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Abstract. The future will encompass heavily interconnected, distributed, heterogene-

ous and intelligent systems which are bound to have a significant economic and social 

impact. Cyber Physical Systems (CPS) such as autonomous cars, smart electric grid, 

implanted medical devices and smart manufacturing are some practical examples of 

these intelligent systems. However, due to the open and cooperative nature of CPS, 

assuring their dependability is a challenge. The DEIS project addresses this important 

and unsolved challenge by developing the concept of a Digital Dependability Identity 

(DDI). A DDI contains all the information that uniquely describes the dependability 

characteristics of a CPS or CPS component. DDIs are synthesised at development 

time and are the basis for the (semi-)automated integration of components into sys-

tems during development, as well as for the fully automated dynamic integration of 

systems into systems of systems in the field. 

In this paper we present an overview of the DDI. We provide the metric selection 

process for evaluating the DDI’s impact on CPS dependability. The results of an 

evaluation of the DDI’s impact on dependability in four CPS industrial systems are 

provided, both for design time and runtime. These results demonstrate the positive 

impact of the DDI on the dependability of CPS. 
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1 Introduction  

Cyber-Physical Systems (CPS) harbor the potential for vast econom-

ic and societal impact in domains such as mobility, home automation 

and delivery of health. At the same time, if such systems fail they may 

harm people and lead to temporary collapse of important infrastructures 

with catastrophic results for industry and society. There are two core 

challenges while assessing the dependability of a CPS. First, the inher-

ent complexity of modern CPS and the resulting complex market or-

ganisation requiring the tight cooperation between different teams, ex-

pertise, and institutions, while managing confidentiality issues. The 

second challenge is related to the increase of connectivity, e.g., through 

machine to machine cooperation enabled by Internet of Things, which 

introduces a new dynamic in system operation. As a result, Cyber-

Physical Systems of Systems (CPSoS) come together as temporary con-

figurations of CPS, and which dissolve and give place to other configu-

rations. This leads to a potentially infinite number of variants, with co-

operation between systems potentially not analysed during design time.  

The world is changing fast with a wave of digitisation and disruptive 

innovation across industry and society, exploiting artificial intelligence 

(AI), low-power computing, IoT and edge computing platforms under-

pinned by developments in advanced semiconductors including mixed 

signal, sensor, and power technologies. Notably, artificial intelligence, 

digital security and connectivity are areas that have also been identified 

as strategic technologies by China in its Made in China 2025 

strategy[1] , by South Korea under a USD 1.5 billion initiative[2], and 

by the US as part of a strategic programme run by the US National Sci-

ence Foundation[3]. This led to a new generation of trusted, collabora-

tive systems of systems, implementing reasoning capabilities at the 

edge and able to take a safety-critical decision relying on the infor-

mation received from their environment. Such a concrete example is 

connected and automated mobility (CAM) for the automotive domain. 

With the roll-out of 5G[4][5], CAM is a step closer towards supporting 

a solution for the many challenges faced by today’s transport sector. 

CAM is expected to offer significant societal benefits– ranging from 

enhanced safety (reducing accidents caused by humans), increased en-

ergy efficiency (smoother traffic) to greater comfort (non-driving tasks 

while travelling), social inclusion (personal mobility for all, including 

elderly and impaired users) and accessibility (facilitated access to city 
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centres). A list of 30 use cases and potential service requirements have 

been specified by 3GPP[6].  

The DEIS project[7] addresses these important and unsolved chal-

lenges by developing technologies that form a science of dependable 

system integration. In the core of these technologies lies the concept of 

a Digital Dependability Identity (DDI) of a component or system. The 

DDI targets (1) improving the efficiency of generating consistent de-

pendability argumentation over the supply chain during design time, 

and (2) laying the foundation for runtime certification of ad-hoc net-

works of embedded-systems. During the DEIS project, four industrial 

systems are provided to evaluate the performances of the DDI. The tar-

get is to evaluate the impact of the proposed methodology for process 

improvement during product development, and to support the emer-

gence of new functions, e.g., by higher degree of collaboration. The 

core challenge for the evaluation of the project relies on two levels of 

innovation: first the dependability engineering approach shall be en-

hanced, second this shall be deployed to improve the industrial product 

with new solutions.  

Assuring dependability of CPS is the core challenge of the DEIS pro-

ject. Dependability is qualitatively defined as ‘the ability to deliver ser-

vice that can justifiably be trusted’, and quantitatively defined as ‘the 

ability to avoid service failures that are more frequent and more severe 

than is acceptable to its user(s)[8]’. Dependability encompasses the 

following attributes: availability; reliability; safety; confidentiality; in-

tegrity; maintainability.  The security attribute is considered a triage of 

confidentiality, integrity, and availability. These ‘primary’ attributes 

may contain ‘secondary’ attributes e.g. accountability, authenticity, and 

non-reputability can be considered secondary attributes of security[8]. 

Contribution of this paper is to present a systematic approach for the 

evaluation of dependability methodologies for CPS, and to apply this 

method for the evaluation of the DDIs in the four industrial systems of 

the DEIS project. The paper is organized as follow: Section 2 presents 

related works on quality assessment. An overview of the DDI is pre-

sented in Section 3, and the research methodology as well as the sys-

tems are introduced in Section 4. In Section 5, the tailoring of the 

standards used for evaluation are presented. Section 6 provides the de-

sign time evaluation results, while Section 7 provides the runtime eval-

uation results. Finally, Section 8 concludes this work.  
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2 Related Work  

A software quality model can be defined as ‘a model that describes, 

assesses and/or predicts quality’[9], or as ‘a set of factors, criteria and 

metrics (characteristics) and the relationship between them. These rela-

tions provide the basis for specifying quality requirements and evaluat-

ing quality’[10].  

Several models of software quality factors and their categorisation 

have been suggested over the years. The first software quality models 

were published in the mid 1970’s by Boehm et al[11] and Mc Call et 

al.[12]. Mc Call identified three main perspectives for characterising 

the quality attributes of a software product i.e. a product’s ability to 

change, adaptability to new environments, and basic operational char-

acteristics. From these three perspectives Mc Call identified eleven 

characteristics. The major contribution of the McCall method was to 

consider relationships between quality characteristics and metrics. This 

model was used as a base for the creation of others quality models[13]. 

The main drawback of the Mc Call model is the accuracy in the meas-

urement of quality, as it is based on just positive/negative responses 

(Yes/No). Furthermore, the model does not consider the functionality 

so that the user's vision is diminished[14]. Boehm’s model constitutes 

an improvement on Mc Call’s model because it is based on a wider 

range of characteristics and because it adds factors at different levels. 

The FURPS quality model[15], which was proposed by Robert 

Grady from Hewlett Packard in 1992, takes into account the following 

five characteristics: Functionality, Usability, Reliability, Performance, 

and Supportability. A main drawback of this model is that it does not 

consider some important characteristics such as portability, which may 

be an important criterion for application development[16]. In 1995 

Robert Dromey proposed a product based quality model[17]  based on 

the idea that a more dynamic way of modelling process was needed. 

This was due to the fact that quality evaluation differs between prod-

ucts and the model needed to be wide enough to apply to different sys-

tems.  

In order to standardise quality assessment, the International Organi-

sation for Standardisation (ISO) developed ISO 9126 [18] in 1991 and 

revised it in 2001. This standard is an extension of previous models as 

defined above, and is divided into four parts which address the follow-

ing subjects: quality model; external metrics; internal metrics; and qual-
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ity in use metrics. The quality model is divided into the following six 

characteristics: Functionality; Reliability; Usability; Efficiency; Main-

tainability; and   Portability. The internal metrics are static metrics that 

do not rely on software execution, whereas the external metrics rely on 

running software. Quality in use metrics can be measured only when 

the final product is used in a real environment with real conditions. 

The ISO 9126 model was updated in 2005 and evolved to become 

part of the ISO 25000:2005  series[19], and which has further been re-

vised with ISO 25000: 2011[20]. Studies conducted by[21][22][23]  

indicate that the ISO/IEC 25010  model[24] is the most comprehensive 

quality model available because it covers the most quality characteris-

tics and sub-characteristics. It achieves this by adding new characteris-

tics such as security and compatibility. 

3 Overview of DDI  

Assurance cases represent the backbone of modern dependability assur-

ance processes. A given assurance case captures the underlying argu-

ment of how the subject system meets its dependability requirements. 

The assurance case takes into account the subject system’s intended 

operational environment together with the evidence that supports re-

quirement validity in the finally implemented system. In practical 

terms, producing, maintaining and reviewing an assurance case is a 

process that aims to increase confidence in the quality of the subject 

system’s dependability properties, as well as its development process. 

Since there is an interrelation between the system, its dependability 

claims, and the supporting evidence artifacts that exist in the real world, 

we claim this should also be the case for the system’s model-based 

safety reflection, i.e. its DDI (see Fig. 1). DDIs represent an integrated 

set of dependability data models that may be (semi-)automatically ana-

lysed, or generated during the execution of safety engineering process-

es. 

A DDI contains information that uniquely describes all dependability 

characteristics of a system required for certifying the system’s depend-

ability. DDIs are formed as modular assurance cases and their compos-

ability allows for the (semi-)automatic synthesis of system DDIs from 

the DDIs of the subcomponents. The DDI of a system contains a) 

claims about the dependability guarantees given by a system to other 

systems and derived system dependability requirements and b) support-
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ing evidence for those claims in the form of various models and anal-

yses. For security assurance, it contains e.g. threat and risk analyses 

(TARA) and attack trees, while for safety assurance, hazard and risk 

analyses (HARA), architecture modeling and failure propagation mod-

eling such as fault trees, FMEA or Markov chains are supported.  
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 1. The Open Dependability Exchange Metamodel (ODE) 

Thus, a DDI is powered by a set of dependability claims, for which the 

models produced during dependability activities shall provide convinc-

ing evidence of satisfaction for the developed system. For both risk 

management planning and dependability assessment purposes, an ex-

plicit argument is indispensable inductively relating the created evi-

dence to the top-level claim through several step-wise layers of argu-

mentation. DDIs can deal with safety and security risks, thus the set of 

currently supported assurance activities focus on industrially well-

established methods. These activities proved sufficient over the last 

decades in demonstrating the dependability of embedded systems. 

The advantage of continuous traceability in DDIs between a safety 

argument expressed in the Goal Structuring Notation (GSN) and safety-

related evidence models is enabled by an integrated meta-model, the 

Open Dependability Exchange (ODE) meta-model v2.0. Since it is very 

likely that new dependability standards will come up in the future, the 

ODE has been designed to be extendable through a modular package 

concept. Around this technical DDI backbone, an automation frame-

work was built to support automated change impact or argument validi-
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ty analyses on the DDI data contents[25]. Details on the DDI frame-

work as well as an open-source version of the ODE meta-model can be 

found at Github[26]. 

4 Research Methodology 

Section 4.1 provides an overview of the methodology employed to se-

lect the quality metrics used to evaluate the impact of the DDI, while 

section 4.2 provides a brief description of the four systems used for this 

same evaluation. 

4.1 Methodology  

The methodology used to conduct this research comprised the follow-

ing main stages: Select metrics; Select systems; Evaluate DDI impact 

in systems; and Report findings. 

As stated in section 2, the ISO 25010 quality model is the most com-

prehensive quality model available and so this model, specifically met-

rics from the following standards within the ISO 25000 series were se-

lected to assess the impact of the DDI: ISO 25022[27]; ISO 25023[28]; 

and ISO 25024[29]. Details of the metrics and their selection are pro-

vided in section 5. 

Four industrial partners on the DEIS project each put forward a sys-

tem for assessing the impact of the DDI. Two systems are embedded in 

the automotive domain while the remaining ones are embedded in the 

railway and healthcare domains. A short description of these systems is 

provided in section 4.2. For each system a team of people from within 

each system’s organisation conducted the evaluation. Each system was 

evaluated both before and after application of the DDI. The make-up of 

the teams was decided upon by the organisation themselves. For exam-

ple, the Siemens team included 1 model-based safety and reliability 

engineer, 1 model-based safety and reliability consultant, 1 safety engi-

neer, and 1 reliability engineer.  Through expert judgement and consen-

sus, and with the use of the measurement formulae within the stand-

ards, each team determined values for the selected characteristics. The 

results for each organisation’s quality characteristic assessment are 

provided in section 6. 
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4.2 Systems 

Portable Medical Technology (PMT): PMT’s ONCOassist is a 

clinical decision support app for oncology professionals. It contains all 

the key oncology decision support tools oncology professionals need 

and makes them available in an easy to access and interactive format at 

point of care. ONCOassist is an application which aims to engage and 

connect with EHRs. This will allow for automatically reading patient 

specific data from EHRs in a safe and secure manner, in order to per-

form calculations that would not be possible on the hospital system. 

However, with the variety of EHR vendors it is very difficult to create 

consistent interoperability between EHRs and third party medical de-

vices. This raises combined concerns of safety, security and privacy. 

Patient data must be secure and kept private. If the system’s operation 

is maliciously attacked successfully or there are errors in the system’s 

nominal functions, patient safety may also be compromised due to mis-

takes introduced to their medical information. As health practitioners 

must also use their credentials to access the associated service, those 

credentials must also be secured. It is envisioned that the DDI will help 

alleviate these concerns. 

General Motors (GM): The Dependable Physiological Monitor Sys-

tem (DPMS) use case describes the sensing environment inside the ve-

hicle that monitors the health condition of drivers and passengers in 

order to improve the safety of the driver. The DPMS aids prevention of 

accidents in cases where the occupant’s health condition deteriorates. A 

dedicated sensing solution based on a Single Photon Avalanche Diode 

camera and Physio hardware board have been developed. In the case of 

the drivers’ health deteriorating, a high level emergency manager fea-

ture makes mitigating decisions depending on the severity of the dete-

rioration in the drivers health, for example taking control of the car and 

parking in a lay-by, or notifying emergency responders. The DPMS 

will apply the DDI at both development time and at runtime. During the 

development phase a reduction of time-to-market is expected as a con-

sequence of the usage of DDI methodology. At runtime, DDI is evalu-

ated against the overall dependability of this system, dealing with secu-

rity and privacy aspects in V2V and V2C communication. For this sys-

tem, safety of the passenger must be assured as part of the nominal be-

havior of the system. Additionally, as the system is designed to com-

municate over open channels and manage sensitive and personally 

identifiable information, security and privacy must also be assured. 
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Siemens (SAG): The European Train Control System (ETCS) pro-

vides standardised train control in Europe and eases travelling with 

trains crossing the borders of all countries. The ETCS consists of an on-

board and a trackside part. Both sub-systems must fulfil the safety re-

quirement as defined in Subset-091 (Safety Requirements for the Tech-

nical Interoperability of ETCS in Levels 1 & 2) [30]of the 

ERTMS/ETCS specification. Systems in the railway domain are also 

produced by various stakeholders in the value chain (such as railway 

undertaking, OEMs, suppliers, etc.) and, therefore, safety information 

about components and subsystems (rolling stock, trackside and inter-

locking systems) need to be interoperable and exchangeable. In this use 

case a generalized ETCS is used. The generalized ETCS is realized as 

an Emergency Brake Command (EBC) functionality of the Train Inter-

face Unit (TIU) of the ETCS On-Board sub-system. This EBC system 

is used for among others to illustrate strengths and drawbacks of DDI 

in several engineering phases, such as architecture, qualitative and 

quantitative dependability analysis, and Goal Structural Notation 

(GSN) based dependability assurance case development. It is envi-

sioned that DDI usage in railway domain will assist in achieving safe 

and interoperable railway systems.  

AVL: Heavy-duty trucks create a platoon to reduce time gaps be-

tween the trucks, to increase energy efficiency, improve safety, and to 

reduce truck driver loads. In the SAE L4 platoon function, platoon level 

decisions are taken by the platoon leader and broadcasted to the follow-

er vehicles and executed by each member without any need of a human 

driver or operator in a constrained operation boundary. Two-way in-

formation flow between vehicles and different communication topolo-

gies between members creates a wide range of dependability. The 

communication between the trucks for increased efficiency and safety 

comes with increased security threats, and guaranteeing the systems’ 

dependability requirements poses new challenges. For this use case, 

safety of the passengers and surrounding traffic must be assured; due to 

communication over open channels being required, security is also an 

applicable issue, with safety implications should successful attacks in-

duce dangerous platoon behavior. 
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5 Metric Selection  

The quality characteristics, and the metrics for these characteristics, 

were selected from the following standards: ISO 25022; ISO 25023; 

and ISO 25024. ISO 25022 defines characteristics and measures for 

evaluating quality in use characteristics i.e. quality from the end user’s 

perspective, ISO 25023 defines characteristics and measures for quanti-

tatively evaluating system and software product quality characteristics, 

while ISO 25024 defines data quality characteristics and measures for 

quantitatively evaluating the quality of the data within the system. 

These standards contained more quality characteristics than were rel-

evant for measuring the impact of the DDI, therefore the first task was 

to select a subset of those quality characteristics which were relevant to 

the study. A focus group, containing members from the DEIS project 

partners, was formed to conduct this task. The members of this focus 

group are listed as authors of this paper. The process of selecting the 

relevant metrics included five 1.5 to 2 hour on-line meetings. At these 

meetings, each metric within the three standards was discussed in detail 

with two main considerations in mind: 1) its relevance to assessing the 

impact of the DDI; and 2) effort required for both data collection from 

the underlying system models and calculation of the metric. Decisions 

on whether to include a metric, or not, were based on a general consen-

sus which was largely unanimous in each case. The number of charac-

teristics and measures within each standard, along with the number of 

characteristics and measures selected from the standards, is displayed in 

Table 1.  

Table 1. Number of characteristics and measures within standards versus number of character-

istics and measures selected for measuring DDI impact 

Number of characteristics 

and measures within 

standards 

Selected for measur-

ing impact of DDI 

Selection versus total 

% 

Stand

ard 

Character-

istics 

Measures Charac-

teristics 

Measures Character-

istics 

Measures 

ISO 

25022 

5 36 4 10 80 28 

ISO 

25023 

8 86 7 29 87.5 33.7 

ISO 

25024 

15 63 10 19 66.7 30.2 

 28 185 21 58 75 31.4 
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In total, the team selected 21 quality characteristics (from 28 within 

the standards). From these 21 characteristics, 42 sub-characteristics 

were selected as shown in section 6 below. A total of 58 separate 

measures (from 185 within the standards) were employed in order to 

determine values for the quality characteristics.  

Due to the large number of total measures (and submeasures) dis-

cussed, a complete account of the considerations for each measure 

could not be included in this publication due to space limitations. In-

stead, presentation of the partner views regarding a few measures fol-

lows, as examples indicative of the overall process. 

The first example concerns the ‘Functional appropriateness (sub) 

measures’, of the ‘Functional suitability measures’ ISO 25023. These 

(sub) measures were viewed as only partially relevant to one of the use 

cases and not the remaining ones. Additionally, the DEIS partners not-

ed that the question of (nominal) function appropriateness fell outside 

the scope of the DDI. This is the case, as the DDI instead deals with a 

given system’s dependability requirements and their assurance. On a 

similar note, the second example pertains to the ‘User interface aesthet-

ic measures’ of ISO 25023, which are a quality not affected by the 

presence or absence of the DDI. A more meaningful example is that of 

the ‘Data accuracy measures’ of ISO 25024, most of which were con-

sidered for evaluation of the DDI. For instance, the data accuracy as-

surance measure was found to be appropriate for DDI evaluation. This 

sub measure evaluates the ratio of data items measured for accuracy 

over the data items whose measurement is required for accuracy. Effec-

tively, this is a requirement coverage evaluation, which is in line with 

the DDI’s role in supporting requirement assurance. 

6 Design Time DDI Evaluation Results  

The results from evaluating the DDI in the four industrial systems at 

design time are now presented in the following three subsections. 

6.1 ISO 25022 Quality in Use Results 

Table 2 presents the results from evaluating the four ‘Quality in Use’ 

characteristics which have been selected from ISO 25022. The selected 

sub-characteristics (three in total) are listed in column 2. The ‘Effec-
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tiveness’ and ‘Efficiency’ characteristics have no sub-characteristics. 

The results for each system is presented in 2 columns with the first col-

umn presenting the result without the DDI applied, and the second col-

umn (in italics) presenting the result with the DDI applied at design 

time. Each individual result can vary from 0 to 1, with 1 being equiva-

lent in percentage terms to 100. The last column in the table presents 

the average improvement, in percentage terms, across the four systems, 

so for example ‘Effectiveness’ increased by an average of 14.2% when 

DDI was applied. 

Table 2. 'Quality in Use' characteristic values across four systems at design time 

Characteristic 

(4) 

Sub characteristic 

(3) 

GM GM AVL AVL PMT PMT SAG SAG AVG

% 

imp. 

Effectiveness n/a 0.39 0.56 0.5 0.63 0.5 0.58 0.64 0.83 14.2 

Efficiency n/a 0.44 0.62 0.25 0.44 0.53 0.82 0.05 0.95 39.0 

Freedom from 

Risk 

Economic risk 

mitigation 

0.61 0.73 0.65 0.85 0.33 0.68 0.73 0.87 20.3 

Context Cov-

erage 

Context complete-

ness, and Flexibil-

ity measures 

0.2 0.2 0.42 0.67 0.5 1.0 0.35 0.69 27.3 

 

The last column above indicates that the application of the DDI re-

sulted in significant improvement in each of the ‘Quality in Use’ met-

rics. The ‘Efficiency’ metric, at 39% improvement, is particularly in-

fluenced by the SAG results who state that ‘We are expecting a signifi-

cant increase of the number of the objectives achieved for the same 

period of time by introducing DDI. Furthermore, we are expecting a 

significant decrease in the cost for carrying out the task for the same 

amount of objects in ETCS use case’. 

Another interesting observation from Table 2 is the GM result for 

‘Context Coverage’. Context coverage assesses the degree to which a 

product or system can be used with effectiveness, efficiency, satisfac-

tion, and freedom from risk in both specified contexts of use and in 

contexts beyond those initially explicitly identified. GM results indicate 

no improvement as ‘no other scenario has been evaluated for DPMS 

usage’. 

The average improvement, with the introduction of design time DDI’s, 

for all ‘Quality in Use’ quality metrics is calculated to be 25.2 %. 
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6.2 ISO 25023 System and Software Quality Results 

Table 3 presents the results from evaluating the seven ‘System and 

Software Quality’ characteristics which have been selected from ISO 

25023, and is structured the same as Table 2. The seven characteristics 

contain twenty sub-characteristics. 

While all characteristics indicate an average improvement across the 

four systems, ‘Performance efficiency’ is the lowest at 4.5%. This is 

due to most of the systems reporting a very small improvement in this 

characteristic, with Siemens reporting practically no improvement due 

to such factors as: ‘Resource utilization: for mean processor utilisation 

and bandwidth utilisation, we could not observe any improvement by 

use of DDI. Both mean processor utilisation and bandwidth utilisation 

remain low for railway safety-critical system’ 

Table 3. System and Software characteristics across four systems at design time 

  

The ‘Portability’ characteristic, which assesses the degree of effec-

tiveness and efficiency with which a system, product or component can 

be transferred from one hardware, software or other operational or us-

age environment to another,  indicated no improvement across three 

systems (GM, AVL, and SAG). This was mainly due to factors such as 

Characteristic Sub characteristics GM GM AVL AVL PMT PMT SAG SAG AVG

% 

imp 

Functional 

suitability 

Functional complete-

ness,and correctness 

0.65 0.7 0.55 0.65 0.67 0.83 0.99 0.99 7.8 

Performance 

efficiency 

Time behavior, and 

Resource utilisation 

0.46 0.51 0.39 0.47 0.44 0.48 0.39 0.4 4.5 

Compatability Co-existance, and In-

teroperability 

0.5 0.5 0.71 0.83 0.43 0.73 0.79 0.83 11.5 

Reliability Maturity, Availability, 

and Fault tolerance 

0.71 0.77 0.66 0.78 0.66 0.70 0.75 0.63 7.0 

Security Confidentiality, Integri-

ty, Authenticity, Ac-

countability, and Non-

repudiation 

0.6 0.68 0 0.2 0.2 0.38 0 0.2 16.5 

Maintainability Reusability, Analysabil-

ity, Modifiability, Test-

ability 

0.45 0.52 0.39 0.6 0.44 0.78 0.51 0.55 16.5 

Portability Adaptability, Replacea-

bility 

0.3 0.3 0 0 0.33 0.83 0 0 12.5 
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no portability is conducted in the system: GM stated ‘No improvement 

here, considering that no other scenario has been evaluated outside the 

GM architecture ecosystem’, while AVL stated ‘No portability related 

implementation has been done’. For SAG the reason was somewhat 

different in that they reported that ‘the DDI does not offer additional 

data or handling in case of porting the ETCS system onto another envi-

ronment’. 

For the ‘Security’ characteristic, which assess the degree to which a 

system protects data so that persons or other systems have the degree of 

data access appropriate to their types and levels of authorization, two 

systems reported a score of zero for the security sub-characteristics 

listed in Table 3, however with application of the DDI their security 

score improved to 0.2. Both of the systems reported an improvement 

due to implementation of authentication rules. 

For ‘Functional suitability’ SAG reported no improvement due to the 

fact that they consider their system to be practically functionally com-

plete and correct. They stated that their ETCS products have 1% of 

missing intended usage of the system without DDI (99% of usage com-

pleteness)…….This estimation is also true for the correctness of func-

tions’. 

While the majority of the selected system and software quality met-

rics are applicable to most of the systems, according to the industry 

partners there are occasions where some metrics may not apply to some 

systems. For example the ‘portability’ metric only showed improve-

ment in the PMT system. 

The average improvement, with the introduction of design time DDI’s, 

for all ‘System and Software’ quality metrics is calculated to be 10.9 

%. 

6.3 ISO 25024 Data Quality Results 

Table 4 presents the results from evaluating the ten ‘Data Quality’ 

characteristics which have been selected from ISO 25024, and is struc-

tured the same as Table 3. The ten characteristics contain nineteen sub-

characteristics. 

Table 4 indicates that all the selected data quality characteristics 

show an average improvement across the 4 systems, ranging from 

10.3% to 26.8%. However for one system, seven of the characteristics 

show no improvement. For the data completeness, data credibility, data 
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precision and data compliance, SAG state that their ETCS system has 

to be certified according to relevant safety standards and that these val-

ues are at 100% regardless of whether the DDI is applied or not. 

For data confidentiality, SAG state that this metric is not applicable 

but give no reason for this. With regards to data understandability SAG 

report no improvement, stating that ‘the semantic understandability will 

not be changed by introducing DDI’, and for data portability SAG state 

that ‘the DDI does not influence the portability in the sense of opera-

tion environment adaptability and data reusability/import capability’. 

The fact that three of the metrics have scored zero with and without 

DDI implementation clearly indicates that SAG do not think that these 

metrics can be improved in their system. 
 

Table 4. Data quality characteristics across four systems at design time 

Characteristic Sub characteristics GM GM AVL AVL PMT PMT SAG SAG AVG

% 

imp 

Data accuracy Syntactic accuracy 0.6 0.68 0.5 0.63 0.5 0.63 0.88 1 11.5 

Completeness Record, and Attrib-

ute completeness 

0.55 0.61 0.38 0.63 0.25 0.88 1 1 23.5 

Consistency Data format and 

Architecture con-

sistency, and Risk of 

data inconsistency 

0.38 0.48 0.33 0.58 0.33 0.53 0.61 0.66 15.0 

Credibility Values, Source, and 

Data model credibil-

ity 

0.6 0.64 0.5 0.67 0.47 0.87 1 1 15.3 

Compliance Regulatory compli-

ance of value, and 

Technology 

0.54 0.65 0.44 0.75 0.3 0.8 1 1 23.0 

Confidentiality Encryption, and 

Non-vulnerability 

0.66 0.66 0.38 0.63 0.55 0.71 0 0 10.3 

Precision Data values, and 

Format precision 

0.48 0.51 0.38 0.63 0.6 0.8 1 1 12.0 

Traceability Traceability of data 

values, Data value 

Traceability 

0.5 0.64 0.38 0.5 0.19 0.75 0.7 0.95 26.8 

Understanda-

bility 

Semantic undstanda-

bility 

0.55 0.68 0.25 0.63 0.6 0.8 0 0 17.8 

Portability Data portability ratio 0.48 0.63 0.38 0.63 0.4 0.8 0 0 20.0 
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For GM, the data confidentiality metric indicated no improvement. 

The reason for this according to GM is that applying the DDI guaran-

tees the same level of data confidentiality as against not applying the 

DDI. However GM further state that the DDI can help in selecting at 

design time the best security solution to satisfy confidentiality require-

ments. 

While the majority of the selected data quality metrics are applicable 

to most of the use cases, there were occasions where some metrics may 

not apply to some systems. 

The average improvement, with the introduction of design time DDI’s, 

for all ‘Data’ quality metrics is calculated to be 17.5 %. 

7 Runtime DDI Evaluation Results 

The results from evaluating the runtime DDI in the GM and the AVL 

use cases are now presented in the following three subsections. Only 

the GM and AVL use cases have been evaluated at runtime because the 

PMT and Siemens use cases are not related to the runtime DDI concept. 

The same metrics that were used for the evaluation of the design time 

DDI in Section 6 are used here for runtime DDI evaluation. 

7.1 ISO 25022 Quality in Use Results 

Table 5 presents the results from evaluating the four ‘Quality in Use’ 

characteristics which have been selected from ISO 25022. The results 

for each system is presented in 2 columns with the first column present-

ing the result without the DDI applied, and the second column (in ital-

ics) presenting the result with the DDI applied at runtime. The last col-

umn in the table presents the average improvement, in percentage 

terms, across the two systems, so for example ‘Effectiveness’ increased 

by an average of 14.5 % when DDI was applied at runtime. 

Table 5. 'Quality in Use' characteristic values across two systems at runtime 

Characteristic Sub characteristic GM GM AVL AVL AVG% 

imp. 

Effectiveness n/a 0.39 0.56 0.83 0.95 14.5 

Efficiency n/a 0.44 0.62 0.75 0.90 16.5 

Freedom from 

Risk 

Economic risk mitigation 0.61 0.81 0.5 0.9 30.0 

Context Coverage Context completeness, 0.20 0.20 0.50 0.55 2.5 
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and Flexibility measures 

 

The results show an improvement across all metrics with the intro-

duction of DDI’s. The ‘Freedom of risk’ measures have the highest 

improvement with an increase of 30.0 % while the ‘Context coverage’ 

measures have the lowest increase of 2.5 %. The GM results for ‘Con-

text Coverage’ indicates no improvement. This is the same as for the 

design time DDI evaluation (see Section 6.1). 

The evaluation shows that in both cases it is possible to complete all 

tasks in less time (effectiveness and efficiency) with the introduction of 

runtime DDI’s. This results in a reduction of costs in implementation 

(freedom from risk). 

The average improvement, with the introduction of runtime DDI’s, for 

all ‘Quality in Use’ metrics is calculated to be 15.9%%. 

7.2 ISO 25023 System and Software Quality Results 

Table 6 presents the results for the seven ISO 25023 quality character-

istics selected for evaluation. 

Table 6. System and Software characteristics across two systems at runtime 

  

All quality metrics show an improvement with the introduction of 

runtime DDI’s. ‘Reliability’ has the highest increase of 37.5 %, with 

one partner (AVL) stating: “Reliability measure has improved due to 

Characteristic Sub characteristics GM GM AVL AVL AVG% 

imp 

Functional suita-

bility 

Functional complete-

ness,and correctness 

0.65 0.75 0.4 0.76 23.0 

Performance effi-

ciency 

Time behavior, and Re-

source utilisation 

0.46 0.51 0.38 0.75 21.0 

Compatability Co-existance, and Interop-

erability 

0.5 0.56 0.43 0.51 7.0 

Reliability Maturity, Availability, and 

Fault tolerance 

0.71 0.90 0.43 0.99 37.5 

Security Confidentiality, Integrity, 

Authenticity, Accountabil-

ity, and Non-repudiation 

0.6 0.68 0.50 0.63 10.5 

Maintainability Reusability, Analysability, 

Modifiability, Testability 

0.45 0.53 0.48 0.78 19.0 

Portability Adaptability, Replaceability 0.31 0.31 0.90 0.97 3.5 



18 

decrease in failure per defined period, and improved failure avoidance. 

On the other hand, mean notification time has slightly increased.” 

The ‘Portability’ measures had the lowest increase of 3.5 % in the eval-

uations. For the GM system no improvement was observed (this is the 

same as for the design time DDI, see statement Section 6.2). In the 

AVL system only a minor improvement (0.07) of the ‘Portability’ char-

acteristic could be observed. This is as a result of the  ‘Replaceability’ 

subcharacteristic improving when using the runtime DDI. 

The average improvement, with the introduction of runtime DDI’s, for 

all ‘System and Software’ quality metrics is calculated to be 17.4%. 

7.3 ISO 25024 Data Quality Results 

Table 7 presents the runtimeevaluation results for the ten ISO 25024 

‘Data Quality’ characteristics. All characteristics show an improvement 

with the introduction of runtime DDI for the two evaluated systems 

(GM and AVL). The ‘Data consistency’ measures indicate the highest 

improvement of 47.5 % in average. This results mostly from the signif-

icant improvement of the ‘Data consistency’ characteristic in the AVL 

use case. AVL stated: “The analysis done with the DDI concept has 

shown that the percentage of consistency of data format is increased, 

the risk of having inconsistent data itself has decreased and a consistent 

platooning architecture has been obtained using the DDI concept.” 

Table 7. Data quality characteristics across two systems at runtime 

Characteristic Sub characteristics GM GM AVL AVL AVG% 

imp 

Data accuracy Syntactic accuracy 0.6 0.85 0.40 0.90 37.5 

Completeness Record, and Attribute 

completeness 

0.55 0.61 0.50 0.95 25.5 

Consistency Data format and Archi-

tecture consistency, and 

Risk of data inconsisten-

cy 

0.38 0.63 0.30 1.00 47.5 

Credibility Values, Source, and Data 

model credibility 

0.6 0.85 0.37 0.92 40.0 

Compliance Regulatory compliance 

of value, and Technology 

0.54 0.65 0.65 0.975 21.8 

Confidentiality Encryption, and Non-

vulnerability 

0.66 0.66 0.63 0.85 11.0 

Precision Data values, and Format 

precision 

0.48 0.51 0.65 1.00 19.0 
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Traceability Traceability of data val-

ues, Data value Tracea-

bility 

0.5 0.64 0.78 0.98 17.0 

Understandability Semantic understandabil-

ity 

0.55 0.83 0.70 0.95 26.5 

Portability Data portability ratio 0.48 0.63 0.60 0.90 22.5 

 

The ‘Data confidentiality’ metric indicates the lowest improvement of 

11.0 % in average. While in the AVL use case a slight improvement in 

terms of ‘Data confidentiality’ is observed, for the GM system no im-

proved was observed. This is the same as for the design time DDI eval-

uation (see table 4 in Section 6.3). GM stated: “DDI concept guarantees 

only the same level of data confidentiality at runtime, but can help se-

lecting at design time the best security solution to satisfy confidentiality 

requirements.” 

The average improvement, with the introduction of runtime DDI’s, for 

all Data quality metrics is calculated to be 26.8 %. 

8 Conclusion  

The selected metrics for measuring the impact of the DDI were chosen 

mainly due to their relevance to assessing the impact of the DDI. The 

results of the evaluation, at both design time and runtime, indicate that 

applying the DDI has made significant improvements in the quality of 

each system, from an end user and from a system and data perspective. 

For the ‘Quality in Use’ metrics the average improvement at design 

time is 25.2% while at runtime it is 15.9%. For the ‘System and Soft-

ware’ quality metrics the average improvement at design time is 10.9% 

while at runtime it is 17.4%. For the ‘Data’ quality metrics the average 

improvement at design time is 17.5% while at runtime it is 26.8%. 

These results demonstrate the positive impact of the DDI on the de-

pendability of CPS, with some metrics indicating substantial improve-

ment, for example, the quality in use ‘Efficiency’ metric improved by 

39% at design time while the data consistency metric improved by 

47.5% at runtime. 

  

However, the results of the evaluation also indicate that not all metrics 

may apply to all systems, and that not all metrics showed an improve-

ment in all systems. For example, the Systems and Software Quality 

metric ‘Portability’ only showed improvement in one of the four sys-
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tems at design time, and in one of the two systems at runtime. While all 

metrics were applied, the industry partners indicated that in some in-

stances a relatively small number of the metrics did not apply to their 

system. 
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