents from the code and tests when
necessary. It is suggested to rely on social mechanisms to
keep alive important historical parts of the project. However,
this approach will not be acceptable in a safety critical
software project for traceability and auditory reasons. We
excluded the Incremental Design practice of the mapping, as
the definition provided in [14] was not clear to associate the
practice either with the Architectural Design or Software
Detailed Design processes.

Below, we discuss the mapped processes and practices in
terms of coverage analysis.

#1 PRO.1 Project Planning Process
(CR of PRO.1 = 3.5 BP / 11 BP = 0.318)
The sixth base practice of PRO.1, Define needs for
experience, knowledge and skills, could be achieved with the
implementation of Whole Team, Real Customer Involvement,
Team Continuity and Shrinking Teams practices. The strong
emphasis on the team structure of XP could be deduced with
these four practices. PRO.1.BP8: Define project schedule base
practice requires determining the sequence and schedule of
performance of activities within the project. Slack is a practice
which suggests having flexibility on project schedule by
allowing tasks to be added, changed or dropped and discusses
the commitments in terms of honesty with the stakeholders.
However, this BP is assumed to be partially achieved (PA), as
it is not enough just by itself to establish a project schedule for

a medical device software project. The Weekly Cycle practice
of XP advises customers to decide stories to be implemented
for the following week, breaking the stories into tasks and
team members sign up for tasks and estimate them. Therefore,
PRO.1.BP4: Define and maintain estimates for project
attributes and PRO.1.BP5: Define project activities and tasks
BPs may be achieved with proper implementation of the
Weekly Cycle practice.
Based on this analysis, of the XP implementation, three BPs
of PRO.1 (BP4-BP5-BP6) are fully achieved and one BP
(BP8) is partially achieved. Additionally, for the PRO.1
process to be fully achieved, the project scope, the project life
cycle model, the need for experience, knowledge and skills,
and major project interfaces have to be defined with a project
plan, including all this information being established and
implemented.

#2 PRO.2 Project Assessment and Control
(CR of PRO.2 = (3 BP / 6 BP =0.50)
BPs, PRO.2.BP3: Report progress of the project, PRO.2.BP4:
Perform project review and PRO.2.BP5: Act to correct
deviations may be achieved through adopting the Weekly
Cycle and Quarterly Cycle primary practices of XP. The
Weekly cycle practice suggests reviewing progress to date,
including monitoring how the actual progress for the previous
week matches expected progress. PRO.2.BP3 is fully
achieved with this practice. The Quarterly Cycle practice
suggests planning work on a quarterly basis from a broader
perspective. During this planning activity it is suggested to
identify bottlenecks, especially those controlled outside the
team, initiate repairs, plan the theme or themes for the quarter
and select a quarter's worth of stories to address those themes.
Use of a combination of Weekly Cycle, Quarterly Cycle and
Slack practices would be sufficient to enable PRO.2.BP4 and
PRO.2.BP5 to be fully achieved.
Although these practices provide a good structure to monitor
project activities and take corrective actions, the medical
domain needs special focus on monitoring project attributes
such as scope, budget, cost, resources; project interfaces and
recording project experiences and data to be available for
future projects and process improvement.

#3 DEV.1 Software Requirements Analysis Process:
(CR of DEV.1 = (2 BP / 9 BP = 0.22)
Beck introduces a new form of requirements in XP: Stories
which are described using a short name and a graphical
description on an index card. They are a place holder to
initiate discussions around the requirements. With this
definition of Stories in XP, we could say it is not a suitable
format for a regulated domain. However, adaptations could be
performed on stories to extend their usage. Briefly, in relation
to DEV.1.BP1: Define and document all software
requirements BP; all functional, performance, security and
usability requirements including hardware and software
requirements (for third party software as well), software
system inputs and outputs, interfaces between the software
system and other systems; software-driven alarms, and
warnings need to be defined. With the Weekly Cycle practice,
defined software requirements could be prioritized. Stories

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 103

ISBN: 1-60132-489-8, CSREA Press ©

and Weekly Cycle provide a means to communicate on
software requirements. However, DEV.1.BP7: Baseline and
communicate software requirements BP cannot be considered
as fully achieved with the implementation of these two
practices, as software requirements have to be baselined.
Based on this analysis, with XP implementation, two BPs of
DEV.1 (BP1-BP7) are partially achieved and one BP (BP2) is
fully achieved. Additionally, for the DEV.1 process to be fully
achieved impact of the requirements on the operating
environment needs to be determined and risk control measures
in software requirements need to established and maintained.
It is also essential that the consistency is achieved between
system and software requirements. In the safety critical
domain, the consistency is supported by establishing and
maintaining bilateral traceability between the project artefacts.
However, XP does not make distinction between requirement
types and suggest establishing traceability.

#4 DEV.4 Software Unit Implementation and Verification
Process: (CR of DEV.4 = (1.5 BP/ 4 BP = 0.375)
The Pair Programming, Test First Programming and Shared
Code practices of XP were mapped to DEV.4.BP1: Implement
the software units and DEV.4.BP4: Verify software units BPs.
Additionally, the Continuous Integration practice was also
mapped to DEV.4.BP4. As part of the DEV.4.BP4 BP, each
software unit implementations needs to verified and the
verification results have to be documented. Because of the
documentation requirement DEV.4.BP4 BP was considered to
be partially achieved (PA).
For the DEV.4 process to be fully achieved, software unit
verification procedures needed to be established, acceptance
criteria are needed to be defined for each software unit and it
has to be ensured that the software units meet that criteria.
From a FDA perspective, source code should be evaluated to
verify its compliance with specified coding guidelines and
additional code inspections need to be performed.

#5 DEV.5 Software Integration and Integration Testing
Process: (CR of DEV.5 = 4 BP/ 5 BP= 0.80)
The purpose of the Ten-Minute Build practice of XP is to
automatically build the whole system and run all of the tests in
ten minutes. With a combination of Continuous Integration
and Single Code Base, these practices were mapped to the
first three BPs of the DEV.5 process. With Test First
Programming practice, the DEV.5.BP4: Test integrated
software items in accordance with the integration plan and
document the results will enable the process to be achieved.
Additionally, MDevSPICE® emphases developing regression
tests and providing evidence regarding the tests performed.
There is no information found on XP regarding regression
tests.

#6 SUP.4 Software Release Process:
(CR of SUP.4 = 3 BP/ 7 BP= 0.43)
Continuous Integration and Test First Programming practices
could be used to achieve SUP.4.BP1 which requires ensuring
that the detected residual anomalies have been evaluated to
ensure that they do not contribute to an unacceptable risk of a
hazard. It is also essential that these anomalies were recorded
and traced. SUP.4.BP2 requires defining the products

associated with the release and documenting the version of the
released software. SUP.4.BP3 requires preparing and
assembling the deliverable product and establishing the
baseline for the product including user documentation,
designs and the product itself. SUP.4.BP5 requires delivering
the release to the acquirer and obtaining confirmation of the
release. XP suggests the Incremental Deployment practice and
SUP.4.BP2, SUP.4.BP3 and SUP.4.BP5 are highly related to
this practice. However, we could only assume that SUP.4.BP5
is fully achieved and others partially achieved due to an
emphasis on delivering documentation and baselines.
In addition to the above, for the SUP.4 process to be fully
achieved, procedures to ensure that the released software
product can reliably be delivered to the point of use without
corruption and unauthorized change need to be established
and all software development activities and tasks together
with their associated documentation have been completed.

#7 SUP.8 Software Problem Resolution Process:
(CR of SUP.8 = 4 BP/ 5 BP= 0.80)
The purpose of the software problem resolution process is to
ensure that all discovered problems (bugs, defects) are
identified, analyzed, managed and controlled to resolution.
Test First Programming and Continuous Integration practices
are mainly related to the detection and resolution of problems.
The Root-Cause Analysis practice has a good procedure for
problem resolution. It suggests writing automated system-
level tests that demonstrate the defect and the desired behavior
of the system, writing unit tests with the smallest possible
scope that also reproduces the defects and fixes the system so
the unit tests work. It is also suggested that once the defect is
resolved, to identify why the defect was created and wasn't
caught in the first place and to initiate the necessary changes
to prevent this kind of defect in the future.
With these practices/procedures, SUP.8.BP1: Identify and
record each problem in a problem report, SUP.8.BP2:
Provide initial support to reported problems and classify
problems, SUP.8.BP3: Investigate and identify the cause of
the problem and SUP.8.BP7: Implement problem resolution
BPs are fully achieved, whereas SUP.8.BP4: Assess the
problem to determine solution and document the outcome of
the assessment BP is partially achieved.

Additionally, for the SUB.8 process to be fully achieved,
problem reports need to be developed to include a statement
of criticality and potentially adverse events. A problem’s
relevance to safety needs to be evaluated. The outcome of the
evaluation needs to be documented, relevant parties of the
existence of the problem need to be informed. Records of
problem reports, problem resolutions and their verification are
maintained.

4.2 Summary of the Scrum Mapping
With the same approach described and followed above, we
evaluated Scrum to learn how it meets the regulatory
requirements defined in MDevSPICE®. Table 4 below shows
these processes and the coverage ratio of each process.

104 Int'l Conf. Software Eng. Research and Practice | SERP'18 |

ISBN: 1-60132-489-8, CSREA Press ©

Table 4 CRs of Mapped MDevSPICE® Processes from Scrum
Perspective

 Mapped MDevSPICE® Processes CR
1. PRO.1 Project Planning 1
2. PRO.2 Project Assessment and Control 0.9
3. ENG.1 Stakeholder Requirements Definition 0.55
4. ENG.2 System Requirements Analysis 0.71
5. DEV.1 Software Requirements Analysis 0.33

The details of this evaluation were provided in “How does
Scrum Conform to the Regulatory Requirements Defined in
MDevSPICE®?” publication [12].

5 Conclusions
In this paper, we analyzed how well the medical device
software development requirements are met by the
implementation of XP and provided a very detailed
evaluation. For this evaluation, we listed XP practices and
mapped them to MDevSPICE® base practices and calculated
the coverage ratios for the associated MDevSPICE®
processes. The purpose of providing these ratios is to provide
readers and practitioners with an indication of how much
value is achieved with the XP implementation and how much
needs to be done more from a regulatory perspective.

Implementing the XP and Scrum practices in a medical
device software organization may provide partial or full
achievement in nine MDevSPICE® processes. Above, we
provided what additional practices need to performed for
conformance to medical regulations. However, the framework
defines 14 more processes to be addressed. This shows that
main agile software development methods could be
implemented in a MDSD organization. However, they cannot
be a complete solution just by themselves. It can be deduced
that tailoring is essential for agile practices within the medical
device software domain.

This mapping has illustrated the level of XP’s support for
project management processes/practices, is very limited.
Therefore, Scrum could be a good complement to XP for
planning and assessment practices in MDevSPICE®. Besides,
even though the technical practices are provided by XP, it
was shown that they are also not sufficient to meet the needs
of medical requirements.

We have captured association in nine MDevSPICE®

processes, in research we will extend the mapping process to
include other ASD methods to be able to provide a complete
software development life cycle coverage.

Acknowledgement. This research is supported by Science
Foundation Ireland under a co-funding initiative by the Irish
Government and European Regional Development Fund
through Lero - the Irish Software Research Centre
(http://www.lero.ie) grant 13/RC/2094. This research is also
partially supported by the EU Ambient Assisted Living
project – Maestro.

6 References
[1] FDA. (15.05). Chapter I - Food and drug administration,

department of health and human services subchapter H -
Medical devices, Part 820 - Quality system regulation.
Available:
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CF
RSearch.cfm?CFRPart=820

[2] Directive 93/42/EEC of the European Parliament and of
the Council concerning medical devices, 1993.

[3] Council directive 90/385/EEC on active implantable
medical devices (AIMDD), 1990.

[4] Directive 98/79/EC of the european parliament and of the
council of 27 october 1998 on in vitro diagnostic medical
devices, 1998.

[5] IEC 2006. IEC 62304: Medical Device Software - Software
Life-Cycle Processes.

[6] F. McCaffrey, M. Lepmets, K. Trektere, O. Ozcantop, and
M. Pikkarainen, "Agile Medical Device Software
Development: Introducing Agile Practices into
MDevSPICE®," 2016.

[7] B. Fitzgerald, K.-J. Stol, R. O'Sullivan, and D. O'Brien,
"Scaling agile methods to regulated environments: An
industry case study," in Software Engineering (ICSE),
2013 35th International Conference on, 2013, pp. 863-872:
IEEE.

[8] G. Regan, F. Mc Caffery, K. Mc Daid, and D. Flood,
"Medical device standards' requirements for traceability
during the software development lifecycle and
implementation of a traceability assessment model,"
Computer Standards & Interfaces, vol. 36, no. 1, pp. 3-9,
2013.

[9] M. Mc Hugh, O. Cawley, F. McCaffcry, I. Richardson, and
X. Wang, "An agile v-model for medical device software
development to overcome the challenges with plan-driven
software development lifecycles," in Software Engineering
in Health Care (SEHC), 2013 5th International Workshop
on, 2013, pp. 12-19: IEEE.

[10] P. A. Rottier and V. Rodrigues, "Agile development in a
medical device company," in Agile, 2008. AGILE'08.
Conference, 2008, pp. 218-223: IEEE.

[11] M. Lepmets, F. McCaffery, and P. Clarke, "Development
and benefits of MDevSPICE®, the medical device
software process assessment framework," Journal of
Software: Evolution and Process, vol. 28, no. 9, pp. 800-
816, 2016.

[12] Ö. Özcan-Top and F. McCaffery, "How Does Scrum
Conform to the Regulatory Requirements Defined in
MDevSPICE®?," in International Conference on Software
Process Improvement and Capability Determination, 2017,
pp. 257-268: Springer.

[13] J. Sutherland and K. Schwaber, "The scrum guide," The
Definitive Guide to Scrum: The Rules of the Game. Scrum.
org, 2013.

[14] K. Beck, Extreme programming explained: embrace
change. Addison-Wesley Professional, 2000.

[15] ISO/IEC 15504-5:2012 Information technology -- Process
assessment -- Part 5: An exemplar software life cycle
process assessment model, 2012.

[16] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta,
"Agile software development methods: Review and
analysis," ed: VTT Finland, 2002.

[17] K. S. Rubin, Essential Scrum: A Practical Guide to the
Most Popular Agile Process. Addison-Wesley
Professional, 2012.

Int'l Conf. Software Eng. Research and Practice | SERP'18 | 105

ISBN: 1-60132-489-8, CSREA Press ©

