

Engineering Framework for the
Generation and Integration of
Digital Dependability Identities

White Paper

This document builds upon the general DDI concept and provides methodology, concepts and
specifications for the generation and integration of DDI at development time

www.deis-project.eu

http://www.deis-project.eu/

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 1 of 73

Table of Contents

Publishable Executive Summary .. 6

1 Introduction .. 7

2 Engineering Framework for the Generation and Integration of DDI ... 8

2.1 DDI concept evolution ... 8

2.1.1 Recap of the DDI concept .. 8

2.1.2 Modifications and Extensions since the initial DDI concept .. 11

2.2 Semi-automated Engineering of DDIs ... 13

2.2.1 The challenge .. 13

2.2.2 Engineering tasks to be supported by DDIs ... 14

2.2.3 How DDIs enable (semi-)automated engineering based on the ODEv2 18

2.2.4 Interfaces of SACM to define artefact and process semantics .. 23

2.2.5 Initial ideas for an action language to enable automated reasoning based on DDIs 26

2.2.6 Advances regarding runtime dependability assurance .. 28

3 The Open Dependability Exchange Meta-model (ODE) v2 .. 29

3.1 The complete ODE meta-model .. 29

3.2 Structured Assurance Case Meta-Model (SACM) 2.0 .. 31

3.2.1 SACM Assurance Case Component ... 31

3.2.2 SACM Machine-Readable Design .. 32

3.2.3 SACM Argumentation Component .. 32

3.2.4 SACM Artifact Component .. 34

3.2.5 SACM Terminology Component .. 34

3.2.6 Summary ... 36

3.3 Product meta-models .. 36

3.3.1 Architectural modelling package ... 36

3.3.2 Hazard and risk analysis (HARA) modelling package ... 37

3.3.3 Failure logic modelling package ... 39

3.3.4 Threat and risk analysis (TARA) modelling package ... 42

3.4 Certification meta-models ... 43

3.5 Crosscutting Aspects ... 43

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 2 of 73

3.5.1 Information abstraction and IP Hiding concept ... 43

3.5.2 Harmonization of the ODE with common meta-modeling languages 44

4 Utilization of DDIs in concrete engineering activities of DEIS use cases .. 50

4.1 Utilization of DDIs in an OEM-TIER integration scenario in the context of the ETCS 50

4.1.1 Use case overview ... 50

4.1.2 Semi-automated ETCS assurance case instantiation ... 51

4.1.3 Optimized supplier component selection based on DDI ... 55

4.2 Utilization of DDIs in security and safety co-engineering in the context of the Physiological Health

Monitoring Use Case ... 57

4.2.1 Use case overview ... 57

4.2.2 Addressed challenge in safety-security co-engineering .. 58

4.2.3 Long cycle times integration processes at development time .. 60

4.2.4 Engineering Story 1: Unauthorized Emergency Brake ... 61

4.2.5 Engineering Story 2: Vehicle unintended behavior ... 64

4.2.6 ES3: Compromise driver’s privacy ... 65

4.3 Utilization of DDIs in applications involving General Data Protection Regulations (GDPR) 66

4.3.1 Introduction... 66

4.3.2 GDPR Requirements .. 67

4.3.3 DDI Implementation of GDPR .. 67

5 Summary and Outlook ... 70

References ... 71

Appendix A .. 72

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 3 of 73

List of Figures

FIGURE 1 - SACM-BASED SAFETY ARGUMENTATION AS THE BACKBONE OF A DDI .. 9

FIGURE 2 - INTEGRATION SCENARIO WHERE THE ASSURANCE CASE MODELS ARE THE BACKBONE OF THE DDI.. 10

FIGURE 3 - ODEV1 HIGH-LEVEL DDI STRUCTURE .. 11

FIGURE 4 - ODEV2 HIGH-LEVEL DDI STRUCTURE .. 12

FIGURE 5 - GOAL OF SEMI-AUTOMATED DDI ENGINEERING .. 13

FIGURE 6 - ANTICIPATED DESIGN TIME ENGINEERING PROCESS .. 14

FIGURE 7 - USER INTERFACE FOR EXPORTING A COMPONENT DDI ... 16

FIGURE 8 - (SEMI-)AUTOMATED ASSURANCE CASE INSTANTIATION WITH DDIS .. 17

FIGURE 9 - AN EXAMPLE DDI: ENRICHING THE ASSURANCE CASE WITH PROCESS AND PRODUCT SEMANTICS ... 18

FIGURE 10 - AUTOMATED CLAIM VALIDITY ASSESSMENT ACTIVITY .. 20

FIGURE 11 - THE OPEN DEPENDABILITY EXCHANGE META-MODEL (ODE) V2 .. 22

FIGURE 12 – SACM FUNDAMENTAL PACKAGES .. 23

FIGURE 13 - SACM TERMINOLOGY PACKAGE EXAMPLE .. 24

FIGURE 14 - SACM ARGUMENT PACKAGE SEGMENT ... 25

FIGURE 15 - SACM CITATION MECHANISM SEGMENT.. 25

FIGURE 16 - DDI INSTANTIATION AS A DAG .. 27

FIGURE 17 - TRANSITIONING FROM DESIGN TIME TO RUNTIME DDI EXECUTION ... 28

FIGURE 18 - THE COMPLETE ODE META-MODEL V2 ... 30

FIGURE 19 - SACM::ASSURANCECASE COMPONENT .. 31

FIGURE 20 - SACM::BASE COMPONENT ... 32

FIGURE 21 - SACM::ARGUMENTATION COMPONENT ... 33

FIGURE 22 - SACM::ARTIFACT COMPONENT... 34

FIGURE 23 - SACM::TERMINOLOGY COMPONENT ... 35

FIGURE 24 - ODE::DESIGN PACKAGE ... 36

FIGURE 25 - ODE::DEPENDABILITY PACKAGE ... 37

FIGURE 26 - ODE::DEPENDABILITY::DOMAIN PACKAGE .. 38

FIGURE 27 - ODE::DEPENDABILITY::HARA PACKAGE ... 38

FIGURE 28 - ODE::DEPENDABILITY::REQUIREMENTS PACKAGE .. 39

FIGURE 29 - ODE::FAILURELOGIC PACKAGE .. 40

FIGURE 30 - ODE: FAILURELOGIC::FMEA PACKAGE .. 40

FIGURE 31 - ODE::FAILURELOGIC::FTA PACKAGE.. 41

FIGURE 32 - ODE::FAILURELOGIC::MARKOV PACKAGE ... 41

FIGURE 33 - ODE::TARA PACKAGE ... 42

FIGURE 34 - SAFEML USAGE CONCEPT .. 45

FIGURE 35 - ERTMS/ETCS REFERENCE ARCHITECTURE .. 50

FIGURE 36 - SAFETY GOAL OF THE ETCS TRACKSIDE PART AS DEFINED IN UNISIG SUBSET-091... 52

FIGURE 37 - EXAMPLE GSN DIAGRAM OF THE SAFETY ARGUMENTATION FRAGMENT OF THE ETCS TRACKSIDE SUB-SYSTEM 52

FIGURE 38 - PROCESS / PRODUCT MODEL AND MAPPING MODEL .. 53

FIGURE 39 - PROCESS OF THE SEMI-AUTOMATED ASSURANCE CASE INSTANTIATION BASED IN THE ODE .. 54

FIGURE 40 - DDI IN FORM SACM ASSURANCECASEPACKAGE FOR THE ETCS TRACKSIDE PART .. 54

FIGURE 41 - SELECTION OF THE SUPPLIERS BASED ON DDI ... 55

FIGURE 42- DPMS DECISION-MAKING ACTION PATHS ... 58

FIGURE 43 - DPMS GENERAL SECURITY MODEL .. 59

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 4 of 73

FIGURE 44: ATTACK TREE EXAMPLE .. 60

FIGURE 45 - INTERNAL CO-ENGINEERING PROCESS .. 61

FIGURE 46 - UNAUTHORIZED EMERGENCY BRAKE ATTACK TREE ... 62

FIGURE 47 - LINUX-EMBEDDED-OS ATTACK TREE .. 63

FIGURE 48 - PRIVILEGED PROCESS ATTACK TREE ... 64

FIGURE 49 - VEHICLE UNATTENDED BEHAVIOR ATTACK TREE .. 65

FIGURE 50 - COMPROMISE DRIVER’S PRIVACY ATTACK TREE ... 66

FIGURE 51 - RELATIONSHIP BETWEEN SECURITY AND SAFETY RISKS... 68

List of Tables

TABLE 1 - SAFEML TO ODE MAPPING .. 45

TABLE 2 - EAST-ADL2 TO HIP-HOPS MAPPING ... 48

TABLE 3 - SYSML (FOR COMPASS ARTISAN STUDIO) TO HIP-HOPS MAPPING ... 48

TABLE 4 - AADL TO HIP-HOPS MAPPING .. 49

TABLE 5 - HIP-HOPS TO ODE MAPPING .. 49

TABLE 6 - GDPR REQUIREMENTS (REFINED PROJECT REQUIREMENTS FOR SEMI-AUTOMATION) .. 67

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 5 of 73

Abbreviations

Abbreviation Long Version

GDPR General Data Protection Requirements

TARA Threat Assessment and Remediation Analysis

CPS Cyber Physical System

DPMS Dependable Physiological Monitor Sytem

Authors

Dr. Gilbert Regan, Lero/DKIT Gilbert.regan@dkit.ie

Dr. Fergal Mc Caffery, Lero/DKIT Fergal.mccaffery@dkit.ie

Simone Longo, GM Simone.longo@gm.com

Jan Reich, Fraunhofer IESE Jan.reich@iese.fraunhofer.de

Daniel Schneider, Fraunhofer IESE Daniel.schneider@iese.fraunhofer.de

Ioannis Sorokos, University of Hull I.Sorokos@hull.ac.uk

Joe Guo, Siemens AG Joe.guo@siemens.com

Marc Zeller, Siemens AG Marc.zeller@siemens.com

Ran Wei, University of York ran.wei@york.ac.uk

Tim Kelly, University of York tim.kelly@york.ac.uk

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 6 of 73

Publishable Executive Summary
Cyber-Physical Systems (CPS) provide enormous potential for new types of applications, services and

business models in any embedded systems domain, such as automotive, rail, healthcare or home

automation. Overall, we anticipate a future of heavily interconnected, distributed, heterogeneous and

intelligent systems, which are bound to have a significant economical and societal impact in the years to

come.

However, several challenges need to be tackled before the full potential of CPS can be unlocked. One core

challenge is to ensure the trustworthiness and dependability of single and composite systems, as

established approaches and standards were designed with closed standalone systems in mind, thus

building on a complete understanding and analysability of a system and its relevant environment. As this is

no longer a given, we urgently require new types of approaches that do not (solely) rely on this basic

assumption (now rendered void).

A general solution concept involves shifting parts of the assurance activities into runtime, where unknowns

and uncertainties can be resolved dynamically. To this end, it is necessary to equip the constituent systems

with dedicated and adequate modularised and formalised dependability information. The key innovation

that is the aim of DEIS is the corresponding concept of a Digital Dependability Identity (DDI). A DDI contains

all the information that uniquely describes the dependability characteristics of a CPS or CPS component.

DDIs are synthesised at development time and are the basis for the (semi-)automated integration of

components into systems during development, as well as for the fully automated dynamic integration of

systems into systems of systems in the field.

In this document we build upon the initial version of the ODE meta-model and present version 2 of the

model, which now includes a new security package. The main goal of this document is to specify the

algorithms needed to provide adequate engineering support for the generation and integration of DDIs.

With this goal in mind, tool transformations are specified so that DDI’s can be generated from information

already stored in existing tools. Additionally, this document demonstrates how tools can be used to

generate DDI’s in a semi-automated way, and how the integration of DDI into existing systems can be

achieved through the use of supported tools in a semi-automated way, thus increasing efficiency as well as

the confidence in the system’s dependability. For the integration of DDIs, the information contained in DDIs

must be transformed back into an appropriate (ODE-compliant) format that can be used in the tool chain

used by the integrator.

Finally, verification of the utility of DDI is demonstrated through presenting how DDIs support a number of

DEIS use cases and engineering stories, and how DDIs can be used in applications that must comply with

the new General Data Protection Regulations (GDPR).

DEIS aims at providing comprehensive tool support for DDI, covering the supported/semi-automated

synthesis of DDI as well as the (semi-)automated integration at development time. Moreover, it is our aim

to support multi-tool scenarios, where DDI are exchanged and evolved among different development

teams and tools.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 7 of 73

1 Introduction
Cyber-Physical Systems (CPS) provide enormous potential for new types of applications, services and

business models in any embedded systems domain, such as automotive, rail, healthcare or home

automation. Overall, we anticipate a future of heavily interconnected, distributed, heterogeneous and

intelligent systems, which are bound to have a significant economical and societal impact in the years to

come.

However, several challenges need to be tackled before the full potential of CPS can be unlocked. One core

challenge is to ensure the trustworthiness and dependability of single and composite systems, as

established approaches and standards were designed with closed standalone systems in mind, thus

building on a complete understanding and analysability of a system and its relevant environment. As this is

no longer a given, we urgently require new types of approaches that do not (solely) rely on this basic

assumption (now rendered void).

A general solution concept involves shifting parts of the assurance activities into runtime, where unknowns

and uncertainties can be resolved dynamically. To this end, it is necessary to equip the constituent systems

with dedicated and adequate modularised and formalised dependability information. The key innovation

that is the aim of DEIS is the corresponding concept of a Digital Dependability Identity (DDI). A DDI contains

all the information that uniquely describes the dependability characteristics of a CPS or CPS component.

DDIs are synthesised at development time and are the basis for the (semi-)automated integration of

components into systems during development, as well as for the fully automated dynamic integration of

systems into systems of systems in the field.

This deliverable builds on the initial version of the ODE meta-model and specifies the algorithms needed to

provide adequate engineering support for the generation and integration of DDIs. In order to generate a

DDI, means of completing the following tasks need to be developed:

1. For the generation of DDI from existing safety engineering artefacts, tool-transformations shall be

specified to translate the information stored in existing tools like ComposR, HiP-HOPS, ACME and safeTbox

into an ODE-compliant model.

2. Generation of a DDI in a (semi-)automated way from ODE-compliant models. A DDI is designed to mask

as much information as possible and to only provide what is absolutely required for a sound integration.

The information contained in the full-fledged ODE-compliant model (i.e. the white box dependability case

specification) is to be abstracted, simplified and formalized for the DDI. In order to enable a degree of

automation in the construction of a DDI, a system for the synthesis of DDI’s is required.

3. With regards to the integration of DDIs, the information contained in DDIs must be transformed back

into an appropriate (ODE-compliant) format that can be included in the tool chain used by the integrator.

When a component is integrated into a system, or when a system is integrated into another system,

corresponding DDIs shall enable (semi-)automated integration into the dependability case of the overall

system and thus significantly increase efficiency. A similar case is the exchange or the modification of a

component and the respective DDI, when the impact of the change is to be analysed on the level of the

overall integrated system.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 8 of 73

Section 3 provides a recap of version 1 of the DDI concept, along with the modifications that have been

made for the Open Dependability Exchange (ODE) Meta-model version 2. This section is the core of this

document as it describes on the one hand, which types engineering tasks are to be (semi-)automatically

supported by DDIs and on the other hand the conceptual basis, how we envision semi-automated

generation and integration of DDIs to happen technologically.

Section 4.1 provides the meta-model for ODE version 2 which now includes a threat and risk analysis

package. Section 4.2 describes the Structured Assurance Case Meta-Model (SACM) and its extension

mechanisms, which constitute the backbone of the ODE. Section 4.3 describes the auxiliary modular ODE

packages, which provide coverage for architectural modelling, hazard and risk analysis, threat and risk

analysis, failure logic modelling and dependability requirements. Section 4.4 provides a certification meta-

model which has been developed by the AMASS project. This meta-model has been developed for process

and certification modelling and DEIS plans to use part of it in conjunction with ODE and SACM. Section 4.6

highlights the ODE’s flexibility by briefly mentioning the potential for interoperation with pre-existing,

established modelling languages such as SysML, EAST-ADL and AADL.

Section 5.1 describes the utilization of DDI in the European Train Control System use case, while Section

5.2 describes how the DDI can be used in applications involving General Data Protection Regulations

(GDPR).

2 Engineering Framework for the Generation and Integration of DDI

2.1 DDI concept evolution

Section 3.1 provides an outline of the initial DDI concept, in addition to the modifications and extensions

that now make up version 2 of the ODE meta-model.

2.1.1 Recap of the DDI concept

The general concept of the ODE meta-model and the DDI was designed on the basis of the diverse previous

work of the DEIS consortium and the DEIS objectives and vision. A fundamental outcome of the ODEv1 was

the decision to use SACM 2.0, the Structured Assurance Case Meta-Model of the Object Management

Group, as a core ingredient for the ODE meta-model. Using the SACM entails several advantages which

include:

1. It is already standardised and relatively mature, which might help us get the DDI concept and the

ODE meta-model accepted and adopted eventually.

2. SACM is an exchange format for structured assurance cases and provides corresponding means for

modularisation.

These properties render SACM a good candidate for being utilised as a backbone for the ODE meta-model.

To illustrate the utilisation of the SACM in the context of the ODE, consider the example depicted in Figure

1. It shows how an argumentation structure can be the front and centre artefact within a DDI. All other

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 9 of 73

relevant artefacts – functional design, hazard and risk analyses or failure logic models – are directly linked

to elements of the argumentation.

Figure 1 - SACM-based safety argumentation as the backbone of a DDI

The integration of different systems, each equipped with a DDI, is then also done by linking the modularised

assurance case fragments of the systems (cf. Figure 2). This means that in an integration scenario, there is

no direct linkage between any other safety engineering artefacts (e.g., failure logic models) beyond the

argumentation (at least not initially). Everything is interlinked and interrelated via the argumentation

structure of the assurance case, which thus constitutes the backbone of all DDIs (regardless of whether the

DDI is a constituent system DDI or an integrated system-of-systems DDI). On this basis, it is also relatively

easy to integrate systems where different failure logic modelling techniques such as HiP-HOPS and CFTs

have been used.

In order to enable semi-automated (or even fully automated) integration of DDIs, it is necessary to formalise

the interfaces of the assurance case fragments sufficiently. Moreover, it is important to enable a certain

extent of flexibility because the assured properties given by a constituent system DDI might not fit exactly

with what is demanded by the superordinate assurance case of the integrating system. Here ConSerts

provide a good starting point, even though the flexibility enabled by ConSerts is still not as good as we

would expect for the development time “white-box” DDI integration scenario. Here we would like to

achieve deeper integration between the different safety engineering artefacts so that, for instance, a

change in the architecture at one point of a constituent system would propagate through different channels

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 10 of 73

(e.g., failure logic models) and the integrator would see the impact for the overall integrated system on the

level of its safety guarantees. Alternatively, in the grey-box case, the DDI of a constituent system may

provide a bundle of variants that can be switched by the integrator. Even though the details are masked

due to IP protection, the different variants exhibit different properties at the assurance case interface.

Based thereon, optimisation could be performed to find an overall system configuration for the integrating

system (i.e., resolving the variants in the supplier systems) that is optimal with respect to dependability,

cost and performance.

Figure 2 - Integration scenario where the assurance case models are the backbone of the DDI

The examples and elaborations above reveal that an assurance case argumentation is well-suited as a

central artefact of a DDI, but that other aspects obviously need to be covered as well. Thus, the ODE cannot

just be a slightly adapted version of the SACM, but rather needs to be a set of interlinked meta-models

covering all relevant dependability concerns. Still, we chose to use the SACM as the DDI interface language

for the reasons mentioned above (standard, acceptance, adoption due to potential widespread tool

support). In addition, there is a mechanism within the SACM that could be utilised to this end: The so-called

terminology package allows arbitrary information to be referenced in an assurance case (in the form of

SACM Expressions/Terms/Categories). In this sense, the SACM is able to link to models (which may contain

system information, FME(D)A, FTA, dependability requirement models etc.). One may choose to use either

a weak link or a strong link. For weak links, the SACM can simply point to the referred model with text. For

strong links, with the help of the facilities provided by the SACM, such information can be retrieved

automatically from the referenced models (by using a model querying language such as the Object

Constraint Language or the Epsilon Object Language). Thus, the SACM can link (either via weak links using

text or via strong links using queries) models which conform to heterogeneous meta-models in order to

extract relevant information.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 11 of 73

2.1.2 Modifications and Extensions since the initial DDI concept

Since the first version of the documented DDI concept, the concept has been evolved in several different

topic directions, which led to modifications and extensions to the ODE meta-model. This section

summarizes the different lines of evolution that occurred during the creation of the engineering framework

for DDI. The general objective of this activity has been to enable semi-automated engineering support for

the synthesis and integration of DDI. Therefore, the ODE needed to be reviewed for issues, which have

either not been covered as of ODEv1 or prohibit automation support to be built in.

Refinement of roles of ODE packages and SACM

The ODEv1 treated the assurance case expressed in SACM as a conceptual backbone of the DDI. However,

this was not reflected properly in the technical specification of the ODE, where the SACM packages were

expressed on the same level as the other dependability aspects. In ODEv2, the roles of SACM and the ODE

packages have been revised to reflect the conceptual importance of assurance cases as a root in the DDI

structure (see Figure 3 and Figure 4). Details on this aspect can be found in section 2.2.

Figure 3 - ODEv1 high-level DDI structure

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 12 of 73

Figure 4 - ODEv2 high-level DDI structure

Identified need to express certification activity models

In ODEv1, the meta-model packages included product-related model types such as architecture, failure

logic or hazard models. These describe dependability properties of the system and thus provide a rich basis

for supporting dependability assurance claims. However, when it comes to semi- or fully automated

processing of these models to synthesize evidence or integrate assurance cases, the following question

arises: how do these models have to be processed to achieve the desired result? In order to fill in this gap,

the ODEv2 contains a package, which allows for the specification of certification activities that should be

finally performed by a machine to (semi-)automate the dependability engineering and assessment process.

Conceptual details on this aspect can be found in sections 2.2 and 3.4 and its utilization in concrete

engineering scenarios is demonstrated in section 4.1 based on the European Train Control System use case

(ETCS).

Added package for assessing safety-critical security threats and supporting the satisfaction of security

requirements, e.g. the general data protection regulations (GDPR)

Due to the fact that openness and connectivity is a key characteristic of cyber-physical systems, security

aspects play an important role for assuring their dependability. Thus, DDIs need to contain models for

expressing and assessing the impact of security threats on system safety. In addition, the general data

protection regulations (GDPR) make it mandatory to demonstrate classical security properties such as

privacy or confidentiality. To account for these issues in the DDI concept, a new ODE package for so-called

Threat and Risk Analysis (TARA) has been added. Conceptual details on this aspect can be found in Section

3.3.4 and its utilization in concrete engineering scenarios is demonstrated in Sections 4.2 and 4.3.

Harmonization of ODE package meta-models with commonly used aspect meta-models

An important requirement of the ODE meta-model is its flexibility with respect to adding new packages or

replacing certain aspects such as the architecture modelling language, without affecting the core

functionality of the DDI. Since there exists a variety of different commonly known meta-model languages

for certain aspects covered by the ODE, initial efforts have been carried out to harmonize the ODE package

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 13 of 73

contents with existing standards (such as OMG SysML) or reference meta-models such as EAST-ADL or

SafeML. Details on this aspect can be found in Section 3.5.2.

2.2 Semi-automated Engineering of DDIs

2.2.1 The challenge

The focus of the first version of the ODE meta-model was to technically integrate meta-models for

dependability aspects such as hazard models, failure logic models and architecture models that were

formerly only loosely or not interrelated at all. This set of meta-model packages is in essence data models

depicting different dependability aspects of the product (i.e. the system) to be developed. Therefore, these

models are referred to as product models in the following sections.

Figure 5 - Goal of semi-automated DDI engineering

Having these formally integrated product models as a structured source for dependability data, the

question arises how to make use of this data to (semi-)automatically generate/modify/integrate the

assurance case that is the backbone of the DDI (see Figure 5). Depending on the assurance task to be

accomplished, different parts of different dependability aspects might be used to synthesize new

information (e.g. evidence) or to automatically instantiate new assurance case structures based on existing

dependability models.

The remainder of this section is structured as follows: In Section 2.2.2 we will illustrate different engineering

challenges that are enabled by the DDI concept. Afterwards, Section 2.2.3 presents the essential conceptual

ideas of the new version of the ODE meta-model that help solve the outlined challenge by enabling the

(semi-)automated support for the engineering tasks. Sections 2.2.4 and 2.2.5 provide more detail regarding

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 14 of 73

the technical solution, i.e. what the interface between product models and the assurance case as well as

an action language can look like that enables fully automated reasoning based on DDIs. Finally, Section

2.2.6 discusses the differences between DDI usage at design time versus DDI usage at runtime and

highlights the specific extension points that will have to be tackled when concepts for runtime

dependability certification should be enabled.

2.2.2 Engineering tasks to be supported by DDIs

In order to be able to identify engineering tasks that are supported by partial or full automation, it is

required to anticipate a certain development process in which the engineering tasks are embedded. This

does not only include a sequential order, in which these tasks are carried out, but should also respect typical

supply chains dictating development interfaces being naturally existent through organizational boundaries.

Figure 6 - Anticipated design time engineering process

Figure 6 shows an abstract development setting that is representative for domains such as railway or

automotive. There is an integrator company (referred to as original equipment manufacturer or OEM in

the automotive domain) that is building a new system by integrating a set of components that are supplied

by supplier companies. This process involves four steps, in which the DDI concept, together with the (semi-

)automated engineering support, leads to improvement.

Step 1 – DDI Synthesis @ Integrator

Step 1 involves the synthesis of component specifications that the supplier company must adhere to. One

particular challenge of synthesizing this specification is to collect all relevant information that is needed by

the supplier in order to develop the component in isolation. This is not only necessary for information about

required functionality, but also for dependability requirements. In this scenario, DDIs can be seen as a

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 15 of 73

container, where all this information can be captured in an integrated and structured way. Thus,

engineering tool support for this step should focus on helping the engineer to collect the relevant

information required by the DDI for the specific tasks the supplier should carry out. Such specific tasks could

be for instance to demonstrate the adequate satisfaction of interface dependability requirements, or to

check compatibility of the supplier component interface with the interface definition provided by the

integrator.

Step 2 – DDI Integration @ Supplier

Step 2 represents the integration of the specification DDI into the development process of the supplier

company. This could mean for example that model stubs are automatically generated based on the

development interface extracted from the imported DDI. Such a development interface typically consists

of functional or technical data-flow interfaces or dependability requirements allocated to those data-flow

interfaces. In advanced scenarios, this could also be placeholders for assurance evidence artefacts that are

to be instantiated by the supplier.

Step 3 – DDI Synthesis @ Supplier

After the DDI has been integrated in a (semi-)automated way, the supplier performs the actual

development work until it is time to deliver the component back to the integrator. In this instance delivery

means not only the physical component, but also the dependability documentation that is required to build

a sound assurance case for the integrated system (typically according to one of the commonly known

standards such as ISO 26262 in the automotive domain or CENELEC EN 50129 in the railway domain). Step

3 is concerned with synthesizing a DDI containing all relevant information that is needed so that the

integrator can properly perform the integration task. From a supplier company perspective, all relevant

information means explicitly not all information and, therefore, engineering support for the supplier should

focus on identifying and collecting the minimal set of information to be delivered whilst respecting minimal

intellectual property disclosure.

In order to generate a DDI from a model created in a specific tool (e.g. safeTbox by Fraunhofer IESE), the

tool-specific aspect models have to be transformed into a DDI. In the current DDI export implementation,

the engineer has to manually select the different aspects such as architecture models, failure logic models

and safety argument models to be put into the DDI (see Figure 7). In the future, the engineer should only

be required to select the component’s root element (e.g. Trackside component) and the aspects to be

exported (Functional Interface, Abstract failure propagation between interfaces, argument fragments).

Afterwards, intelligent automation support collects relevant information and finally produces the DDI with

the desired properties.

Automated Evidence Generation

Another supplier engineering task that shall be supported by DDIs is the partially automated generation of

evidence for a certain assurance goal. These goals typically come in the shape of interface dependability

requirements, such as the one illustrated in Figure 10, where the failure rate of a set of supplied functions

(Trackside Functions) should be demonstrated to be lower than a target value (≤ 0,67 𝑒−09/ℎ). This would

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 16 of 73

be a target value required by the integrator to adequately address system safety goals. The objective of

this engineering task would be to employ DDIs for automatic generation of evidence based on a sufficient

formal description of 1) What kind of evidence is required and 2) How the evidence is constructed based

on aspect models such as failure logic or architecture models.

Figure 7 - User interface for exporting a component DDI

Step 4 – DDI Integration @ Integrator

Step 4 is the last step in the development iteration and deals with the integration of a component DDI into

the overall system. This engineering task typically involves performing compatibility and structural analyses

as well as behavioural compatibility matching with other components. This task needs to be performed for

both from both a functional and dependability aspect. Thus, the component dependability documentation

has to be integrated into the system assurance case in order to demonstrate confidence in the high-level

dependability claims. Engineering support should focus on the (semi-) automated generation and

integration of assurance case fragments, i.e. instantiating argument patterns for typical component types

or the (semi-)automated assessment of claims in system assurance cases.

Automated Assurance Case Instantiation

The aforementioned (semi-)automated dependability claim assessment is only feasible on an integrated

assurance case. Thus, it is necessary beforehand to take the supplied assurance argument fragment,

including supporting evidence, and integrate it systematically into a predefined placeholder, which is

created before Step 1 of the development process, where the integrator refined the system specification

into compatible component specifications. Such placeholders can be assurance case patterns such as the

one shown in Figure 8, where the instantiation strategy is encoded within the pattern. The logic of the

instantiation would be in this specific case that for all critical hazards of the system, a goal has to be

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 17 of 73

instantiated for all supplied components which could potentially contribute to those hazards. The

integrated dependability data models (ODE-conformant product models in Figure 8) serve as a basis to

extract the relevant data for the assurance case instantiation, while the instantiation activity is encoded in

the pattern along with a defined logic on how the instantiation should be carried out sequentially.

The goal of this engineering task is the technical integration of an assurance case fragment into a pre-

defined placeholder in the integrated assurance case. A fundamental property of this integrated assurance

case is the formal relation between assurance claims on the one hand and the product models on the other

hand (e.g. architecture, failure logic, hazard models), which served as a source for generating the evidence

for building confidence in assurance claims. In this way, traceability is maintained from the assurance case,

as a source for required dependability activities, towards those models showing the confidence in a proper

activity execution or the quality of its output artefact.

Figure 8 - (Semi-)automated assurance case instantiation with DDIs

Automated Claim Assessment

After the integrator has received all DDIs by all component suppliers, a dependability engineering task is to

assess whether the provided argumentation and evidence yields enough confidence in the validity of

system level assurance claims. One such claim could be for instance to demonstrate that the system safety

goals are adequately implemented through the interplay of all supplied components.

In order to assess the adequacy of evidence and argumentation, with partial or full automation support,

the engineering support for DDIs shall make use of the aforementioned formal interrelation of assurance

case models and product models. It is envisioned that DDI engineering tools can perform analyses to assess

how changes in any of the DDI product models propagate up to the assurance case, and indicate to the

dependability engineer the impact of the changes on the validity of claims.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 18 of 73

Step 5 – Iterative development

As realistic development endeavours do not follow the waterfall process model, but are executed

iteratively, steps 1-4 are anticipated to be repeated multiple times, thereby refining DDIs gradually. In

consequence, automation support can for instance be given for identifying repeated integration of the

same component DDI and offering a summary of changes in order to make impact analyses more efficient.

2.2.3 How DDIs enable (semi-)automated engineering based on the ODEv2

Having illustrated in Section 2.2.2 some design time engineering tasks, which greatly benefit from DDIs, the

upcoming subsections of section 2.2 explain the core principles of the ODE meta-model version 2 enabling

those benefits.

In order to realize the vision of automated generation and evaluation of a dynamic assurance case, the

following four essential ingredients are necessary:

1. A language that is capable of expressing the assurance case (=the argument and the evidence to

support the top-level claims) with sufficient level of formalism;

2. Semantics that describe how the product models representing the evidence artifacts formally

relate to each other;

3. Semantics that precisely describe the nature of dependability concepts and associated activities

that allow for the assessment and generation of argument structures (including evidence), by

performing defined operations on the interrelated product models;

4. Means for orchestrating ingredients 1-3 to (semi-)automatically execute the engineering tasks

associated to assurance case synthesis and integration.

Figure 9 shows ingredients 1-3 in action for an example assurance claim taken from the European Train

Control System (ETCS) use case.

Figure 9 - An example DDI: Enriching the assurance case with process and product semantics

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 19 of 73

Ingredient 1 - SACM as assurance case definition language

The different parts of an assurance case fragment expressed in the Structured Assurance Case Meta-Model

(SACM) is shown to the left of Figure 9. The argument package describes the argument that typically refines

top-level claims, in a systematic and understandable way, into sub-claims until such time as a sub-claim can

be supported by concrete evidence (i.e. one or a set of artefacts). Note that the claim in Figure 9 represents

a leaf claim and the higher-level argument is omitted for clarity.

The argument package refers to concrete artefacts organized in the artefact package by using the

ArtifactReference element. Note that the relations depicted between artefacts represent abstract relations,

i.e. SACM does not specify semantics for the artefact relation, since it claims to be an exchange format

leaving the definition of semantics open by design. Artefact elements play the role of placeholders for

concrete evidence material, which typically occur in very diverse shapes, e.g. documents, reports, process

descriptions, models, etc.. Therefore, artefacts offer a mechanism to reference the concrete external

materials to establish traceability.

The terminology package allows the formalisation of expressions and terms, which are used as ingredients

to define claims. While expressions are a means to realize structured language (i.e. reusable text blocks) to

achieve a certain level of conformity, terms additionally incorporate means to reference external material

such as documents or models referring to a definition of more precise semantics to explain, what the term

should represent within the claim. More detailed information on SACM as well as the referencing

mechanisms can be found in sections 2.2.4 and 3.2.

Ingredient 2 – The ODE product meta-model packages for defining artefact relation semantics

In order to provide (semi-)automatic engineering support for processing existing evidence artefacts, it is

crucial to enable the respective algorithms to understand how those artefacts relate to each other. Within

the DDI, artefacts that relate to the dependability aspects of systems engineering are grouped and

integrated. Note that the dependability models typically model different aspects of the same system and

therefore it is important to make the relations between the aspects explicit. An example for the semantical

relation between different aspects is the relation between a function (behavioural design aspect of a

system) and a hazard (a state of the system realizing the function potentially leading to an accident). By

making such relations explicit in the ODE product models, it is possible to programmatically navigate from

functions to hazards, which can be seen as a very basic requirement to (semi-)automatic reasoning about

adequate mitigation of hazards.

As of ODEv2, the ODE product meta-model contains integrated meta-model packages for the following

aspects: architecture design (ODE::Design, Section 3.3.1), hazard and risk analyses and dependability

requirements modelling (ODE::HARA, Section 3.3.2), failure logic modelling with fault trees, failure modes

and effect analyses (FMEA) and Markov chains (ODE::FailureLogic, Section 3.3.3) as well as security-related

threat and risk analyses (ODE::TARA, Section 3.3.4). Note that the failure logic modelling package also

incorporates means for security-related attack tree modelling as the structure for both model is similar.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 20 of 73

Note that the dependability aspects covered by ODEv2 do not cover all possible aspects required to

instantiate and evaluate a complete assurance case of a cyber-physical system. Therefore, the DDI

mechanisms have been designed specifically to be open for extension, i.e. for adding new aspects as the

need for them emerges. It is expected that for dependability assurance of cyber-physical systems (of

systems), new types of claims will be required to be assured with confidence, in particular those related to

runtime assurance approaches. Since these are still subject of research, the idea is to react to such new

emerging claims with new ODE product packages to specifically support the (semi-)automated assurance

of those new claims. In this way, the DDI contents and capabilities will be able to evolve in line with future

assurance demands.

Ingredient 3 – The ODE certification meta-model packages for defining certification activity semantics

The SACM exchange format, together with the ODE product meta-models, build a solid formal data basis

for the definition of an assurance case with a formal traceability to evidence produced from dependability

aspect models. One missing ingredient for enabling (semi-)automated processing of the DDI is the

specification of what DDI shall be processed, and in what sequence, to achieve the desired result. The

desired result is to help the engineer with the generation of useful new information (e.g. the validity of

claims, instantiated assurance case fragments, …) during the execution of a specific engineering task.

The ODE certification meta-model aims to provide a suitable means for modelling engineering activities

that consume artefacts of different dependability aspects (ODE product models), or assurance case

elements (SACM), and transform them into new information by means of defined techniques and activity

step descriptions. Such new information can be for instance a Boolean result about the validity of a claim,

or a new model such as an integrated assurance case fragment.

Figure 10 exemplifies the interplay of assurance case, certification model and product model by depicting

an automated claim validity assessment activity for a failure rate demonstration claim.

Figure 10 - Automated claim validity assessment activity

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 21 of 73

The activity model contains two representations of the desired engineering activity Demonstrate

FailureRate for Hazard: One describes the processed modelling elements (Hazard, TargetRate,

(Comparation)Operator “<=”) mapping to certain formalized concepts of the dependability domain, as well

as the different steps of the activity in natural language. The other representation of the activity is a formal

one that can be understood and processed by a machine automatically. The intention behind providing

both representations is twofold: One the one hand, those engineers modelling and reviewing the activities

must be confident that the formal representation is indeed matching the intention of the activity. Process

engineers are seldom experts for formal languages and as such, a human understandable format is

beneficial. On the other hand, dependability engineers who should be supported by the automation, have

to effectively understand how the results of the automation are produced in order to judge the adequacy

of using it in a particular context.

In fact, the parameters of an engineering activity are referring to either model elements of the product

models (e.g. Hazard, Function, System in Figure 10), or to steps that are performed on these model

elements (e.g. navigation, filtering, reading properties, comparing properties with values). While the latter

ones are expressed in the activity itself (Get all …, where …), the former ones have to be mapped to the

ODE product package elements explicitly.

One may ask why this mapping is necessary as the activity parameters are equal to the product model

elements depicted on the right side. This is due to the fact that certain dependability aspects (such as the

concept of a hazard or a function) are quite stable across a domain, but its realization within a specific

product meta-model might differ from company to company, or depend on the modelling language used

(e.g. SysML vs. UML). To illustrate this, let us look at an example of the most basic difference between

different meta-model representations of the same domain concept: The name of the meta-model element

for describing a link between two architectural ports of a system. Still being the same concept, there may

exist a variety of meta-model element names for it such as Connector, Link, Connection, Propagation, etc.

Although the example explains the mechanism for a non-dependability concept, it is particularly useful for

dependability domain concepts, as no commonly accepted meta-modelling languages similar to SysML for

system design modelling exist for dependability aspects to date.

To account for this diversity in modelling similar concepts differently across languages and companies, the

ODE contains a mapping mechanism aiming at decoupling concrete product meta-models from the

activities operating on them, which should be specified in terms of domain concept placeholders. If new

modelling languages will emerge known dependability domain concepts differently, already specified

activities can be easily reused by providing a mapping model relating domain concept placeholders to

product meta-model elements. Sometimes this process is also referred to as aspect weaving in literature.

Illustratively spoken, this means the mapping model allows for the weaving of new product model elements

into the already existing domain-specific activity models without having to remodel the activity.

As of ODEv2, no concrete language meta-model has been produced or selected that allows modelling of

activities in the depicted way. However, the required properties of such a language have been outlined and

the DEIS consortium sees a good fit with the concepts of the Common Assurance and Certification Meta-

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 22 of 73

model developed within the European AMASS project1. More details on this aspect can be found in Section

3.4.

Ingredient 4 – Means to (semi-)automatically execute engineering activities on DDIs

Having described the three core parts of the ODE which represent the anatomy of a DDI (see Figure 11),

there is still one missing piece left to enable the DDI to do useful things for the engineer: A higher-level

mechanism that is capable of orchestrating the execution of certification activities on a set of DDIs. This

mechanism might seem similar to the certification activity itself, but the ODE certification packages provide

means for the definition of activities, while the mechanism described in this section is rather a concrete

execution environment.

Figure 11 - The Open Dependability Exchange Meta-Model (ODE) v2

This DDI execution component allows for the (semi-)automatically execution of dependability certification

activities (defined as activity models conforming to packages in ODE::Certification), which operate on

dependability aspect models (conforming to packages of ODE::Product) in order to synthesise, integrate or

assess a dependability assurance case (conforming to OMG SACM).

Technically, the DDI execution component is envisioned to have an underlying computational model that

can execute DDI certification activities with different degrees of formalism: This means that, at design time

a lower level of formalism is required as the human dependability engineer can still serve as backup for

getting information or decisions that are too difficult to evaluate in a fully automated manner. At runtime

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 23 of 73

however, full formalism will be required as all decisions have to be computed by machines. Some of the

consortiums initial ideas on what a DDI execution component can look like are elaborated in Section 2.2.5.

2.2.4 Interfaces of SACM to define artefact and process semantics

The Structured Assurance Case Metamodel (SACM) is a specification issued by the Object Management

Group (OMG). SACM is developed by the specifiers of existing system assurance approaches (e.g. GSN and

CAE), based on the collective knowledge and experiences of safety and/or safety practitioners. SACM

provides a richer set of features in addition to the features provided by GSN and CAE, such as fine-grained

modularity, controlled vocabulary, and argument-evidence traceability.

SACM is organised in five fundamental packages, as shown in Figure 12 below. The Base package provides

a rich sets of features on atomic model elements of SACM which will be explained later. SACM organises

Assurance cases in AssuranceCase packages. An AssuranceCase package contains several Argumentation

packages, Artifact packages and Terminology packages.

Figure 12 – SACM fundamental packages

Argumentation packages store information about the argumentation part of an assurance case, where

safety/security claims are broken down into sub claims until they are directly backed by evidence.

Evidence used in the argument packages can be modelled and organised in artefact packages. For example,

a hazard analysis model can be recorded in an artefact package, where the user may also specify when the

analysis is performed, who participated in the analysis process and what techniques are used in the process.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 24 of 73

Figure 13 - SACM terminology package example

SACM also provides the mechanisms to create controlled natural languages so that the users can establish

a finer grade of reference to system models. The Terminology package of SACM provides the mechanism

to create Expressions, Categories and Terms. An example of controlled language is shown in Figure 13. The

upper part of the figure is a claim: Hazard H1 is sufficiently mitigated. In this claim, the user can refer to

expression elements in their terminology packages. For example, Hazard may refer to a Category in the

terminology package, which in turn points to a hazard log metamodel through its externalReference

property. In this way, hazard log metamodel provides a definition of what a Hazard is. Then, hazard H1 can

refer to a Term in the terminology package, which in turn refers to an instance hazard log model (that

conforms to the hazard log metamodel). The hazard log model may then contain information on how H1 is

identified, its cases and consequences, etc. The Expression sufficiently mitigated is recorded in the

terminology package so that it can be reused. The user is also free to add any explanatory information to

the Expression so that it better explains what sufficiently mitigated means.

Finally, an overall Expression which references the three previous elements is created. This expression can

be referenced in the argumentation package (e.g. as a description of a Claim).

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 25 of 73

Figure 14 - SACM argument package segment

SACM promotes modularity, in the sense that elements are organised in different packages. To refine

modularity, SACM provides three different types of packages. Figure 14 shows a segment of the meta-

model for the argument package of SACM, illustrating the three types of packages in the argumentation

package of SACM. ArgumentPackage is the main package in which structured argumentation is stored. The

users can disclose part of the argumentation externally with the use of ArgumentPackageInterfaces. To do

this, in ArgumentPackageInterfaces, citation elements need to be created which cite to original elements

in ArgumentPackages. Figure 15 shows a segment of SACM for the citation mechanism. All SACMElements

have the capability of citing other SACMElements via the +citedElement reference. If an element cites

another, it automatically becomes abstract and citation via its +isAbstract and +isCitation features.

ArgumentPackageInterface only contains citation elements, it should be enforced by constraints on the

metamodel.

Figure 15 - SACM citation mechanism segment

Whilst SACM provides traceability features between argumentation and evidence, it does not impose a

strong traceability link from SACM to other models. This is due to the fact that SACM is a generic assurance

case metamodel and is not bound to any specific domains. This can be seen from the mechanisms designed

for the Terminology package where externalReferences for Expressions are only described as Strings. In this

sense, SACM provides a weak link to external models. However, the link is robust since it does not rely on

any other metamodels and does not need to evolve with other models if the models referenced in SACM

change.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 26 of 73

2.2.5 Initial ideas for an action language to enable automated reasoning based on DDIs

To this point, the DDI engineering process has focused on design and development of the necessary

infrastructure for creating, managing and exchanging DDIs. The work towards the release of ODE v1 and v2

and the initial engineering tools are indicative of this focus.

To extend the DDI functionality further and introduce increasingly larger degrees of automation as per the

initial vision, a computational model which evaluates the DDI is needed (refer to section 2.2.3 for a more

detailed motivation). In this section, we present a preliminary description of such a model, which follows

directly from the work presented in DEIS so far. Furthermore, the computational model provides a starting

point for the advancement of the DDI engineering tool concept.

Under this view, the evaluation of the DDI can be modelled as a Directed Acyclic Graph (DAG); Each node

of the graph can represent a section of the DDI being parsed by the evaluation process. An example of such

a model is given in Figure 16. In the figure, the DAG represents the instantiation of an abstract assurance

claim at the top. In this case the arrows indicate the direction of the support of the claim provided by

following nodes. Alternative directions and interpretations are also possible, depending on the context of

the computation.

Abstract assurance claims can be modelled in SACM. Such claims abstract from the details of the

argumentation (e.g. what is the subject for which the claim is made), its constituent properties and

elements etc. Instantiating the claim means replacing the abstract references within the claim with

concrete ones, requisitioned from the appropriate ODE elements within the rest of the DDI.

Thus, in the case of Figure 16, the ‘Instantiation Script’ elements attached to each node of the DAG control

how the abstract references in the descriptions, denoted using the ‘{‘ ‘}’ brackets, are replaced. Specifically,

in the top node, {X} is replaced with ‘System A’, being the name of the ODE element being referenced. In

the supporting node, properties of constituent elements of X form an assertion supporting the previous

claim. The constituent elements can be referenced using a universal quantifier that ranges over the domain

of constituent elements of X. In practical terms, this can be realized using a programmatic ‘loop’ to iterate

over the constituent elements of X.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 27 of 73

Figure 16 - DDI Instantiation as a DAG

Using this understanding of the DDI evaluation, its support for introducing further automation can be

explained. We can immediately consider two scenarios based on the use cases found in DEIS so far.

One scenario is applicable during the development of the Cyber-Physical System (CPS), where an integrator

requires constituent subsystems to be integrated into a superordinate system. In this case, the suppliers of

the constituent systems also provide their automatically generated DDIs to the integrator. The integrator

has designed a DDI for the superordinate system with abstract assurance claims within it, comparable to

those in Figure 16. To certify the integrated system, all that is required is to merge the DDIs received with

the superordinate DDI and instantiate the combined abstract assurance claim. If the claim is fully

instantiated with no errors or missing references, then the integrated system has now been successfully

argued to be adequately dependable.

An alternative scenario can be considered where design-time DDIs have been manually created and

integrated for a given CPS up to completion of development. Now let us assume this CPS is required to

cooperate with other CPSs in the field, with similarly available DDIs. To certify that their combined operation

is accepted as adequately dependable (or safe/reliable/secure depending on the context), they need to

exchange, merge and evaluate their (appropriate parts of their) combined DDIs. This means that the DAG

presented above would build up increasingly larger DAGs, extending the assurance claim appropriately.

The two scenarios essentially differ only in the timing of the evaluation, the former having the evaluation

happen during development and the latter during operation. In both cases, there is a need for a

computational language which describes the order, the terms and the individual expressions that form each

step of the DDI evaluation. Fortunately, the SACM metamodel provides within its Terminology package

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 28 of 73

appropriate structures to model all of the above elements. We are currently researching options for an

appropriate programming language for executing the computational model.

2.2.6 Advances regarding runtime dependability assurance

Although it has not been a principal objective in DEIS so far to conceptualize how runtime DDIs will

concretely look like, we nevertheless designed the ODE meta-model v2 in a way so that it contains the

required foundations for runtime DDIs that will be subject of upcoming work.

Figure 17 is an extension of Figure 6 in that it adds the runtime dimension to the anticipated engineering

process. It is envisioned that design time DDIs still form an essential foundation for the synthesis of runtime

DDIs, as only a subset of dependability engineering activities will be carried out in a fully automated manner

at runtime. Therefore, step 5 in Figure 17 seamlessly continues the design time engineering process by a

synthesis step that transforms the set of design time models into their runtime representations.

Afterwards, the human engineers are taken out of the loop and all synthesis (step 6) and integration (step

7) activities are from now on only performed automatically by system ECUs.

Figure 17 - Transitioning from design time to runtime DDI execution

The kind of models to be used at runtime will not be just fully formalized representations of the design time

models such as hazard, failure or architecture models. Instead, runtime scenarios demand different models

to enable a dependable operation of cyber-physical systems. In particular, runtime models will allow:

1. to monitor the operational context of the system;

2. to perform a situation-specific risk assessment;

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 29 of 73

3. to allow context-specific reasoning on dependability properties with the goal to always maintain

dependable operation on the one hand and to reach an optimal functional performance on the

other hand;

4. to execute adaptation scenarios based on the reasoning performed in 3.

These steps have been already conceptualized in an approach called Dynamic Safety Management (DSM)

(Trapp, Weiss, & Schneider, 2018), which aims at shifting parts of the safety engineering activities into

runtime in order to continuously react to changing context in a dependable way. A first step in this direction

were Conditional Safety Certificates (ConSerts) (Schneider & Trapp, 2013) that modularize safety interfaces

for configurations including variants of safety guarantees with different levels of required confidence.

These ConSert models are evaluated at runtime to check, whether a set of configurations of multiple

systems exists that allows a dependable operation.

In this way, ConSerts as a first constituent for a dependability runtime model, and Dynamic Safety

Management as a more sophisticated approach for executing context-dependent dependability reasoning

in general, will be an excellent basis for conceptualizing runtime DDIs.

3 The Open Dependability Exchange Meta-model (ODE) v2
Having introduced the concepts behind the engineering framework for the generation and integration of

design time DDIs in section 2, this section contains the reference for the open dependability exchange

meta-model in its second version. Note that the textual description limits itself to the changes that have

been done since the last ODE meta-model version v1. For the sake of completeness, the contents of all

currently available ODE packages are presented graphically.

3.1 The complete ODE meta-model

Figure 18 presents an overview of the ODE v2, encompassing both the SACM (highlighted in purple) and

the product meta-models (highlighted in green). The overview indicates that while there has been some

reduction and simplification, the ODE remains a quite complex metamodel, spanning across a plethora of

metamodeling elements.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 30 of 73

Figure 18 - The complete ODE Meta-model v2

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 31 of 73

3.2 Structured Assurance Case Meta-Model (SACM) 2.0

The Structured Assurance Case Meta-Model (SACM) is a modelling language specified by the Object

Management Group (OMG) to create model-based assurance cases. SACM supports existing system

assurance case approaches such as the Goal Structuring Notation (GSN) and Claims-Arguments-Evidence

(CAE).

An assurance case is a set of auditable claims, arguments and evidence created to support the claim that a

defined system/service will satisfy typical requirements such as safety and/or security. An assurance case

in this context is a machine-readable model that facilitates the exchange of information between various

systems stakeholders such as suppliers and integrators, and between the operator and regulator, with the

knowledge related to the safety and security of the system being communicated in a clear and defendable

way. Each assurance case should communicate the scope of the system, the operational context and the

safety and/or security arguments, along with the corresponding evidence.

3.2.1 SACM Assurance Case Component

In general, the SACM enables the user to create assurance cases by combining structured argument(s) into

ArgumentPackage(s) with their corresponding evidence defined in ArtifactPackage(s), as well as the

controlled vocabularies used within the scope of the assurance case with regards to the information of the

system/service for which the assurance case provides assurance for, in TerminologyPackage(s). The

structure of SACM AssuranceCase component is shown in Figure 19.

Figure 19 - SACM::AssuranceCase Component

Considering the possibility of exchanging assurance cases (or simply exchanging system information), the

SACM provides the notion of Interface. The creator of an assurance case can decide to reveal part of its

information by using the AssuranceCasePackageInterface. In this sense, systems with SACM-based

assurance case models can be exchanged at runtime for higher-level engineering requirements.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 32 of 73

The design of the SACM also takes into consideration scenarios where systems form a system of systems;

in such cases, systems with SACM-based assurance case models can determine whether they are

compatible (by using the AssuranceCasePackageInterface, as previously discussed). When the systems are

compatible, a binding/contract (which contains the argumentation, if necessary, regarding why the systems

are compatible and why they satisfy their safety/security requirements) can be created to bind/link

assurance cases together to form a compound assurance case. For this purpose, the SACM provides the

notion of binding, which is used to bind two or more interfaces at any given level (a binding also provides

possible structured argumentations showing the logic underlying the integration).

3.2.2 SACM Machine-Readable Design

The SACM takes into consideration that machine-readable assurance cases can be created. The Base

component (shown in Figure 21) of the SACM provides the necessary means such that not only

names/descriptions can be described in natural language, they can also be described in computer

languages (e.g., formal notations) to enable automated argument reasoning in future.

At the same time, the SACM provides various facilities (subclasses of UtitlityElement in Figure 20) allowing

the user to define necessary constraints, notes, additional attributes etc.

Figure 20 - SACM::Base Component

3.2.3 SACM Argumentation Component

As previously discussed, an assurance case created using the SACM contains a number of argument

packages which contain structured argumentations. The SACM Argumentation component provides the

facilities for creating structured argumentations, as shown in Figure 21. The user of the SACM can make a

number of different types of claims which provide means of assertion, context, assumption and

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 33 of 73

justification. The user can also make use of the Artifact component to refer to corresponding evidence

(internal/external to the SACM model) to support the claims. There are various types of

AssertionRelationships to link claims to sub-claims, contexts, assumptions, justifications etc.

Figure 21 - SACM::Argumentation Component

As previously discussed, SACM provides the possibility for two systems to exchange information with regard

to their structured argumentations about system assurance, via the ArgumentPackageInterface. In this

sense, the creator of the structured argumentation can decide what information can be accessed externally

(e.g., a safety requirement that is asserted to have been fulfilled), so that external users can make use of

such information. Obviously, the notion of interface leads to the question of trust; the SACM also provides

facilities for structurally arguing the level of trust embedded in the information provided in the interfaces

(in the same manner as structured argumentation, via metaClaims).

With the interface present, systems can integrate and form a compound structured argumentation, by

using ArgumentPackageBinding. The ArgumentPackageBinding used to integrate systems contains the

underlying logic (in the form of structured argumentation) of the binding. This provides the possibility for

systems to integrate at the level of argumentation.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 34 of 73

3.2.4 SACM Artifact Component

The SACM provides the means for maintaining the evidence associated with the structured

argumentations. The SACM Artifact component provides the facilities to maintain evidence such as

Resource, Artifact as well as Activities, Event, Participant and Technique, as illustrated in Figure 22. SACM

enables the user to point to external files/URLs of the related artifacts via the use of Property. In this sense,

the SACM provides the necessary abstraction, as it does not demand the use of models for argumentation

evidence. This abstraction provides a significant degree of openness regarding its adoption in open systems

(i.e., Cyber-Physical Systems). However, the SACM does provide the necessary means for the Artifacts to

be linked to model elements in the sense that constraints (described in model querying languages such as

the Object Constraint Language) can be embedded into each one of the Artifacts, which, in turn, would be

executed at runtime and retrieve the value of the referenced model elements.

Figure 22 - SACM::Artifact Component

With respect to assurance case integration, there is also a need to exchange information at the level of

evidence. The SACM provides the ArtifactPackageInterface to enable the exchange of Artifacts among

assurance cases. The user can choose what evidence (inside an ArtifactPackage) can be accessed externally

in an ArtifactPackageInterface associated with the ArtifactPackage. With the ArtifactPackageInterface, it is

possible to bind ArtifactPackages by using ArtifactPackageBinding, so that system integration can be

performed at the level of ArtifactPackage.

3.2.5 SACM Terminology Component

Without context, structured argumentation is meaningless. In SACM, the Terminology component provides

the necessary means for defining controlled vocabularies which in turn link system information to the

structured argumentation in the ArgumentPackages, as shown in Figure 23. Concerning system

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 35 of 73

information, the user can define Terms, Expressions and Categories, which are the terminologies in the

system for which the assurance case provides assurance. At this point SACM also provides the necessary

abstraction so that external system information (such as system models, failure logic models, FMEA models,

FTA models etc.) can be referenced. Note that the SACM does not demand the use of models to provide

openness regarding its adoption in open systems (i.e., Cyber-Physical Systems).

Figure 23 - SACM::Terminology Component

The creator of a TerminologyPackage can also decide to expose system information by using the

TerminologyPackageInterface for system integration so that system information (e.g., system properties)

can be accessed externally.

With TerminologyPackageInterface present, system integration is performed by using

TerminologyPackageBinding, so systems are integrated at the Terminology level.

With standardised TerminologyPackages, a typical task to perform is to extend a standardised

TerminologyPackage to create new standard/non-standard TerminologyPackages. We can, once again,

make use of the +abstractform of the SACMElement on both the level of the TerminologyPackage and the

level of the elements contained inside TerminologyPackages. In this sense, a TerminologyPackage can be

extended. Standardised TerminologyPackages can be stored in publicly accessible repositories for

reference, which is in line with the DEIS vision of the application of DDIs.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 36 of 73

3.2.6 Summary

SACM is a complex metamodel defined by the specifiers of existing system assurance case approaches (i.e.

GSN and CAE), based on the collective knowledge and experiences of safety and/or security practitioners

over the period of 20 years. SACM contains more features than GSN and CAE, and is therefore more

powerful in terms of expressiveness. The full specification of SACM can be found at

https://www.omg.org/spec/SACM.

A paper explaining the usage of SACM via examples has also been submitted to the Journal of Systems and

Software, entitled “Model Based System Assurance Using the Structured Assurance Case Metamodel”.

3.3 Product meta-models

3.3.1 Architectural modelling package

Figure 24 - ODE::Design Package

The ODE::Architecture package has undergone some simplification. Its updated state can be seen in Figure

24. To begin with, it has been renamed to ‘Design’ and its internal containment element ‘DesignPackage’.

The System and Function elements’ role has been enhanced, as all other elements within the package

compose onto or inherit from them. This change shifts the focus onto the structure of the system

architecture as opposed to its properties.

https://www.omg.org/spec/SACM

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 37 of 73

Another significant change is the association of ODE::FailureLogic::FailureModels with Systems and

Functions, whereas the more specific ODE::FailureLogic::Failures associate with individual Ports. This

change clarifies and makes more precise the relationship between the functional/systemic failure analysis

and individual failure behavior at the level of function/system/component interfaces.

3.3.2 Hazard and risk analysis (HARA) modelling package

The ODE::Dependability package remains largely the same from v1. Figure 25, Figure 26, Figure 27 and

Figure 28, provide an overview of the current version of the package and its sub-packages. The main change

is the association of a Hazard with zero or more ODE::FailureLogic::Failures, as opposed to the previous

version’s limit of one. This change simplifies the modeling of Hazards which can be caused by a combination

of failures. In the previous version, in such situations, an intermediate ODE::FailureLogic::OutputFailure

caused by a combination of the other failures was required to delegate failure propagation to the Hazard.

Figure 25 - ODE::Dependability Package

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 38 of 73

Figure 26 - ODE::Dependability::Domain Package

Figure 27 - ODE::Dependability::HARA Package

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 39 of 73

Figure 28 - ODE::Dependability::Requirements Package

3.3.3 Failure logic modelling package

The ODE::FailureLogic package has undergone significant restructuring and simplification. Figure 29, Figure

30, Figure 31 and Figure 32 present the current state of the package and its subpackages. Of particular note

is the reduction of the separate Failure subtypes (InternalFailure, InterfaceFailure, InputFailure,

OutputFailure) into a single type. The single Failure type maintains the semantics captured by the previous

subtypes within its properties. For instance, the Failure::originType describes whether the failure is internal

within a function/system/component or at the interface level.

Similarly, the FailureMode and CCF (Common Cause Failure) elements have been absorbed within the

Failure type and represented with its class, isCCF and ccfFailures properties. The latter two denote whether

the Failure represents a CCF and which are the other Failures that can be caused by the CCF.

The element MinimalCutSets now accurately describes the synonymous concept without the need to

employ elements from the ODE::FTA package. In the previous version, complex combinations of minimal

cut sets needed the ODE::FailureLogic::FTA::Gate element to be represented.

The SecurityViolation element is a new addition to the FailureLogic package. By inheriting from Failure, it

enables modeling the direct effect a security ODE::TARA::Attack has on the system (see TARA package

below).

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 40 of 73

Figure 29 - ODE::FailureLogic Package

The ODE::FMEA package has undergone some simplification too, see Figure 30. Propagation is now

represented with the association of each FMEAEntry with a ‘mode’ and ‘effect’ Failure. This change

contrasts the previous version’s propagation modeling with explicit elements such as FMEAPropagation

and DiagnosableFailurePropagation, which were deemed redundant. The specialization of the Failure type

for FMEAs was also removed due to redundancy.

Figure 30 - ODE: FailureLogic::FMEA Package

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 41 of 73

The ODE::FTA package in Figure 31 has been simplified by reducing the various types of events represented

in a fault tree down to a generic Cause element. Boolean logic event connectors are represented by the

Gate element, which, as a subtype of Cause, can be used to chain hierarchies of Causes together into a fault

tree.

Note that since generic Causes can reference both Failure and Security Violations as their inherited type, it

is now possible to represent fault trees from classical dependability analysis as well as security attack trees.

Furthermore, if a FaultTree is composed of Causes referencing both Failures and Security Violations, hybrid

safety-security analysis can also be modeled.

Figure 31 - ODE::FailureLogic::FTA Package

Figure 32 - ODE::FailureLogic::Markov Package

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 42 of 73

3.3.4 Threat and risk analysis (TARA) modelling package

Figure 33 - ODE::TARA Package

The TARA package models the results of a Threat And Risk Analysis for security, seen in Figure 33.

ThreatAgents are either Human or NonHuman (typically electronic) sources of Attacks. While individual

Attacks may serve many purposes, ThreatAgents will also feature some higher-level AttackerGoal,

representing the overall goal of the attacker. The AttackerGoal revolves around negatively impacting the

Assets being considered for security, often being the system’s operation and its data for example. Attacks

exploit Vulnerabilities of the system.

Cumulatively, the above elements contribute towards the SecurityRisk posed by the various threats

identified during the TARA. To combat these threats and reduce risk, SecurityCapabilities and

SecurityControls are established. Respectively, these are high-level and low-level security

safeguards/counter-measures. After applying these measures, risk is reduced accordingly.

Finally, more detailed analysis of the propagation of effects of Attacks on the system are modeled by linking

individual Attacks with ODE::FailureLogic::SecurityViolations. This link further enables hybrid security-

safety analysis, as complex ODE::FTA::Causes can be associated with Failures from classical dependability

analysis.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 43 of 73

3.4 Certification meta-models

For project cluster purposes, DEIS reaches out to the AMASS project for the metamodels developed for

process and certification modelling.

In the AMASS project, a Common Assurance & Certification Metamodel (CACM) has been developed. CACM

is a cluster of metamodels that captures concepts in various aspects of system assurance, such as system

specification, argumentation, evidence, process, standards and the mapping between process and

standards. The overlap between AMASS and DEIS is quite observable, therefore, it is best practice to re-use

part of the CACM from AMASS to model process and certification.

CACM has a subset of metamodels called Compliance Management Metamodel, which contains the

following aspects:

• Assurance project definition. It is used to define the assets produced during the development,

assessment and justification of a safety-critical system;

• Process Definition. It is used to model general reference processes (e.g., Waterfall Process, Agile

Process, V-model process), or company-specific processes (e.g., the Thales process to develop

safety-critical systems).

• Standard Definition. It is used to model standards (IEC 61508, ISO 2626, DO-178C, EN 50126, etc.)

and any regulations (either as additional Requirements or model elements in a given model

representing a standard or a new reference standard). For the implementation another

metamodel is added, the Baseline Metamodel, to capture what is planned to be done or to be

compiled with a defined standard, in a concrete assurance project.

• Vocabulary Definition. It is used to provide a Thesaurus-type vocabulary, which defines and records

key concepts relevant to safety assurance within the target domains and the relationships

between them.

• Mapping Definition. It is used to capture the nature of the vertical and horizontal mappings

between the different levels of model in the AMASS Framework and between the concepts and

vocabulary used in these models. There are two types of mapping: equivalence mapping that maps

process models with models of standards; and process mapping, which maps process models to

project specific models.

The compliance management metamodels are helpful for DEIS for their ability to model processes and

standards (and their relationships using the mapping definition). However, vocabulary definition and

assurance project definition metamodels are overlapped with SACM. The plan next is to isolate the useful

metamodels (hopefully they are independently implemented) from CACM and use them in conjunction

with ODE and SACM.

3.5 Crosscutting Aspects

3.5.1 Information abstraction and IP Hiding concept

There are two main aspects to IP hiding currently featured in the design of the ODE. The first is imported

from SACM and the second relates to the design of the ODE::FailureLogic package.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 44 of 73

SACM features a collection of -PackageInterface elements. These elements enable IP hiding by allowing the

user to only publish parts of the assurance case (including contained artifact models). Most elements in

SACM inherit SACMElement’s ‘isCitation’ attribute, which is a flag denoting whether the subject element

cites another one. If the flag is ‘true’ then SACMElement’s ‘citeElement’ attribute provides a reference to

the cited element. SACM -PackageInterfaces contain citation elements to elements from other packages of

the same type (except in the case of AssuranceCasePackageInterfaces, they contain other -

PackageInterfaces). For example, a TerminologyPackageInterface contains citations to elements from a

TerminologyPackage. By sharing the TerminologyPackageInterface rather than the actual package, only the

elements cited are visible to the receiver, assuming there is no other means of accessing the cited package.

The ODE::FailureLogic package contains sub-packages which expose in more detail how a system’s

dependability can be compromised from failures and security violations. These are the FMEA, FTA and

Markov sub-packages. These sub-packages include information that can directly or indirectly describe the

failure behavior of the system and/or reveal key elements of its design. To avoid revealing the inner

workings of the system while still sharing as much information to external parties for evaluation, the

detailed analyses found in the sub-packages of ODE::FailureLogic, such as ODE::FailureLogic::FTA, are

separated. Instead, the provider can opt to share only the system’s Minimal Cut Sets, which provide

describe the minimal combinations of necessary and sufficient causes of system failure.

3.5.2 Harmonization of the ODE with common meta-modeling languages

The design of the ODE, while aiming to be reasonably concise and flexible, is focused on addressing the

requirements drawn from the DEIS project’s use cases. However, neither the DDI nor the ODE concepts

should be viewed as monolithic constructs but instead, as solutions adaptable to the problem at hand. In

this section, we aim to highlight the ODE’s flexibility by briefly mentioning the potential for interoperation

with preexisting, established modeling languages. In doing so, the options for adapting the DDI concept to

current practice should become clearer.

We will be discussing interoperability with the SafeML, SysML, EAST-ADL2 and AADL modeling languages.

The Safety Modeling Language (SafeML) enhances the management of safety information produced during

the development lifecycle of safety-critical systems (Biggs, Sakamoto, & Kotoku, 2014). The Systems

Modeling Language (SysML) is a popular choice for defining, analyzing and verifying generic systems and

features numerous extensions for domain-specific applications such as SafeML. The EAST Architecture

Description Language (EAST-ADL2) is the 2nd version of the modeling language targeting embedded systems

for the automotive domain. EAST-ADL2 models feature multiple levels of abstraction, with each level

addressing different development stages and views. The Architecture Analysis and Design Language (AADL)

focuses on performance-critical systems development and initially targeted the aerospace domain.

3.5.2.1 SafeML

SafeML targets several issues that typically appear during design process. For example, information needs

to be communicated among different stakeholders with different backgrounds. This typically leads to

duplication and often to ambiguous and inconsistent artifacts. Moreover, this information tends to be

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 45 of 73

documented in different formats, which makes maintenance difficult and costly whenever changes are

required.

SafeML targets the mentioned issues with a model-based solution, in which the safety information is added

to existing design models. The authors of the initiative offer on their website (Geoffrey Biggs/AIST, 2017)

profiles for the commercial modeling tools Enterprise Architect and Magic Draw, as well as links to other

resources like documentation and the Object Management Group (OMG) language specification.

SafeML is designed to be used in conjunction with SysML (Friedenthal, Moore, & Steiner, 2008). SysML

provides the diagrams and element types necessary for design modelling, while SafeML provides the

element types used to add safety information to the model, see Figure 34.

Figure 34 - SafeML usage concept

The modeling approach is organized in two parts. The first deals with hazards, harms and the context

necessary for harms to occur. The second deals with safety measures, which in SafeML are targeted at

preventing the hazardous event necessary for a hazard to lead to harm, or mitigating harm should a

hazardous event occur. According to the specification, this is the list of modeling elements:

Table 1 - SafeML to ODE Mapping

SafeML Modeling
element

ODE element Comparison

Hazard Hazard Concept is understood exactly in the same way

Harm Accident Similar concepts used to describe physical injuries and damage
to people. Main difference is in the attributes and usage. An
Accident in ODE is used in the context of the Hazard and Risk
analysis and defines only the severity in case of occurrence.
Harms in SafeML are more global aspects. They include a
quantification of the overall risk of the harm, including the use
of measures.

Harm Context Risk
assessment

Both are used to depict how harm might be cause by a hazard.
Therefore, both include typical parameters for risk assessment
like occurrence, severity and controllability.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 46 of 73

ActiveDefence,
PassiveDefence

Measure Very similar concept with the difference that in SafeML it is
distinguished whether a measure (i.e. defence) need to be
activated explicitly or not to protect against a HarmContext. In
ODE this will be reflected partially in the design when the
measure has been made part of it.

Context Detector NONE It represents the capability to monitor for a hazardous
situation/event.

There is no exact matching for this concept, but it could be
represented in different ways through the ODE depending of
the interpretation. E.g. by a measure, or a function.

One of the most remarkable aspects of the SafeML approach is that it is a concrete modeling language. It

defines modeling elements and relationships and, more over it relies on SysML, which is by itself also a

modeling language. Contrary to SafeML and SysML, ODE does not define how the information is created,

nor concretely define processes or languages. It primarily defines containers and structure to allocate

information. The ODE has been conceived in this way having in mind data exchange. It does not place

constraints or guidelines on how the information is obtained.

The purpose of SafeML is to extend SysML models with safety information, by focusing on the definition of

hazards and measures. This covers however just a portion of the actual information needs for dependability

systems. One could even consider the language as incomplete, since there are no means to perform a

complete hazard and risk analysis. For instance, there are no means for identifying malfunctions. Therefore,

this process should basically occur somewhere else and only the resulting hazards will be documented.

Contrary, ODE has been structured to cover the entire lifecycle and it is therefore far more complete and

structured. Consider for instance the following aspects: Fault analysis, security concerns, argumentation,

etc.

In summary, SafeML does not offer much more to what is already existing in SysML. Nevertheless, models

created with SafeML will be, as shown before, translatable into ODE models.

3.5.2.2 SysML, EAST-ADL2, AADL and HiP-HOPS

For SysML, EAST-ADL2 and AADL, transformations to HiP-HOPS-compatible models have been described in

past research. These transformations enable us to invoke the HiP-HOPS automated dependability analysis

and output its results in its standard format. Outputs from HiP-HOPS can be converted to ODE-compliant

models i.e. DDIs. Therefore, by transitivity, we can extend the transformation process to include models

from SysML, EAST-ADL2 and AADL, transform and process them via HiP-HOPS and finally transform the

outputs into DDIs.

We will briefly summarize the semantic correspondence between key elements of each language and HiP-

HOPS. The mappings from the EAST-ADL2, SysML and AADL metamodels to HiP-HOPS are summarized in

Table 2, Table 3 and Table 4 respectively. We should note that current tool support only offers

transformation from external languages to HiP-HOPS and not vice versa. More information on the mappings

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 47 of 73

can be found in (Biehl, Chen, & Torngren, 2010) for EAST-ADL2, in (Mian, Bottaci, Papadopoulos, & Biehl,

2012) for AADL and (Andrews, Payne, Romanovsky, Dider, & Mota, 2014) for SysML.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 48 of 73

Table 2 - EAST-ADL2 to HiP-HOPS Mapping

Table 3 - SysML (for COMPASS Artisan Studio) to HiP-HOPS Mapping

SysML (via COMPASS Artisan Studio) HH

Fault Analysis Model Model

SoS System

Optimisation Parameters Optimisation Parameters

Objective Objective

Constituent System

Implementation Implementation

Component Component

Port Port

Line Line

Connector Line

LineEnd Line.Port

Propagation Logic Line.PortExpression

FailureClass OutputDeviation.Name (partially)

BasicEvent BasicEvent

EAST-ADL2 HH

ErrorModelType System

ErrorModelType.errorConnector System.Lines

ErrorModelType.parts System.Component

ErrorModelPrototype.type.errorPort System.Component.Ports

ErrorModelPrototype System.Component.Implementation

ErrorModelPrototype.type.

errorBehaviorDescription.internalErrorEvent

System.Component.Implementation.

FailureData.basicEvent

ErrorModelPrototype.type.

errorBehaviorDescription.failureLogic

System.Component.Implementation.

FailureData.outputDeviation

ErrorModelPrototype.type
System.Component.

Implementation.System (recursion)

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 49 of 73

Table 4 - AADL to HiP-HOPS Mapping

AADL HH

SystemInstance System

ComponentInstance System.Component.Implementation

ComponentErrorModelProperty System.Component.Implementation.FailureData

ComponentInstance.FeatureInstance System.Component.Ports

ConnectionInstance System.Lines

In Table 5, the symmetric mapping between HiP-HOPS and the ODE is summarized. Unlike the other

mappings, the semantics in the latter are defined to enable bi-directional conversion. This means that

conversion from both HiP-HOPS to ODE models and vice versa is possible.

Table 5 - HiP-HOPS to ODE Mapping

HH ODE

Model Integration::ODEPackage

Perspective Architecture::ArchitecturePackage

System Architecture::ArchitecturePackage/System

Component Architecture::System/Logical/PhysicalComponent

Implementation Architecture::System/Logical/PhysicalComponent

FailureData FailureLogic::FailureLogicPackage/FTAPackage

BasicEvent FTA::BasicEvent

PotentialCCF FailureLogic::CCF

OutputDeviation FTA::OutputEvent/FailureLogic::OutputFailure

Port Architecture::Port

Line Architecture::Signal

FMEA FMEA::FMEAPackage

FMEA-Component-BasicEvent FMEA::FMEAFailure

FMEA-Component-BasicEvent-Effect FMEA::FMEAFailure

FMEA-Component-BasicEvent & Effect FMEA::FMEAPropagation

FaultTree FTA::FTAPackage

TopNode FTA::OutputEvent

Gate (And, Or, …) FTA::Gate

AllCutSets FailureLogic::MinimalCutSets

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 50 of 73

4 Utilization of DDIs in concrete engineering activities of DEIS use cases

4.1 Utilization of DDIs in an OEM-TIER integration scenario in the context of the ETCS

4.1.1 Use case overview

The European Train Control System (ETCS) provides standardised train control in Europe and makes it easier

to travel by train across the borders of all countries in Europe.

Figure 35 - ERTMS/ETCS Reference Architecture

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 51 of 73

ETCS itself is a system of systems, consisting of an on-board and a trackside sub-system (see Figure 35). In

the railway domain, the realisation of such a system typically involves different stakeholders in the value

chain (railway undertaking, OEMs, suppliers etc.). Often a railway company orders an ETCS system from

one vendor while another one provides the trackside equipment. Moreover, the on-board sub-system must

interact with the train, which is either built by another department in the same company or by another

OEM.

In order to satisfy the laws and regulations in each European country, it must be proven that the overall

ETCS system is sufficiently safe. Therefore, both sub-systems must fulfil the safety requirements as defined

in Subset-091 (Safety Requirements for the Technical Interoperability of ETCS in Levels 1 & 2) of the

ERTMS/ETCS specification (ETCS/ERTMS, 2016). This standard defines specific hazards, and tolerable

hazard rates are apportioned to each sub-system. Moreover, interoperability between the trackside and

the on-board systems must be ensured.

4.1.2 Semi-automated ETCS assurance case instantiation

The suppliers of the on-board or the trackside part of the ETCS system provide assurance case information

about the trackside or on-board ETCS sub-system in the form of DDIs.

During the system integration phase the information provided in the DDIs of the sub-systems are integrated

to generate an overall assurance case. Hence, an on-board or trackside system can be integrated into an

existing railway system and interact in a safe manner with the pre-existing systems within the railway

system.

In order to enable the (semi-)automated integration of safety case fragments, the modular safety

arguments (also called fragments here) of the sub-systems have to be combined and additional

argumentation may be added, taking into account the integration context of the overall system, which was

only assumed during the development of the sub-systems. Therefore, the content and the structure of the

safety argumentation must be formalized, so that algorithms can help to perform the integration of the

fragments in a (semi-)automated way. By enabling semi-automated assurance case instantiation, not only

the content and structure of the safety argumentation is formalized but also the fulfilment of safety goals

can be semi-automated.

For instance, to show that the safety goal defined in the UNISIG Subset-091 (ETCS/ERTMS, 2016) (Failure

Rate of Trackside Functions („trusted part“) <= 0,67e-09/h has been demonstrated.) is fulfilled for the ETCS

trackside equipment, a number of question must be answered (see Figure 36).

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 52 of 73

Figure 36 - Safety goal of the ETCS trackside part as defined in UNISIG Subset-091

In current industrial practice all the questions shown in Figure 36 are answered by safety experts in a

manual process of creating the safety case. Moreover, other design artefacts (such as process descriptions,

safety analyses, hazard lists, specifications) are referenced to provide evidence that the goal is fulfilled. The

resulting safety argumentation is written in the safety case document using natural language or GSN

diagram (e.g. as depicted in Figure 37).

Figure 37 - Example GSN diagram of the safety argumentation fragment of the ETCS trackside sub-system

The ODE extends SACM by adding product- and process-related model semantics to enable (semi-)

automated assurance case integration/evaluation support. Thereby, SACM provides the foundation of

formalizing context and structure of the safety argumentation as well as mechanisms to:

1. link an artifact element to an external resource (e.g. model);

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 53 of 73

2. link different artifacts together (ArtifactAssetRelationship) to express their relation;

3. specify structured language as terms/expressions with the possibility to link the terms to

arbitrary external resources (e.g. elements from ArtifactPackage or completely external).

Moreover, the process model describes the activities necessary (e.g. described in the safety standard

EN50129 (CENELEC, 2003)) to show the safety of a specific system in a formal and machine-readable way.

The product model describes the artifacts of the system as well as their relationship. These elements are

referenced as artifacts in the SACM argumentation. Since the process model is independent of concrete

product meta-model, a mapping model is needed which maps standard concepts and process steps to a

concrete product meta-model (see Figure 38).

Figure 38 - Process / product model and mapping model

Based on these different parts of the ODE semi-automated assurance case instantiation can be realized as

depicted in Figure 39. As an input for the semi-automated instantiation the ODE provides:

1. Product models (e.g. hazards, failure logic propagation, functional model, etc);

2. Set of GSN/SACM patterns;

3. Process model describing the activities of safety standards;

4. Mapping model specifying how to automatically perform activities from the ODE process model

on ODE-conformant product models.

Taking these models as input, a SACM AssuranceCasePackage can be generated semi-automatically, in

which the GSN/SACM patterns are instantiated to generate the SACM ArgumentPackage. Moreover, a

SACM TerminologyPackage and a SACM ArtifactPackage can be generated based on the ODE product

model. Thus, interlinking safety argumentation and product model based on the information provided in

the ODE process model and the mapping model. An example, for a safety argumentation for the ETCS

trackside sub-system created by this semi-automated assurance case instantiation approach is depicted in

Figure 40.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 54 of 73

Figure 39 - Process of the semi-automated assurance case instantiation based in the ODE

Figure 40 - DDI in form SACM AssuranceCasePackage for the ETCS trackside part

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 55 of 73

4.1.3 Optimized supplier component selection based on DDI

Figure 41 - Selection of the suppliers based on DDI

As depicted in Figure 41, attributes of a DDI (such as cost, minimum operation life time, logistic

requirements etc.) will be utilized, for example, to select suppliers of system components. The criterion is

that the target values (activity) of all attributes shall be fulfilled. DDI could be seen in this scenario as a

formalized component datasheet filled with values of aforementioned attributes from suppliers. This

datasheet will be used by OEM (integrator) to optimize the component selection. The process begins with

providing suppliers’ DDIs to the OEM. Afterwards, the OEM compares the attributes values of the different

suppliers’ datasheets (DDIs) and the target requirements stored in the OEM database. For instance, in the

ETCS use case, the selection of a Balise sensor could be done by this comparison based on checking the

attribute values of DDI.

Additionally, the individual assumptions of the supplier’s failure rate shall be compared with the

assumption of the target failure rate. In UNISIG Subset-091 (ETCS/ERTMS, 2016) the operational

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 56 of 73

assumptions are related to the drivers’ reactions for certain events. Such requirements shall be considered

during the decision making. Other operational parameters such as time spent for certain driving mode,

frequency of radio signal between track and train etc. shall also be taken into account during the attribute

comparison.

Figure 41 demonstrates also the decomposition of the overall failure rate into

subsystem/subfunction/subcomponent failure rates. In this figure, there are 3 subcomponents that are

working in parallel. This means, there 3 subcomponents are connected by a “or” connector (not visualized

in the picture). The decomposition will be performed by the integrator (the OEM). After the decomposition,

the failures rates of the subfunction/subsystem/subcomponent are assigned or calculated based on system

information such as architecture.

In addition to the operational assumptions, environment conditions (operational environment in UNISIG

Subset-091) shall be checked. Such environment conditions are temperature, vibration, electromagnetic

interference etc (ETCS/ERTMS, 2016). For instance, if we assume the target failure rate is 2 fit at a

temperature condition of 40 °C, a supplier’s component failure rate of 3 fit at 30 °C will obviously not be

selected.

In , the requirement of availability in the sense of MTTF of “OnBoardTransmissionEquipmnt” shall be

greater than 1000 h for certain environment conditions. The related environment conditions are essential

to perform the comparison, otherwise this comparison could lead to total wrong decision

Figure 44 - Environment conditions check for certain MTTF requirements

.

A possible workflow of attribute comparison could contain:

• Checking MTTF;

• Checking environmental conditions of the corresponding context;

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 57 of 73

• checking driver reaction assumption;

• comparison of MTTF regarding assumption and condition.

It is meaningful to observe the dependency between the different operational parameters and the target

value e.g. for availability analysis. An example usage of DDI is to facilitate the cross references of data

elements, such as attributes, between documents. The references are defined for example in the ODE

meta-model of the DDIs. In order to automate data exchange between DDIs, the formalized component

datasheet (as develop time DDI) will be integrated in the DDI attribute comparison workflow. Through this

integration, optimization or automation support can be executed. On the integrator side, the selection of

supplier/s can be made more effective based on the comparison results. Nevertheless, the safety

argumentation (in form of GSNs represented in the DDI) of the suppliers can be integrated by the ODEM,

if the suppliers provide own GSN with consideration of same operational assumption and operational

condition among other attributes. In additional to failure rate check, the overall system goals and

compatible sub goals, along with different dependability requirements, can be checked regarding their

fulfillment.

4.2 Utilization of DDIs in security and safety co-engineering in the context of the

Physiological Health Monitoring Use Case

4.2.1 Use case overview

The Dependable Physiological Monitoring System (DPMS) is an advanced technology applied to a

connected vehicle and is capable of measuring physiological parameters and evaluating the health

condition of driver and other occupants. The proposed Single-Photon Avalanche Diode (SPAD) array

imaging system can identify Heart Rate (HR), Respiration Rate (RR), Heart Rate Variability (HRV), Inter-Beat

Interval (IBI) and Oxygen-Saturation (SpO2) in real time.

This brand-new feature contains a comprehensive package of technologies, tools and services that support

the drive session in evaluating the health status. Being introduced to new generation connected vehicles,

with (even limited) autonomous capabilities in the case of health emergency condition, it shall process hard

decision making at run-time and trigger different “actions” to mitigate the risk of vehicle accidents and

people injuries.

The vehicle decision mechanism allows the DPMS to take control over autonomous driving features when

needed, moving the vehicle to the emergency lane or the nearest safety area, or in case of great danger,

driving the vehicle to the Hospital / First Aid Services.

The decision-making computation may result in one of three different paths (Figure 42- DPMS decision-

making action paths).

From a safety perspective, all the possible paths shall evaluate the risk to health. As shown in the model

(Figure 42), part of the safety argumentation requirements enable different features on the vehicle, for

example, enabling autonomous driving features, moving the vehicle to the emergency lane / the nearest

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 58 of 73

safe area, or in case of high danger, drive the vehicle to the Hospital / First Aid Services (depending on

autonomous level capabilities).

The physiological data (including the streaming video) is sensitive with regards to GDPR, therefore the

requirements from the recent GDPR regulation need to be implemented.

Assure onboard people safety
in case of

Acute Illness /Health condition @ risk

Interact with the
driver

Call the Emergecy
Responder

Prevent vehicle
accident

Try to collect info
from the driver

establishing a direct
contact

Make the «first aid rescue
team» service aware of
the situation -> ALARM

Noise
Light system

Seat Vibration

Send info to Rescue
/

 Start procedure with
medical responder

Context
AUTONOMOUS

-LEVEL 2- VEHICLE
- decision making -

Collect geolocalization
info and road

condition, identifying
the nearest safe area

Take control of the
vehicle and

move to
emergency lane

Collect vehicle
dynamics &

condition, and
related cabalities

Action On:
Brakes

Direction Light
Steering wheel

Figure 42- DPMS decision-making action paths

4.2.2 Addressed challenge in safety-security co-engineering

In order to integrate the DPMS features with a CPS which already has predefined safety ASIL level and ISO

standard compliance, the DPMS shall guarantee accuracy and robustness at automotive grade level, like all

the other vehicle on-board systems.

The dynamic nature of the CPS introduces the potential for security threats to contribute risks towards

safety as well. In current practice, safety and security analysis are handled by different methods,

organizational units and techniques. So, this integration process addresses safety/security co-engineering

challenges between two or more domains.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 59 of 73

As per the GM legacy process, the DPMS project has to be verified and validated across different technical

review boards that have expertise in different competencies, such as Security and Safety.

On the security side, DMPS requirements have been analysed by a Cybersecurity technical board. After the

requirements review, the experts identified the criticalities by employing the Threat Assessment and

Remediation Analysis (TARA) methodology and related Attack Trees models. This approach identified and

assessed cyber vulnerabilities and selected countermeasures which were effective at mitigating those

vulnerabilities.

Figure 43 portrays the interaction of project requirement, threat analysis and identified countermeasure

in a graphical perspective.

Threat
Model

Threat
Risk

Assessment

Likelihood

Severity

Security Requirement / Goal

Security
Req.1

Security
Req.2

Security
Req.n

Countermeasure
1

Countermeasure
2

SYSTEM

Cause analysis
Attack Tree

IMPLEMENTS IMPLEMENTS

...

..
.

Figure 43 - DPMS general security model

The TARA methodology enables detailed modelling of the potential security threats to the system’s critical

elements and identifies appropriate requirements and counter-measures to mitigate the cumulative risk.

Further refinement of the causes that can lead to an attack being successful, and highlight vulnerabilities,

is performed using an appropriate qualitative analysis technique, such as security attack trees.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 60 of 73

Figure 44: Attack Tree example

Attack trees have been used as conceptual diagrams to highlight assets/targets that might be attacked and

the related safety effect (see engineering stories in the next section). Security attack trees share a similar

structure with fault trees, differing mainly in the semantics of the base and intermediate causes and their

effects.

From this point on, a Safety-Security Hybrid Analysis can qualitatively link to Security Violations and to

system Failures and safety Hazards.

AS shown in Figure 44, dangerous vehicle behavior can be caused by either a System malfunction, typical

RAMS issue (Failure), or a Security Threat (Attack). This can lead to gaining control of vehicle stability

controller.

This may also affect the DPMS, where being hijacked, it may produce misleading results and trigger an

“unexpected action” that causes the vehicle to unexpectedly takes over the control of the vehicle.

Hybrid analysis enables better communication of issues spanning different dependability domains.

The new version of the ODE v2 seen on section 3 exploits the similarity seen within attack trees, enhancing

the definition of fault trees containing both security and safety-related events. This enables security threats

identified by TARA to be analysed via security attack trees and linked to fault trees, all under the singular

DDI structure.

4.2.3 Long cycle times integration processes at development time

The legacy process requires verification and validation approval from different review boards that have

expertise in different competencies, such as Security and Safety.

Each board works as a standalone entity and analyses each project through a legacy process, with different

levels of (gate) approval.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 61 of 73

Being two (or more) different company entities with different processes, the integration between these

competencies (e.g. security and safety), typically results in additional work for the team, who have to

synchronize the (different) implementation guidelines provided by both boards, and double check the

potential impact (Figure 45).

Figure 45 - Internal co-engineering process

This is a very time consuming activity and may result in increased time-to-market.

The adoption of the DDI methodology at development time shall help the team during the design phase,

on the following aspects:

• adopting the security-safety co-engineering by design;

• helping identifying criticalities and marginalities of the project without the needs to involve

technical board in early phase;

• implementing state-of-the-art cybersecurity solution already available on the market.

The process shall result in faster development time, cutting out intermediate approval loops, allowing the

team to start work early, and submitting a first “security proof “ design to review board. The boards are still

responsible for approval at the end of this first design round, because they are still the centre of expertise

and responsible for the validation.

4.2.4 Engineering Story 1: Unauthorized Emergency Brake

In this case, we utilize DDIs to protect against a safety-relevant attack (hijacking), during the development

lifecycle of the DPMS, and evaluate how the DEIS approach eases the development process in achieving

the security standard required at production level.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 62 of 73

The engineering story analyses a condition where the malware threat is intended to corrupt the vehicle

safety & stability onboard system, activating the automatic breaking features, typically used to prevent

potential accident. The attack hijacks the algorithm that processes the vehicle stability data coming from

the sensors, and the effect is the unauthorized activation of the emergency brake mechanism, which in this

case may cause collision or loss of control of the vehicle (Figure 46).

Figure 46 - Unauthorized Emergency Brake Attack Tree

From a more generic perspective, an attack against an embedded OS like the one that is running on vehicle

HMI, is intended to gain control of a privileged (ID=root) process and to act as admin. The hijack allows the

attacker to perform unauthorised action, for example, stealing private date coming from the vehicle (drive

profile, scoring system, vehicle position), or tampering with the vehicles’ sensor information which is

exchanged through the vehicle network (Figure 47).

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 63 of 73

Figure 47 - Linux-Embedded-OS Attack Tree
The Linux embedded operating system, may also be affected by injection of malicious software (Figure 48)

and result in a system’s unpredictable behavior, vehicle hijacking, and broken integrity and confidentiality.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 64 of 73

Figure 48 - Privileged Process Attack Tree

4.2.5 Engineering Story 2: Vehicle unintended behavior

The engineering story is supposed to protect against an attack intended to corrupt the emergency manager

onboard system that takes the control of the vehicle (activating autonomous LV2 features) to prevent a

potential accident due to the driver’s acute illness condition.

The attack hijacks the algorithm that processes raw physio parameters of the driver and extracts altered

health condition, or corrupts raw data (heart rate, breath rate, SpO2) before being processed.

The effect is the unauthorized activation of features strictly linked to autonomous LV2, used from the

emergency manager to move the vehicle in safe condition (Figure 49). This may cause collision or loss of

control of the vehicle.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 65 of 73

Figure 49 - Vehicle unattended behavior Attack Tree

4.2.6 ES3: Compromise driver’s privacy

The engineering story is supposed to deal with a potential attack in the vehicle CPS intended to steal drivers’

data, for example:

• Raw physio parameters (Hear Rate, Breath Rata, SpO2);

• Health data post processed locally by physio board;

• Single frame (image) of the face of driver stored in volatile memory used to extract physio

parameter;

• GPS date coming from the infotainment system;

• Drive style data (used for driver score algorithm).

In this case the privacy aspect is impacted, and personal and sensitive data may be stolen for unauthorized

usage, both inside and outside the CPS. This implies the DDI shall guarantee the proper application of GDPR

regulation that specifies the action to be taken in case of data breach inside a system (Figure 50).

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 66 of 73

Figure 50 - Compromise driver’s privacy Attack Tree

4.3 Utilization of DDIs in applications involving General Data Protection Regulations

(GDPR)

4.3.1 Introduction

The GDPR lays down rules relating to the protection of natural persons with regard to the processing of

personal data and rules relating to the free movement of personal data. GDPR lays out responsibilities for

organisations to ensure the privacy and protection of personal data, provides data subjects with certain

rights, and assigns powers to regulators to ask for demonstrations of accountability or even impose fines

in cases where an organisation is not complying with GDPR requirements.

The organisations that need to be EU GDPR compliant are:

Companies (controllers and processors) established in the EU, regardless of whether or not the processing

takes place within the EU;

Companies (controllers and processors) not established in the EU offering goods or services within the EU

or to EU individuals.

A ‘Processor’ means a natural or legal person, public authority, agency or other body which processes

personal data on behalf of the controller. A ‘Controller’ means the natural or legal person, public authority,

agency or other body which, alone or jointly with others, determines the purposes and means of the

processing of personal data. ‘Processing’ means any operation or set of operations which is performed on

personal data or on sets of personal data, whether or not by automated means, such as collection,

recording, organisation, structuring, storage, adaptation or alteration, retrieval, consultation, use,

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 67 of 73

disclosure by transmission, dissemination or otherwise making available, alignment or combination,

restriction, erasure or destruction. ‘Personal data’ means any information relating to an identified or

identifiable natural person (data subject); an identifiable natural person is one who can be identified,

directly or indirectly, in particular by reference to an identifier such as a name, an identification number,

location data, an online identifier or to one or more factors specific to the physical, physiological, genetic,

mental, economic, cultural or social identity of that natural person. ‘Personal data breach’ means a breach

of security leading to the accidental or unlawful destruction, loss, alteration, unauthorised disclosure of, or

access to, personal data transmitted, stored or otherwise processed.

Section 4.3.2 provides the GDPR requirements. Section 4.3.3 provides the means as to how GDPR

requirements shall be implemented within DDI.

4.3.2 GDPR Requirements

The requirements detailed in Table 6 are the GDPR requirements that have been elicited. It is envisaged

that the number of GDPR requirements will increase and be further refined in upcoming work.

Table 6 - GDPR requirements (Refined Project Requirements for Semi-automation)

Requirement (ID and
Name)

Category Description

RQ_034 - Privacy by
Design

Non-Functional DDI should incorporate organizational and technical
mechanisms to protect personal data in the design of
new systems and processes; that is, privacy and
protection aspects should be ensured by default.

RQ_035 - Data breach
notification

Functional DDI shall keep track of any personal data breach, to allow
the regulator and data subject to be informed within 72
hours from the breach event.

RQ_036 - Data
portability identification

Functional In case of personal data, DDI has the accountability to
identify and ensure the protection and privacy of
personal data when that data is being transferred
outside to a third party and / or other entity.

RQ_037 - Data
perimeter

Functional GDPR Privacy policy are applied considering the origin of
the personal data (from where data comes, and where
data has been collected). DDI that manages personal
data shall keep track about data origin, to facilitate the
regulator to apply data protection policy properly,
country by country.

4.3.3 DDI Implementation of GDPR

In safety risk management, harm is considered as physical injury or damage to the health of people, or

damage to property or the environment. However, because harm (in a security sense) can also include

reduction in effectiveness, or breach of data and systems security, it is appropriate to create a security risk

management process (as companion to safety risk management process) to allow the organization to assess

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 68 of 73

the additional risks associated with effectiveness and system/data security. If the processes are integrated,

there could be an inclination to drop the evaluation of those risks that do not lead to harm (in the safety

sense), which can lead to incomplete or inconsistent security controls. Additionally, security risk assessment

models typically use assessment factors that are different from safety risk assessment (while safety risk

involves evaluating the probability and severity of a hazard leading to harm, security risk is based on an

assessment of the likelihood that a threat will successfully exploit a device vulnerability, an event that could

lead to an adverse impact due to a compromise of system confidentiality, integrity, and/or availability).

Furthermore, integrating safety and security risk assessment into a single general risk management process

may result in major modifications to a well-functioning safety risk management process. The relationship

between security and safety risks is depicted in Figure 54.

Figure 51 - Relationship between security and safety risks

Security risks that impact safety, should also be captured in the organization’s safety risk management

process. A specific risk assessed as “must mitigate” in one model might be assessed as “does not need

further mitigation” in the other. Risk control measure(s) should be applied to bring the risk into the

acceptable range in both assessment models. There will be risks managed in the security risk assessment

that are not propagated to the safety risk management process. An example would be a risk of compromise

of the confidentiality of protected health information that is not considered harm (in the safety sense), but

clearly requires mitigation by the security risk management process. There are also business and reputation

risks associated with a security compromise that are not considered harm in the safety sense.

A security compromise that leads to harm (in the safety sense) should be managed within the security risk

management process and propagated for assessment using the organisation’s safety risk management

process. An example of a security risk that is also a safety risk is a malicious attacker gaining access to a

medical device’s code, altering that code, and causing the device to malfunction. This malfunction may

have the potential to cause harm to the patient.

As the purpose of GDPR is to ensure the privacy and protection of personal data, and provide data subjects

with certain rights, it is proposed that GDPR requirements are handled by the DDI’s security package

Security risk

(includes breach

of data and

systems security

and reduction of

effectiveness)

Security risk

with safety

impact

Safety

related risk

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 69 of 73

(TARA). Any compromise of GDPR requirements that could lead to harm in the safety sense should be

propagated for assessment in the DDI’s HARA.

As exemplar, consider the following Portable Medical engineering story:

Context: Compromise ONCOassist User data

Description: ONCOassist user data is captured on initial signup to the platform. All details are stored on

server located in Republic of Ireland. PMT is both a ‘processor’ and ‘controller’ of personal data, and under

GDPR rules PMT must ensure the privacy and protection of personal data.

Challenge: Protect against an attack intended to steal client data such as name, address etc.

DDI implementation: GDPR requires a risk based approach to data security. Article 35 requires companies

to perform data protection impact assessments (the controller shall, prior to processing, carry out an

assessment of the impact of the envisaged processing operations on the protection of personal data) to

assess and identify risks to individuals’ data. In this engineering story the potential for theft of personal

data is considered a security risk and will be dealt with using the TARA which assesses the likelihood of a

successful attack, in addition to its impact. If the result of this assessment warrants threat mitigation then

controls that ONCOassist consider include data minimisation, pseudonymisation etc.

A guide to assessing an organisations compliance with GDPR is included in Appendix A.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 70 of 73

5 Summary and Outlook
This document presented our approach to conceptualizing and designing the engineering framework for

the semi-automated generation and integration of design time DDIs.

To this end, section 2 first described a set of representative engineering scenarios that exemplify, at which

points in the engineering lifecycle DDIs can support which specific engineering activities that are either

inefficient or not achievable without the use of DDIs. Afterwards, the fundamental concept for realizing the

engineering activities by (semi-) automated DDI execution is described along with the following four

technical building blocks: 1. SACM-conformant assurance case; 2. the ODE product meta-model describing

meta-model packages for different dependability aspects such as hazard, failure logic, architecture or

security-related models; 3. The ODE certification meta-model describing a meta-model for modeling

engineering activities with variable degree of formalism; 4. A DDI execution component that allows for

(semi-)automatically executing dependability certification activities (conforming to packages in

ODE::Certification), which operate on dependability aspect models (conforming to packages of

ODE::Product) to synthesize, integrate or assess a dependability assurance case (conforming to OMG

SACM).

Section 3 presented the reference for the second version of the Open Dependability Exchange (ODE) Meta-

model by depicting all existing meta-model packages graphically along with textual description about

changes to ODE v1. In addition, the harmonization with other commonly used meta-modeling languages

such as SysML or EAST-ADL(2) was described.

The abstract engineering tasks that have been used in Section 2 for exemplifying DDI usage were

concretized in Section 4 in the context of the DEIS use cases. For the European Train Control System (ETCS),

an OEM-Tier integration scenario has been examined. For the Physiological Health Monitoring use case,

security and safety co-engineering aspects have been considered. In addition, thoughts have been

described on the utilization of DDI in applications, where general data protection regulations (GDPR) are

relevant.

The DDI engineering framework concept described in this document is the follow up from the initial DDI

concept, and its operationalization through the ODE meta-model, that have been presented in an earlier

stage of the project. It builds the basis for using DDIs to automate engineering tasks at design time. The

most notable innovations described in this document have been the creation of a package to formally

model certification activities and a package to address security aspects such as threat and risk analyses or

attack tree modeling. Moreover, the engineering framework has been developed with the upcoming step

towards runtime dependability assurance in mind.

Upcoming work in the concept work package will focus on: 1. the concretization of the certification activity

meta-model; 2. the refinement of the DDI execution component specification; 3. the conceptualization of

runtime DDIs. Apart from conceptual research, the concepts of this document will be implemented in the

dependability collaboration workspace (safeTbox, HiP-HOPS, ComposR and ACME as the dependability

tools considered within DEIS) to demonstrate technical feasibility of the DDI engineering framework.

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 71 of 73

References
Andrews, Z., Payne, R., Romanovsky, A., Dider, A., & Mota, A. (2014). Static Fault Analysis Support -

Technical Manual. COMPASS Project EU. Retrieved July 2018, from http://www.compass-

research.eu/Project/Deliverables/D33_3b%20final.pdf

Biehl, M., Chen, D., & Torngren, M. (2010). Integrating Safety Analysis into the Model-based Development

Toolchain of Automotive Embedded Systems. LCTES '10 Proceedings of the ACM SIGPLAN/SIGBED

2010 conference on Languages, compilers, and tools for embedded systems (pp. 125-131).

Stockholm, Sweden: ACM.

Biggs, G., Sakamoto, T., & Kotoku, T. (2014). A profile and tool for modeling safety information with design

information in SysML. Software & Systems Modeling, 15(1), 147-178.

doi:https://doi.org/10.1007/s10270-014-0400-x

CENELEC. (2003). EN 50129 Railway Applications: Safety related electronic systems for signalling.

DEIS Consortium. (2017). D2.1: Project Requirement.

DEIS Consortium. (2018). D3.1 Specification of the ODE metamodel and documentation of the fundamental

concept of DDI.

ETCS/ERTMS. (2016, 05 12). Safety Requirements for the Technical Interoperability of ETCS in Levels

(Subset-091, Issue: 3.6.0).

Friedenthal, S., Moore, A., & Steiner, R. (2008). A Practical Guide to SysML The Systems Modeling Language

(1st ed.). Palo Alto, CA, USA: Elsevier. doi:https://doi.org/10.1016/b978-0-12-374379-4.x0001-x

Geoffrey Biggs/AIST. (2017). SafeML 1.1.1 Documentation. Retrieved September 15, 2018, from SafeML

Introduction: https://staff.aist.go.jp/geoffrey.biggs/safeml/

Mian, Z., Bottaci, L., Papadopoulos, Y., & Biehl, M. (2012). System Dependability Modelling and Analysis

Using AADL and HiP-HOPS. 14th IFAC Symposium on Information Control Problems in

Manufacturing. 45 (6), pp. 1647-1652. Bucharest, Romania: Elsevier.

doi:https://doi.org/10.3182/20120523-3-RO-2023.00334

Schneider, D., & Trapp, M. (2013). Conditional Safety Certification of Open Adaptive Systems. ACM Trans.

Auton. Adapt. Syst. (ACM Transactions on Autonomous and Adaptive Systems), 8(2), pp. 1-20.

doi:10.1145/2491465.2491467

Trapp, M., Weiss, G., & Schneider, D. (2018). Towards safety-awareness and dynamic safety management.

Proceedings of IEEE 14th Eurpean Dependable Computing Conference (EDCC).

Zoe, A., Payne, R., Romanovsky, A., Dider, A., & Mota, A. (2014). Static Fault Analysis Support - Technical

Manual. COMPASS Project EU. Retrieved July 2018, from http://www.compass-

research.eu/Project/Deliverables/D33_3b%20final.pdf

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 72 of 73

Appendix A
The following questions provide a guide to assessing an organisations compliance with GDPR

1. Are both the legal basis and the purpose for each processing activity documented?

2. Will the personal data be processed for a purpose other than what was intended at the time of

collection?

3. Do consent-collecting mechanisms require some action (e.g., ticking a box) or affirmative

statement by the data subject?

4. If the legal basis for collecting data is consent, is explicit consent obtained?

5. Has a representative within the European Union been designated (for organisations outside the

EU)?

6. Do contracts with third parties specify that the third party must have data protection and security

protection clauses/annexes in place?

7. Are records kept of all processing activities your company engages in?

8. Are all data transfers documented, including cross-border transfers?

9. Is a Privacy Notice provided to data subjects at every point of data collection?

10. If data is to be processed for a secondary purpose, are data subjects notified of the new purpose

prior to processing?

11. Does the Privacy Notice clearly specify how data subjects can exercise their rights under the GDPR?

12. Are internal policies in place defining what is considered to be a data breach and when and if

notification to data subjects or Supervisory Authorities is required?

13. Do agreements/contracts with third parties specify that the third party has to notify you (the

controller) without undue delay after becoming aware of a data breach or potential data breach

involving personal data?

14. Is a log kept of all data breaches that occur, along with the effects and remedial actions taken?

15. Are assessments of processing activities conducted by the relevant personnel to determine the

data protection measures that should be in place, proportionate to the risks involved with the

processing activity?

16. Is privacy assessed at the beginning stages of development of any processing activity?

17. Are measures such as data minimisation and pseudonymisation implemented across all applicable

organisational units?

18. Are Data Protection Impact Assessments (DPIAs) completed for processing activities involving

special categories of information, automated decision making, or profiling?

19. Are DPIAs completed prior to implementing new technologies, processes, or projects?

20. Are there processes in place for

a. responding to a data subject’s request for access to information?

b. rectifying/deleting information about a data subject?

c. communicating updates of personal data to third parties who have received the data?

d. allowing a data subject to revoke consent for a particular processing activity at any time?

Engineering Framework for the Generation and Integration of Digital Dependability Identities

 Page 73 of 73

e. ensuring processing is stopped, including any processing by third parties when consent is

revoked?

f. complying with requests to restrict the processing of data if requested by a data subject?

g. complying with requests from a data subject to have their personal data transferred

directly to another controller?

h. stopping processing for direct marketing purposes when an objection is received?

i. allowing a data subject to request a manual review of the decision or profiling activity (in

the case of automated decision making)?

j. transferring personal data to a third country or international organisation?

k. ensuring the appropriate Supervisory Authority is notified within 72 hours of a confirmed

data breach?

