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Abstract 

Classification of Frailty among Community Dwelling Older Adults Using Parameters of 

Physical Activity Obtained Independently and Unsupervised. 

Grainne Vavasour 

 

The global population is ageing at an unprecedented rate, with the percentage of those aged over 65 

years expected to double and those aged over 80 years expected to treble by the year 2050. With 

ageing comes biological and physiological changes that affect functional capacity. Frailty is a 

potentially avoidable, reversible biopsychosocial condition associated with biological but not 

chronological age, affecting a quarter of all community-dwelling older adults. Frailty results in 

disability, increased dependency and institutionalisation.  

Screening for frailty could help reduce its prevalence and mitigate the adverse outcomes however, 

traditional screening tools are time-consuming to perform, require clinician input and by their 

subjective nature are flawed. The use of wearable sensors has been proposed as a means of screening 

for frailty and parameters of mobility and physical activity have been identified as being associated 

with frailty. 

The goal of this thesis was to examine if community-dwelling older adults could capture parameters 

of mobility and physical activity independently in their own home and if these parameters could 

discriminate between frail and non-frail status. 

This work provides evidence that a single parameter of mobility and physical activity obtained from a 

single body-worn sensor correlates with frailty. It also provides evidence that community-dwelling 

older adults can independently capture parameters of mobility and physical activity, unsupervised in 

their own home using a consumer-grade wearable device, and that these data can predict pre-frailty 

and frailty with acceptable accuracy. Thresholds for parameters of physical activity predictive of 

frailty have been identified. 

The results of this thesis will guide future work to focus community-dwelling older adults on the 

importance of frailty screening and guide the development of a user-friendly device or sensor system 

suitable for use by older adults for continuous data collection relevant to frailty.
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Chapter One – Thesis Overview 

1.0 Motivation 

According to the National Census of Ireland 2016, the population of adults aged over 65 years has 

increased by 19.1% since 2011 (CSO 2019) and continues to grow steadily in Ireland and worldwide. 

Between 2015 and 2050 the proportion of the world's population over 60 years will nearly double 

from 12% to 22%. (World Health Organization 2018). Biologically, ageing is associated with a 

gradual accumulation of molecular and cellular damage, which over time leads to a decline in 

physiological reserves, functional capacity and an increased susceptibility to disease. These changes 

are not consistent among older adults however and are influenced by extrinsic factors including an 

individuals’ behaviours and the environment (WHO 2015; Singer et al. 2019). Therefore, shifting the 

focus from the changes in population distribution to the functional capacity and health status of an 

ageing population is perhaps a more constructive and pro-active approach that can alter the impact of 

an ageing population on society (Chang et al. 2019). 

Frailty is a complex phenomenon threatening 24% of community-dwelling adults over 65 years of age 

in Ireland, while the figure for pre-frailty, those at higher risk of progressing to frailty and its negative 

sequelae is 45% (O’Halloran and O’Shea 2018; Roe et al. 2017). Due to the heterogeneity of studies, 

global figures are difficult to establish, however, a systematic review of research in Europe, USA, 

UK, Ireland, and Asia indicates that the prevalence of frailty and pre-frailty is as high as 27% and 

50% respectively (Choi and Kim 2015). The global incidence of frailty and pre-frailty is reported as 

43.4 and 62.7 per 1000 respectively (Ofori-Asenso et al. 2019). 

In recognition of this, several global, European and national strategies have emerged to address the 

challenges of an ageing population, aiming to reduce disability, hospital admission and the 

exponential rise in the cost of health care delivery. The European Commission and many of its 

member states have funded a joint action on the prevention of frailty – ADVANTAGE JA 

(ADVANTAGE JA 2019). This joint action aims to prepare common guidelines or frameworks on the 

prevention and management of frailty. Its objectives include empowering older people to lead the 
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necessary changes, promoting healthy ageing and frailty prevention, early diagnosis and appropriate 

clinical management of frailty. There is evidence that preventing frailty can mitigate many of the 

major negative health-related outcomes associated with ageing (WHO 2015).  

Traditionally a frailty assessment is carried out in a clinical setting using a variety of assessment tools. 

Frailty assessment tools can be divided into those that rely totally on subjective reports, those that are 

objective, and those that involve a combination of the two. The various frailty assessment tools are 

described in more detail in chapter two. Frailty assessments have been criticised as being time-

consuming, cumbersome, and costly to implement (Lee et al. 2018; Straiton et al. 2018).  

There is a large body of evidence on the relationship between physical activity (PA), sedentary 

behaviours, and health, with inactivity being one of the main risk factors for declining health (WHO 

2020). The association between PA and the risk of frailty is also well documented in the literature 

(Blodgett et al. 2015b; Lewis et al. 2018) with most frailty assessment tools including a measure of 

mobility and / or PA.  Physical activity is defined as any bodily movement produced by skeletal 

muscles that results in energy expenditure (Casperson et al. 1985) and traditional measures of PA rely 

on either self-report in the form of questionnaires or diaries, direct observation, or objective measures 

of energy expenditure. Each of these options present their own difficulties including costs, 

researcher/therapist/clinician and participant/patient burden, and potential for bias (Strath et al. 2013). 

Facilitating adults to objectively monitor and quantify their own mobility and PA promotes self-care 

and can enable early detection of declining activity, thus indicating to the individual their risk of 

developing frailty.  

The use of smartphones and wearable sensors has become a pervasive means of monitoring mobility 

and PA (Bai et al. 2016; Burton et al. 2018; Hsieh et al. 2019). It has been suggested that their use 

could more significantly assist in the objective collection of meaningful data regarding mobility and 

PA and detection of risk factors of declining activity in community-dwelling settings (Tsipouras et al. 

2018). Capturing data of mobility and PA in a community-dwelling setting will potentially be a more 

accurate reflection of everyday performance as opposed to measurements of capacity that laboratory-

based assessments arguably provide (Jansen et al. 2019).  
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1.1 Aims and Objectives 

The overarching aim of this thesis is to determine if quantitative measures of mobility and PA 

captured independently by older adults can be used to discriminate between frail (F) and non-frail 

(NF) community-dwelling older adults.  

To achieve this the following objectives were identified; 

1. To carry out a systematic review of the literature to examine how wearable sensors have been 

utilised to evaluate frailty in older adults. 

2. To compare parameters of mobility and PA obtained from body-worn inertial sensors on 

different body-locations to those obtained from a criterion measure and with a validated 

inertial sensor and software system. 

3. To investigate whether community-dwelling older adults can capture objective mobility and 

PA data using body-worn sensors unsupervised, in their own home. 

4. To determine whether body-worn sensor data captured by community-dwelling older adults 

unsupervised can discriminate between non-frail, pre-frail and frail community-dwelling 

older adults. 

5. To examine the usability and acceptance of performing mobility measurements using a 

wearable sensor system among community-dwelling older adults. 

1.2 Contribution  

The main contributions of this thesis are: 

 A Systematic Literature Review 

A systematic review of the literature presented in chapter 3 provides a comprehensive appraisal and 

critique of how wearable technology has been previously used to evaluate frailty in older adults. 

Specifically, the review identifies which parameters of mobility and PA obtained from wearable 

sensors have been used to assess and quantify frailty, which type of body-worn sensors and specific 

body-locations have been used, and how different parameters are associated with the discrimination of 
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the various stages of frailty. This review is the first to comprehensively synthesise data from the last 

decade of research in this field. 

 Evidence to support a convenient body-location for a single wearable sensor to record a single 

parameter of mobility in older adults that could be used to identify functional decline. 

Results from the laboratory-based study presented in chapter 4 confirms the waist as a suitable body-

location for a body-worn sensor to accurately obtain parameters of gait. It is a first step in identifying 

the potential for a single wearable sensor to record a single parameter of mobility in older adults that 

could be used to identify a risk of frailty.  

 Evidence that community-dwelling older adults can capture an objective frailty score and 

objective measures of PA associated with frailty using a sensor system or a smartwatch, 

independently, unsupervised in their own home. 

The findings of a home-based study presented in chapter 5 demonstrate the ability of community-

dwelling older adults to independently capture a frailty risk score and continuous data correlated with 

frailty, unsupervised in their own home. Measures of step-count (SC) and sedentary time (ST) 

obtained from a consumer grade wearable device are found to correlate significantly with frailty, 

confirming the literature and suggesting that breaks in ST can reduce the risk of frailty. Thresholds for 

parameters of PA predictive of frailty are identified with varying degrees of accuracy for each 

variable captured, further assisting with the independent identification of frailty risk by older adults 

using a wrist-worn smartwatch. 

1.3 Thesis Outline 

This chapter has provided the background, the motivation for the research and the valuable 

contribution the thesis makes. The remaining chapters in this thesis are organised as follows: 

Chapter Two: 

This chapter outlines the relevant literature on frailty, its definition and assessment tools, PA, and its 

correlation with frailty, and the potential of wearable sensors to capture the parameters of PA relevant 

to frailty. 
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Chapter Three: 

This chapter presents a systematic review examining how wearable sensors have been used to assess 

frailty. It presents the findings of 29 studies that demonstrate how wearable sensors have been 

successfully used to evaluate frailty in older adults. The review demonstrates the need for further 

research to identify a feasible, user-friendly device and body-location that can be used to identify 

signs of pre-frailty in community-dwelling older adults.  

Chapter Four: 

This chapter presents a laboratory-based study that compared the accuracy of measurements of 

mobility, gait and PA obtained from body-worn sensors placed at different locations on the body to 

those obtained from clinical observation and from a validated inertial sensor and software system. 

This study was a first step in identifying the potential for a single wearable sensor to record a simple 

parameter of mobility and PA in older adults that could identify a risk of frailty. 

Chapter Five: 

This chapter presents an observational study, which sought to investigate whether community-

dwelling older adults could capture objective data of mobility and PA using a body-worn sensor and 

software system unsupervised, in their own home. It compares data captured from a body-worn sensor 

and software system and from a wrist-worn smartwatch with traditional mobility and PA assessment 

tools and a validated frailty assessment tool. This chapter also presents the usability and acceptance of 

the technology among community-dwelling older adults. 

Chapter Six:  

This chapter outlines the contribution this work has made, provides a conclusion and 

recommendations for further research. 
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Chapter Two - Literature Review 

2.0 Introduction 

The syndrome of frailty is perhaps the greatest challenge facing an ageing population. While there is 

no universally accepted definition, there is a consensus that frailty is a medical syndrome with 

multiple causes and contributors, characterised by reduced gait speed, weakness, low levels of 

activity, and exhaustion (Rodríguez-Mañas et al. 2013). The World Health Organisation (WHO) has 

adopted the definition that frailty is a progressive age-related decline in physiological systems that 

results in decreased reserves of intrinsic capacity, which confers extreme vulnerability to stressors and 

increases the risk of a range of adverse health outcomes (WHO 2015). The consequence of this 

syndrome is an increased risk of falls, delirium, disability, institutionalisation and death resulting in a 

cascade of increased dependency, hospital admissions, length of hospital stay and utilisation of health 

care resources (Chang et al. 2018; Fried et al. 2001; Liu et al. 2019; Rockwood K 2005; Zhang et al. 

2018). Its impact is far-reaching, affecting the individual physically, psychologically, and socially 

(WHO 2015). A systematic review examining the global economic burden of frailty demonstrates that 

frailty care provision accounts for 40 – 76% of overall health care provision costs (Alkhodary et al. 

2020). Frailty impacts on society, drains health care resources and as such is an emerging public 

health priority (Buckinx et al. 2015; Cesari et al. 2016).  

This chapter will examine frailty, its definition and assessment tools, PA, and its correlation with 

frailty and the parameters of PA that correlate with frailty phenotypes. Finally, the chapter will 

discuss the potential of wearable sensors to capture data to detect frailty. 

2.1 Literature Search Strategy 

Using the framework PICO (person, intervention, comparison, and outcome), the databases CINAHL 

Ovid, PubMed and MEDLINE were searched for literature. The search engine Google Scholar was 

included to access full text articles where necessary. Keywords included (P) elderly, community-

dwelling older adults, (I) wearables, sensors, (C) measurements of PA and (O) frailty, frailty 

syndrome, frailty index. Boolean operators were used with keyword searches to optimise pertinent 
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results. The search was limited to journal articles with full text available in the English language, 

published in the previous ten years. Articles were included if they were primary studies, systematic or 

scoping literature reviews. Grey literature was also examined from national and international health 

and social care organisations. Papers were excluded if they did not directly relate to the screening 

question ‘does this paper examine frailty and/or parameters of PA related to frailty’. Titles and 

abstracts were scanned for appropriateness. Where there was broad commonality, the more recent 

publications were prioritised. Older, seminal papers as referenced in the selected literature were also 

included.  

2.2 Frailty  

Frailty is associated with but is not an inevitable part of ageing. It is reflective of biological as 

opposed to chronological age and is influenced by physical, psychological, and social factors (WHO 

2015). Despite the abundance of literature relating to frailty in the last three decades, there is no 

consensus on its operational definition. As far back as 1992, frailty was purported to be a reduction in 

total physiological reserve with increased susceptibility to disability (Buchner and Wagner 1992). It 

has been described as the poor resolution of homeostasis and vulnerability to adverse outcomes 

(Clegg et al. 2015; Fried et al. 2001), a multi-dimensional syndrome of loss of energy, physical 

ability, cognition, and health that gives rise to vulnerability (Rockwood K 2005) and the consequence 

of accumulated age-related defects in different physiological systems (Xue 2011). The WHO has 

adopted the definition that frailty is a progressive age-related decline in physiological systems that 

results in decreased reserves of intrinsic capacity, which confers extreme vulnerability to stressors and 

increases the risk of a range of adverse health outcomes (WHO 2015). 

Two approaches to defining frailty have dominated the literature; one suggesting that frailty is a 

distinct clinical syndrome with a biological basis (Fried et al. 2001), the other suggesting that frailty is 

the result of an accumulation of impairments and conditions (Rockwood K 2005). A Delphi process 

while achieving a majority agreement on a conceptual framework to include domains of physical 

function, nutritional status, mental health, and cognition; failed to achieve its aim of reaching 

consensus on an operational definition (Rodríguez-Mañas et al. 2013). There is strong agreement that 
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frailty can be defined as a multi-dimensional clinical syndrome characterised by decreased reserves 

and increased vulnerability to extrinsic stressors whereby minimal stress can result in functional 

impairment (Morley et al. 2013). Another conceptual model of frailty has been proposed, emphasising 

the importance of including psychological and societal factors contributing to frailty, as well as the 

physical aspects commonly referred to (Gobbens et al. 2010). The physical factors that are recognised 

as contributing to the syndrome of frailty include advancing age, female gender, disease burden of 

multi-morbidities, obesity, and polypharmacy (Rockwood K 2005; Sanders et al. 2011; Blodgett et al. 

2015a) while psychosocial factors contributing to frailty include lower levels of education, isolation, 

lack of social support, loneliness, and depression (Buttery et al. 2015; Gobbens et al. 2010; Santos-

Eggimann and Sirven 2016). 

The syndrome of frailty is dynamic in nature and transition can occur in either direction between 

robust or non-frail, pre-frail and frail. A meta-analysis of 16 studies indicates that of those older adults 

identified as pre-frail at baseline, over a period of 4 years 23.1% transitioned to non-frail, 18.2% 

transitioned to frail while 58.2% remained unchanged (Kojima et al. 2019). This concurs with 

findings of The Irish Longitudinal Study on Ageing (TILDA), which demonstrated that 1 in 10 older 

adults had what the authors refer to as a positive transition i.e., transition from frail to pre-frail to non-

frail (O’Halloran and O’Shea 2018). In contrast, of those older adults identified in (Kojima et al. 

2019) as frail at baseline, only 3.3% reverted to non-frail, 40.3% reverted to pre-frail, while 54.5% 

remained frail. This supports earlier findings that suggest positive transition between frailty levels 

depends on the baseline frailty level and that negative transitions are more likely (Gill et al. 2006). 

Reversibility of frailty has been further demonstrated in more recent studies (Zanforlini et al. 2019). 

Factors found to influence the transition from pre-frail to non-frail include younger age, aerobic 

exercise and resistance training (Liu and Fielding 2011; Zanforlini et al. 2019) and early intervention 

(O’Halloran and O’Shea 2018). 

The prevalence of frailty and pre-frailty in Europe, USA, UK, Ireland and Asia is estimated at 27% 

and 50%  respectively, based on Fried’s frailty phenotype (Choi and Kim 2015). In Ireland in 2015, 

overall, an estimated total of 3.9 million bed days were used in public and private hospitals, 10.6 



20 
 

million bed days in long-term and intermediate facilities and over 25 million visits to general 

practitioners (GPs), practice and public health nurses and allied health professionals (Wren et al. 

2017). Frailty significantly impacted on this utilisation of health care resources accounting for more 

than double the number of GP visits, unplanned hospital admissions and length of hospital-stay 

compared with non-frail older adults (Roe et al. 2017). 

Increasing demands on our health service and the evidenced negative transitions between stages of 

frailty compels us to find ways to mitigate the impact of declining function associated with an ageing 

population. Identifying those with pre-frailty or at risk of developing frailty could help target 

interventions that may reduce the negative sequelae of frailty syndrome and its incumbent costs; 

financial, physical, and psychological.  

2.3 Frailty Assessment Tools 

Although the prevalence of frailty and its adverse health outcomes are widely documented (Pritchard 

et al. 2017; Roe et al. 2017) there is little consensus or consistency in the approach used by 

researchers and clinicians in its assessment. It is suggested that the results of frailty prevalence studies 

depend very much on the assessment tool used in the screening  (Sutton et al. 2016; Xue et al. 2020). 

While there is general acceptance and agreement on the concept of frailty, there remains the lack of an 

internationally accepted definition resulting perhaps in the lack of consistency in the approach to 

assessment and screening. This lack of consensus is suggested as the reason for such a variety of 

assessment tools and the reason many studies apply adaptations or modifications of validated tools, 

resulting in substantial variation in outcomes (Theou et al. 2015). Frailty assessment tools can be 

divided into those that rely totally on subjective reports, those that are objective, and those that 

involve a combination of the two. Tools are validated for use in different settings including 

community, primary care, and acute care, require varying lengths of time and level of expertise to 

administer (Health Improvement Scotland 2019). 

A systematic review of the literature examining instruments for the detection of frailty (Faller et al. 

2019) identified 51 tools for use in community, hospital, emergency medicine and out-patient clinic 
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settings. An earlier review identified 67 tools (Buta et al. 2016). This is indicative of the extent of the 

debate around the best measure of frailty and the lack of consensus regarding its definition. The 

various purposes for use of assessment tools observed in the literature include identifying frailty as a 

risk factor for adverse health outcomes; identifying risk factors for frailty; identifying frailty for 

inclusion criteria or in methodology of studies involving frailty; assessing biomarkers of frailty; 

estimation of frailty prevalence; and to a lesser extent which is a matter of concern, guiding clinical 

decision-making and for targeting interventions (Buta et al. 2016; Varadhan and Buta 2015). This 

may illustrate a common perception that assessment tools are time-consuming, cumbersome, and 

costly to use (Lee et al. 2018; Straiton et al. 2018). For these reasons it is suggested that they are not 

feasible for use in large populations (Cesari et al. 2014). 

In their systematic review of 132 articles, (Buta et al. 2016) report that nine tools were highly cited. 

The authors suggest that wide adoption of a tool is insufficient to recommend its use, rather an 

instrument should be chosen based on the identified purpose, the construct validity of the instrument 

for the intended purpose, and its feasibility. This is recognised by (Cesari et al. 2014) and supported 

by (Rockwood et al. 2015) who insist that in the absence of a ‘gold standard’, the purpose or context 

must determine the appropriate instrument. According to (Buta et al. 2016) the three most cited 

assessment tools are the Physical Frailty Phenotype (Fried et al. 2001) more commonly and hereafter 

referred to as Fried’s Frailty Phenotype (FFP), the Deficit Accumulation Index (DAI) (Rockwood K 

2005), and the Gill Frailty Measure (Gill et al. 1995). In an earlier review (Cesari et al. 2014) it is 

suggested that while many other instruments to assess frailty have been proposed, the FFP and the 

DAI have dominated the literature. This is supported by findings in a later systematic review (Clegg et 

al. 2015). 

The FFP and DAI have been developed and validated in large epidemiological studies; the United 

States Cardiovascular Health Study (CHS) (Fried et al. 2001) and the Canadian Study of Health and 

Ageing (CSHA) (Rockwood K 2005) respectively. The FFP considers frailty to be a decline in 

physical function and is based on five pre-defined physical criteria of; unintentional weight loss, 

sarcopaenia, fatigue, slow gait speed and reduced level of PA, with the presence of three or more 
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criteria indicating the presence of frailty. It is a combination of self-report and objective measurement, 

validated for clinic and population screening with the ability to predict adverse outcomes (Dent et al. 

2016). 

Also suitable for clinic and population screening is the DAI (commonly referred to in the literature as 

the Frailty Index), which looks at frailty as an accumulation of deficits across various domains such as 

physical function, cognition, self-rated health, and biomarkers (Mitnitski et al. 2001). It is expressed 

as a ratio of the deficits present to the total number of deficits considered. It is more time-consuming 

than other scales but requires no special equipment. The DAI, like most scales that include objective 

measurements requires specialist training to administer (Dent et al. 2016). 

The Edmonton Frail Scale is a nine-item questionnaire including physical, psychological, and social 

components of frailty, validated for adverse outcome prediction in a clinic setting (Rolfson et al. 

2006). The Tilburg Frailty Scale is a 15-item self-administered questionnaire validated for 

community-dwelling screening. It requires no special equipment or specialist training and has recently 

been shown to have excellent predictive validity for disability (Gobbens et al. 2020). Questionnaires 

have the added advantage of being less time-consuming but may over-screen, especially in hospital 

settings (Dent et al. 2016).  

Other options for frailty screening include individual physical factors associated with frailty. Gait-

speed and grip-strength are domains of many frailty measures but have been explored as separate 

potentially efficient, easy-to-use assessment tools in their own right (Dent et al. 2016). Gait-speed 

measured over a short distance has been shown to be a strong independent indicator of frailty and 

disability (Gill et al. 2006; Abellan Van Kan et al. 2009; Hoogendijk et al. 2015; Pamoukdjian et al. 

2015), and grip-strength as a stand-alone entity has been validated for the prediction of functional 

decline and disability in male hospitalised older adults (García-Peñ et al. 2013; Roberts et al. 2012). 

2.4 Physical Activity and Frailty 

According to the WHO, health is central to our functional capacity, independence, and experience of 

older age (WHO 2020). Physical performance measures of gait, mobility, and PA are central to health. 
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The risk of functional decline, a precursor to frailty and disability, has been shown to be influenced by 

changes in these measures (McPhee et al. 2016). For maintenance of health, minimum 

recommendations for PA have been endorsed. For adults aged 18 – 64 years, minimum requirements 

are at least 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity or an equivalent 

combination per week, in bouts of no less than ten minutes (World Health Organisation 2011). The 

minimum recommendations for older adults >65 years is the same (WHO 2020). It is important to 

note however that the resting metabolic rate in older adults may be less than in younger adults and so 

the required intensity of PA may not necessarily be the same. The energy cost of walking for example 

is higher in older adults(Hall et al. 2014). Results of a meta-analysis supports this suggestion with 

reports of health benefits among older adults with lower intensity levels of PA (McMurray et al. 2014; 

Hupin et al. 2015). 

Physical activity is defined as any bodily movement produced by skeletal muscles that results in energy 

expenditure (Casperson et al. 1985). Everyone performs PA to sustain life; however, the extent 

depends usually on personal choice and differs from person to person. It can be subdivided into light, 

moderate, or vigorous intensity (Casperson et al. 1985; Hupin et al. 2015). Walking is considered the 

main contributor to PA in adults and as a choice of exercise it increases with age (Eyler et al. 2003). 

Simply put, exercise is defined as any activity requiring physical effort, carried out to sustain or 

improve health and fitness and has been described as a subcategory of PA (Casperson et al. 1985). 

Measuring PA and identifying those who do not meet the minimum requirements can increase 

awareness and help target interventions to lessen the adverse effect that reduced activity has on 

functional capacity (Evenson et al. 2015). Most assessment tools for identifying frailty or functional 

dependence incorporate a measurement of mobility (Fried et al. 2001; Rockwood K 2005; Gill et al. 

1995).  

There are changes in physical characteristics that are associated with frailty (Bortone et al. 2021; 

Hwang et al. 2021; Minici et al. 2022). They include gait, defined as a person’s manner of walking 

(Kharb et al. 2011), mobility, the ability to move or be moved freely in space (Casperson et al. 1985) 

and PA, any bodily movement produced by skeletal muscles that results in energy expenditure. They 
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can each be measured in different settings with measurement tools ranging from costly, laboratory-

based observations of gait, to structured, performance-based instruments for mobility assessment, and 

questionnaires or self-reported estimates for PA. The choice of assessment tool depends on the setting 

and should meet important considerations including the appropriateness for the target population, 

practical aspects of administration and because of the contribution of physical, psychological, and 

social components to overall health, would ideally include psychometric properties (Soubra et al. 

2019).  

Laboratory-based instruments such as force plates and motion analysis capture systems are considered 

gold-standard for the evaluation of gait-analysis and have the advantage of objectively measuring a 

wide range of gait parameters including gait-speed, step-time, stride-length and gait-variability, 

changes in which are related to health and frailty (Ciprandi et al. 2017; Schwenk et al. 2015a; Hafer 

and Zernicke 2020). However, self-selected gait-speed alone has been shown to be a sensitive 

indicator of health and a reliable predictor of frailty and disability (Abellan Van Kan et al. 2009; Gill 

et al. 2006; Hoogendijk et al. 2015; Studenski et al. 2011). Walking ability is purported to be a 

sensitive indicator of overall health (Pirker and Katzenschlager 2017) and it is suggested that it may 

be the best predictor of overall performance (Alexander et al. 2000). 

Performance-based measures of mobility of which there are a multitude, are proposed as significant 

predictors of disability in both mobility and activities of daily living. Measures of mobility include: 

timed chair rise (Csuka and McCarty 1985), six-minute walk test (Enright et al. 2003), Timed Up and 

Go test (Podsiadlo and Richardson 1991), Short Physical Performance Battery (Guralnik et al. 1995), 

Physical Performance Test (VanSwearingen and Brach 2001), Barthel Index (Mahoney and Barthel 

1965), SF-36 (Lins and Carvalho 2016), Late Life Function and Disability Instrument (Haley et al. 

2002), each validated for use in specific settings and requiring some degree of specialist or trained 

analyst to administer and compute the relevant score. Self or proxy-reported estimates of mobility by 

their nature are subjective with a risk of reporter bias (Razjouyan et al. 2018) and have poor validity 

(Phillips et al. 2018). They may not match the magnitude of changes of performance-based measures 

that have been shown to be responsive to change (VanSwearingen and Brach 2001). Objective 
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performance-based measures in combination with self-reported estimates are thought to be more 

predictive of declining health and function and hospitalisation than self-report alone (Studenski et al. 

2011). 

2.5 Physical Activity Associated with Frailty Phenotypes   

Measurements of gait speed (Apsega et al. 2020; Galán-Mercant and Cuesta-Vargas 2013; 

Pamoukdjian et al. 2015; Schwenk et al. 2015; Zhou et al. 2019;), step-count (Chen et al. 2020; 

Jansen et al. 2019; Razjouyan et al. 2018; Theou et al. 2012; Yuki et al. 2019;), postural transitions 

(Greene et al. 2014; Millor et al. 2017; Parvaneh et al. 2017;) and sedentary time (Huisingh-Scheetz et 

al. 2018; Kikuchi et al. 2020; Ziller et al. 2020;) are believed to best indicate frailty and its levels. A 

cross-sectional study by (Schwenk et al. 2015a) observed measurements of gait, balance, and PA in 

community-dwelling older adults to investigate if these metrics could be used to discriminate between 

frailty levels. Temporal-spatial parameters of gait were obtained from sensors positioned on the thigh 

and shank during a 4.57m over ground walk in the participant’s home, under single and dual-task 

conditions. The dual task condition involved walking while counting backwards by 1 from 100. 

Balance parameters of postural sway of ankle, hip and centre of mass were obtained from sensors 

positioned on the shank and lower back during a 15-second stand with feet together and eyes closed. 

Measures of PA including duration of walking, standing, sitting and lying, step-count and duration of 

sit to stand transitions were collected over a period of 24-hours by a sensor system positioned in a tee 

shirt pocket positioned at the sternum. The results indicated that walking speed, stride length and 

double support during gait significantly have the capacity to discriminate between levels of frailty. 

Gait, balance, and PA parameters most sensitive for pre-frailty screening were gait speed, hip sway, 

and total number of steps, respectively. Gait speed best discriminated between non-frail and pre-frail 

while stride length best discriminated between pre-frail and frail. While gait speed had the highest 

validity in pre-frail screening, total number of steps was found to be the most sensitive metric 

(Schwenk et al. 2015a). A similar study by (Thiede et al. 2016) examined measures of gait and 

balance obtained from inertial sensors positioned on the shank, thigh and lower back. Gait was 

assessed during a minimum 25-step over ground walk at self-selected speed, fast speed and dual task 
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of counting backward from 100 by 1 at self-selected speed. Balance was assessed during 30-s 

Romberg tests with arms crossed and feet positioned as close together as possible without touching 

under two different conditions of eyes open and eyes closed. Findings concur with those of (Schwenk 

et al. 2015a) whereby gait parameters, specifically speed, cycle time and double support correlated 

with frailty levels. However, none of the balance variables showed significant associations. This is 

surprising considering both studies used the same technology with comparable sensor positioning. 

However, the study by (Thiede et al. 2016) was clinic-based and included a younger age group (>50 

years of age compared with >65 years) which may have influenced outcomes.  

Further studies examining parameters of PA obtained from a wearable sensor suggest that bouts of 

activity are best capable of discriminating between levels of frailty. The total number of steps and the 

longest unbroken bout of stepping were a significant independent predictor for pre-frail status (Chen 

et al. 2020; Razjouyan et al. 2018). These findings concur with those of cross-sectional observational 

studies (Blodgett et al. 2015b; Del Pozo-Cruz et al. 2017) which identify a significant correlation 

between sedentary time and frailty. Results of these studies suggest that sedentary behaviour, i.e., time 

spent in sedentary activity per day and percentage of the day spent sedentary in bouts of more than ten 

minutes are associated with frailty. These findings are supported in later studies, but further research 

is recommended to establish the relevant cut-off points for the intensity of PA that constitutes 

sedentary time, and for the length of time spent in sedentary activity that influences frailty (Chen et al. 

2020; Kikuchi et al. 2020).  

These studies demonstrate that parameters of gait, mobility and PA can be used to discriminate 

between and therefore identify levels of frailty. The parameters that have been purported as best for 

discriminating between levels of frailty include gait speed, number of steps, stride length, bouts of 

activity and/or sedentary time and postural transitions. The benefits of these findings will be in 

establishing if these measurements can be made on a continuous basis, independently, if the data can 

be captured by the individual and used to monitor activity levels and behaviours. The importance of 

community-based monitoring, during everyday activities has been proposed to establish activity 
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behaviours that reflect performance as opposed to the measure of capacity established in laboratory or 

clinic-based monitoring (Jansen et al. 2019). 

While there is consensus in the literature regarding the potential for parameters of gait, mobility, and 

PA to contribute to the identification of frailty and discriminate between levels of frailty, there is 

dispute regarding the optimal parameters. It has been suggested that a combination of parameters is 

more accurate than individual variables (Greene et al. 2014). A possible explanation for the lack of 

clarity is the heterogeneity in study methodologies throughout the literature with gait analysis for 

example being conducted over distances varying from 3-meters to 20-meters, balance examined under 

different conditions and time periods, and different cut-off points for PA, intensity, and bouts of 

sedentary time. Identifying specific metrics that correlate best with frailty phenotypes could advance 

the goal of early recognition and frailty prevention. 

2.6 Wearable Technology 

Facilitating adults to monitor their own activity levels and physical function promotes self-care, can 

enable early detection of inactivity and prevent its progression, thus potentially altering the transition 

from robust or pre-frail to frail. Wearable sensors are devices that incorporate various technologies 

capable of physiological, biomechanical and motion sensing. Wireless inertial units are the most used 

sensors in wearable systems (Zampogna et al. 2020). In the form of accelerometers, gyroscopes, 

pedometers or heart-rate monitors, wearable sensors have the capacity to measure activity frequency, 

duration, and intensity. Accelerometers measure linear acceleration in real time and can detect 

movement in up to three planes, i.e., vertical, antero-posterior and medio-lateral. Pedometers measure 

the number of steps taken and correlate well with uni-axial accelerometers (O’Neill et al. 2017). 

Gyroscopes measure changes in orientation such as rotational or angular velocity, acceleration or 

displacement. Heart rate monitors are one type of sensor among others capable of capturing 

indications of physical activities that do not require trunk displacement and can be used to indicate 

energy expenditure and PA behaviours e.g., sedentary time (Theou et al. 2012). Wearable technology 

can be incorporated in sensors fitted into shoes and clothing, worn as pendants, attached to the wrist, 

ankle, or trunk, or carried in a pocket.  
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The literature supports the validity and reliability of using wearable sensors to detect objective 

measurements that correlate with frailty phenotypes (McCullagh et al. 2016; Straiton et al. 2018; 

Zacharaki et al. 2020; Minici et al. 2022). Research grade devices capture granular data which is 

stored on board the device for later extraction, processing and analysis with specially developed 

algorithms. However, there has been a remarkable growth in the availability of consumer grade 

activity trackers in recent years which purport to measure parameters of gait, mobility and PA, those 

same parameters that have been identified as being predictive of levels of frailty. Data from consumer 

grade devices are retrieved, processed and analysed either on board the device or by a remote 

computer or cloud-based application, and presented in a way that can be interpreted by the user. 

Similarly, medical wearable devices which are used by medical staff and/or patients to diagnose, 

monitor or treat illness, capture large amounts of data which are processed on board and presented to 

users in an understandable way in real time. Studies to date investigating the accuracy and reliability 

of various consumer-level devices in measuring parameters of physical function are contradictory 

(Kooiman et al. 2015; Peake et al. 2018; Sears et al. 2017; Tedesco et al. 2019a). 

A laboratory and free-living-based study examining ten consumer-grade activity trackers to measure 

step-count in young healthy adults found high reliability and validity in most at speeds of 4.8km/h in 

activity trackers worn on the lower back, waist, wrist and carried in a front trouser-pocket (Kooiman 

et al. 2015). This is in contrast with a small sample-size study measuring step-count of young adults 

on a treadmill using consumer-grade wrist-worn devices, which found all devices tended to 

underestimate steps. Accuracy decreased with both increasing and decreasing speeds (Sears et al. 

2017). A study involving older adults had comparable results, with decreasing accuracy with slower 

speeds and with greater percentage errors than earlier studies (Tedesco et al. 2019a). A study of older 

adults examining step-count from three different pedometers and an accelerometer found no 

significant difference between devices during walking at a self-selected-speed but significant 

differences during treadmill walking (Johnson 2015). 
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Conclusion 

Despite the inaccuracies, there is a growing interest in the public domain for wearable sensors  (Sears 

et al. 2017), and it has been suggested that there is an increasing acceptance among older adults of 

their use (Preusse et al. 2017; Lee et al. 2020). To facilitate older adults to independently monitor 

parameters of gait, mobility and PA, further research is needed to identify a suitable device, location, 

and parameter to identify frailty and discriminate between non-frail, pre-frail and frail older adults. 

This chapter has examined the aetiology of frailty, its prevalence, and the implications for both the 

individual and the health service. The review has introduced the concept of the use of wearable 

sensors in community-dwelling older adults to facilitate the identification of frailty and suggests the 

feasibility and utility of such a model. Chapter 3 will examine how wearable technology has been 

used to evaluate frailty in older adults. 
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Chapter Three - Systematic Review  

3.0 Background 

Traditionally, measurement of mobility and PA has relied on the use of self-reported questionnaires, 

surveys or diaries, or direct observation of physical performance tests, each with inherent difficulties 

and limitations. While these methods can be cost-effective and simple to administer, they carry a risk 

of bias from recall, desire to perform better and participant reactivity, a well-recognised phenomenon 

of behaviour change due to the awareness of being observed (Sylvia et al. 2014). 

Recent advances in technology provide the opportunity for objective measurement of mobility and PA 

using wearable sensors. This allows for unbiased examination of PA patterns and behaviours which 

can inform guidelines and promote more widespread participation (Doherty et al. 2017; Jansen et al. 

2015; Straiton et al. 2018). 

Considering the increasing population of older adults, 95% of who in Ireland are community-dwelling 

(CSO 2019), identifying a way for individuals to independently and objectively monitor their risk of 

developing frailty is vital. Earlier reviews have reported on the use of wearable sensors in relation to 

gait analysis (Schwenk et al. 2013), falls risk (Pang et al. 2019), rehabilitation (Patel et al. 2012) and 

levels of PA in hospitalised frail older adults (McCullagh et al. 2016) and community-dwelling older 

adults (Straiton et al. 2018).  

This chapter presents a systematic review, which was conducted to explore how wearable sensors 

have been used to identify frailty and pre-frailty in older adults and how results compare with a 

traditional frailty classification tool. The objective of undertaking this review was to inform the 

research and determine if quantitative measures of PA and mobility obtained from a body-worn 

sensor can be used to discriminate between frail and non-frail community-dwelling older adults. This 

review has been published (Vavasour et al. 2021) and the paper is included as an appendix to this 

thesis (Appendix 3.1). 
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3.1 Methods 

3.1.1 Search Strategy 

This systematic review was conducted in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al. 2009) and is registered with the 

International prospective register of systematic reviews (PROSPERO) (registration number 

CRD42020163082). Using the PICO framework (Population, Intervention, Comparator and Outcome) 

to develop search terms, the electronic databases MEDLINE, Science Direct, Scopus, and CINAHL 

were searched as per previous reviews (Straiton et al. 2018; Binotto et al. 2018; Kojima et al. 2019). 

The search was carried out in March 2020 and updated November 24th, 2020 to ensure all recently 

published articles meeting the criteria were included. For the purpose of this thesis, a further search 

was performed on 21 July 2022 to retrieve any further articles published since the review was 

published (Vavasour et al. 2021). The search strategy was developed in consultation with a librarian. 

The complete search strategy used in MEDLINE and adapted to the other electronic sources is shown 

in Appendix 3.2. Reference lists of eligible papers were manually searched for additional studies.  

3.1.2 Study selection 

Papers were selected if they were available in English and met the following criteria: primary 

observational studies, performed in a laboratory, clinical or free-living (home/community) 

environment; recruited older adults > 60 years of age; involved the use of any consumer, research, or 

medical-grade wearable sensor providing quantitative measurements of mobility and/or PA, and 

included a standardised frailty classification tool. Studies were excluded if they used non-wearable 

sensors (e.g., ambient sensor) for outcome measurement, or outlined mobility/PA algorithm or 

application development exclusively. 

Titles and abstracts were screened by one investigator. Full texts of studies identified by this review 

were screened for eligibility by three investigators independently. Consensus was reached through 

discussion.    
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3.1.3 Data Extraction 

Data extracted from each study included first author, year of publication, number of participants and 

age profile, study setting, wearable sensor used (make, model and manufacturer), study objectives and 

methods, parameters of PA/ mobility measured, frailty measure, reported findings and their statistical 

analysis. Studies selected for review need to be critically appraised for quality, strengths and 

limitations and relevance. There are a multitude of appraisal tools available, the selection of which 

should be guided by the nature of the study being reviewed (CASP 2022). For example, a quality 

appraisal tool for systematic reviews which must examine the quality of the conduct of each study 

included in the review (Shea et al. 2017) will differ from that for randomised control trials which must 

include an appraisal of the risk of bias associated with participant recruitment (Higgins et al. 2011). 

The selected studies were assessed using the Appraisal Tool for Cross-sectional Studies (AXIS) 

(Downes et al. 2016a) selected because of its development through the rigorous Delphi process and 

the inclusion of components to evaluate the quality of both the methodology and the reporting of each 

study.   

3.2 Analysis 

Due to the heterogeneity of the study methodology, methods of analysis and outcomes reported, a 

meta-analysis was not possible in this review and therefore a narrative synthesis is presented. 

3.3 Results 

3.3.1 Literature Search 

The initial search identified 376 papers published since 2010. Following screening of titles and 

abstracts and removal of duplicates, 35 articles were deemed appropriate for full text screening. Five 

further articles were identified from manual search of references of eligible studies. One paper 

(Apsega et al. 2020) was published after the updated search in November 2020 but was included when 

discovered incidentally. No further articles were identified in the updated search performed in July 

2022. Of the 40 articles reviewed, 11 were excluded (See Appendix 3.3). The remaining 29 were 

included in the review (Appendix 3.4). Fig. 1 outlines the selection process.  
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Fig. 1 PRISMA 2009 Flow Diagram 
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3.3.2 Study characteristics  

All studies included in the review were either validation (<25%) or observational cross-sectional 

design. One study (Castaneda-Gameros et al. 2018) was a mixed methods design but only the 

objective quantitative results were included in the report. The studies were carried out in varying 

settings; home n = 14 (Schwenk et al. 2015a; Jansen et al. 2019; Toosizadeh, Mohler and Najafi 2015; 

Parvaneh et al. 2017; Razjouyan et al. 2018; Castaneda-Gameros et al. 2018; Mulasso et al. 2019; 

Theou et al. 2012; Jansen et al. 2015; Chen et al. 2015; Ziller et al. 2020; Huisingh-Scheetz et al. 

2018; Kikuchi et al. 2020; Yuki et al. 2019), laboratory n = 8 (Martınez-Ramırez et al. 2011; Millor et 

al. 2013; Galán-Mercant and Cuesta-Vargas 2013; Mulasso et al. 2019; Lepetit et al. 2019; Greene et 

al. 2014; Greene et al. 2014; Galán-Mercant and Cuesta-Vargas 2013), hospital in-patient n = 2 (Lee 

et al. 2018; Toosizadeh et al. 2016), hospital out-patient n = 2 (Zhou et al. 2019; Ziller et al. 2020), 

community centre n = 1 (Chen et al. 2020), and not specified n = 4 (Martínez-Ramírez et al. 2015; 

Toosizadeh, Mohler, Wendel, et al. 2015; Millor et al. 2017; Apsega et al. 2020). Participant numbers 

included in the studies examined ranged from n = 30 to n = 718. Criteria of frailty classification 

included; Fried’s Frailty Phenotype (n = 19) (Martınez-Ramırez et al. 2011; Millor et al. 2013; Galán-

Mercant and Cuesta-Vargas 2013; Galán-Mercant and Cuesta-Vargas 2013; Greene et al. 2014; 

Greene et al. 2014; Chen et al. 2015; Schwenk et al. 2015; Martínez-Ramírez et al. 2015; Toosizadeh, 

Mohler, Wendel, et al. 2015; Toosizadeh, Mohler and Najafi 2015; Millor et al. 2017; Parvaneh et al. 

2017; Razjouyan et al. 2018; Castaneda-Gameros et al. 2018; Jansen et al. 2019; Zhou et al. 2019; 

Ziller et al. 2020; Apsega et al. 2020), the modified Frailty Phenotype (n = 3) (Huisingh-Scheetz et al. 

2018; Chen et al. 2020; Kikuchi et al. 2020), Rockwood’s Frailty Index (n = 2) (Theou et al. 2012; 

Lepetit et al. 2019) Trauma-Specific Frailty Index (n = 2) (Toosizadeh et al. 2016; Lee et al. 2018), 

Identification Seniors At Risk-Hospitalized Patients’ questionnaire (ISAR-HP) (n = 1) (Jansen et al. 

2015), and Tilburg Frailty Indicator (n = 1) (Mulasso et al. 2019). 

Of the studies included, 13 different body-worn sensor brands were used in eight different body-

locations. Details of sensors are provided in Table 3.1. One study used an iPhone as a body-worn 

sensor by affixing it to the chest and was thus included in the study, data from which is presented in 
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two separate articles (Galán-Mercant and Cuesta-Vargas 2013; Galán-Mercant and Cuesta-Vargas 

2013). Sensor placement included; the lumbar spine (L3) (n = 8), chest (n = 7), shin/ankle (n = 7), 

wrist and upper-limb combination (n = 3), wrist (n = 2), waist (n = 3), hip (n = 3), thigh (n = 3), and 

foot (n = 1). Sensor placement was not specified in three studies. Nineteen studies used just one body 

location (Lepetit et al. 2019; Mulasso et al. 2019; Castaneda-Gameros et al. 2018; Razjouyan et al. 

2018; Parvaneh et al. 2017; Millor et al. 2013; Millor et al. 2017; Martínez-Ramírez et al. 2015; 

Greene et al. 2014; Galán-Mercant and Cuesta-Vargas 2013; Martınez-Ramırez et al. 2011; Jansen et 

al. 2015; Ziller et al. 2020; Zhou et al. 2019; Galán-Mercant and Cuesta-Vargas 2013; Huisingh-

Scheetz et al. 2018; Chen et al. 2020; Kikuchi et al. 2020; Yuki et al. 2019), three studies, measuring 

elbow kinetics specifically, used a combination of above elbow and wrist (Lee et al. 2018; Toosizadeh 

et al. 2016; Toosizadeh, Mohler and Najafi 2015), while six others used multiple body-locations of L3 

and shin (Toosizadeh, Mohler, Wendel, et al. 2015), and chest, L3, thigh, shin and foot (Schwenk et 

al. 2015; Jansen et al. 2019; Greene et al. 2014; Theou et al. 2012; Apsega et al. 2020).
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Table 3.1. Details of sensors 
Author (Reference.)  Sensor Type, Location and properties, where provided Acquisition, Processing and Analysis              
Martinez-Ramirez et al., 
(2011)  

MTx XSENS (Xsens Technologies B.V. Enschede, Netherlands). 
Tri-axial accelerometer, gyroscope & magnetometer worn at L 3 combines nine individual MEMS 

sensors to provide drift-free 3D orientation as well as kinematic data: 3D acceleration, 3D (rate gyro) and 

3D magnetometers. 

A wavelet-based algorithm using Fourier Technique, Wavelet Decomposition, Principal 
Component Analysis 

Theou et al., (2012)  ActiTrainer (ActiGraph LLC, Fl., USA). Uni-axial accelerometer worn on waist Records data in 1-
minute epochs                                                       

Polar WearLink (Polarlink Technologies Ltd., KH, Taiwan). HR monitor worn on chest   

Garmin forerunner405 (Garmin International Inc., KS, USA). GPS worn on wrist                           
Biometrics DataLOG P3X8 (Gwent, UK). EMG worn on Vastus Lateralis and Biceps Brachii  

Data downloaded or wirelessly transmitted to Custom Software 
 

EMG sampling frequency 1000Hz 

Millor et al., (2013)  MTx XSENS (Xsens Technologies B.V. Enschede, Netherlands).   

Tri-axial accelerometer, gyroscope & magnetometer worn at L3 

Sampling frequency 100Hz, Automated raw data analysis using Matlab (Mathworks Inc., 

MA., USA). 

Galan-Mercant and Cuesta-
Vargas (2013)  

iPhone4 secured to chest (Apple Inc., CA, USA).                            
Tri-axial accelerometer, gyroscope & magnetometer.  

Apple uses a LIS302DL accelerometer in iPhone4 

Sampling frequency 32Hz. Data obtained through the use of an application, xSensor 
Pro(Crossbow Technology Inc., CA., USA) available from Apple AppStore 

Greene et al., (2014)  Shimmer (Dublin, Ireland).                         
Tri-axial accelerometer & gyroscope worn on each shin 

Sensor axes aligned with the vertical, medio-lateral and anterior-posterior axes of the body, 

Sampling frequency 102.4Hz, Low-pass filtered with zero-phase 2nd order Butterworth filter, 
20Hz corner frequency. Raw data analysis using Matlab (Mathworks Inc., MA., USA). 

Greene et al., (2014)  Shimmer (Dublin, Ireland).                          
Tri-axial accelerometer & gyroscope worn on each shin, lateral aspect of right thigh, Sternum above L5  

Inertial sensor Sampling frequency 102.4Hz, 2nd order Butterworth filter. Pressure sensor 
40Hz. Raw data analysis using Matlab (Mathworks Inc., MA., USA). 

Chen et al., (2015)  Active Style Pro, HJA350-IT (Omron Healthcare Co. Ltd, Kyoto, Japan). 

Tri-axial accelerometer. Location not specified 

Details not provided  

Schwenk et al., (2015)  LEGSys™, BalanSens™, PAMSys™ Locomotion Evaluation and Gait System (BioSensics, MA, USA).  
Tri-axial accelerometer, gyroscope, magnetometer sensors worn on shanks, thighs, and L. 

Sampling frequency 100Hz Custom software LEGSys™, BalanSens™, (BioSensics, MA, 
USA). 

Martinez-Ramirez et al., 

(2015)  

MTx XSENS,(Xsens Technologies B.V. Enschede, Netherlands). 

Tri-axial accelerometer, gyroscope & magnetometer worn at L3                                                                                  

Gait features were detected using automatic peak detection and identified using wavelet 

decomposition (Coif5 level 3) 

Toosizadeh, Mohler, Wendel 
et al., (2015)  

BalanSens™ BioSensics LLC. (MA., USA). 
Triaxial accelerometer, gyroscope, magnetometer worn at shank and trunk 

Sampling frequency 100Hz Real time quaternions were converted to Eular angles 

Toosizadeh, Mohler and 

Najafi (2015)  

BioSensics LLC (MA., USA). 

Tri-axial gyroscope worn on Upper Arm near Biceps muscle and wrist.                     

Sampling frequency 100Hz Further details of sensor-data extraction not provided 

Jansen et al., (2015)  ActiGraph GT3X+ (ActiGraph LLC, FL., USA) and BT-Q1000XT (QStarz International Co., Taipai, 
Taiwan).  

Tri-axial accelerometer and GPS receiver worn on waist 

ActiLife v5.8.3 Firmware v2.2.0, (ActiGraph LLC, Fl., USA) was used to process 
accelerometer data 

Toosizadeh et al., (2016)  BioSensics LLC (MA., USA).                    

Tri-axial gyroscope worn on Upper Arm near Biceps muscle and wrist. 

Sampling frequency 100Hz. Further details of sensor-data extraction not provided  

Millor et al., (2017)  MTx Orientation Tracker (Xsens Technologies B.V., Enschede, Netherlands). 

Tri-axial accelerometer, gyroscope & magnetometer worn at L3                                             

Sampling frequency 100Hz. Nine individual MEMS sensors provided kinematic data. Drift-

free orientation data was also provided using Kalman filters. Automated data analysis using 

Matlab (Mathworks Inc., MA., USA) 

Parvanneh et al., (2017)  PAMSys™ (BioSensics LLC, MA, USA), 
Tri-axial accelerometer worn at Sternum   

Sampling frequency 50Hz. Custom software / algorithm (PAMWare, BioSensics MA, USA)  

Huisingh-Scheetz et al., 

(2018)  

ActiWatch Spectrum (Philips, Amsterdam, Netherlands). 

Tri-axial piezo-electric accelerometer worn on wrist 

Sampling frequency 32Hz. Data processed using Actiware® software (Philips, Amsterdam, 

Netherlands). 

Lee et al., (2018)  LEGSys™ (Biosensics LLC, MA. USA).                                                                            
Tri-axial gyroscope worn on wrist and Upper arm 

Sampling frequency 100Hz, Automated raw data analysis using Matlab (Mathworks Inc., 
Natick, MA., USA). An algorithm was developed using zero crossing technique, with no 

filtering, to automate phenotype extraction. 
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Razjouyan et al., (2018)  PAMSys™ (BioSensics LLC,  MA, USA).                         
Tri-axial accelerometer worn at sternum 

Sampling frequency 50Hz. The raw data were processed with a band-pass filter at cut-off 
frequencies of 0.1953 Hz and 12.5 Hz  

Castaneda-Gameros et al., 

(2018) 

Actigraph GT3X accelerometer (ActiGraph LLC, FL., USA). Worn on hip. Programmed to record 

activity in 60-second epochs 

Data were cleaned and scored using ActiLife software V6.2 (ActiGraph LLC, Fl., USA). 

Jansen et al., (2019)  LEGSys™ (BioSensics, MA., USA). 
Tri-axial accelerometer, gyroscope, magnetometer worn on shanks, thighs, and L. 

Algorithm based on accelerometer data with low-pass filtering (as described in author’s earlier 
publication) 

Zhou et al., (2019)  LEGSysTM (BioSensics, MA, USA)          

Tri-axial accelerometer, gyroscope, magnetometer worn on both shins 

Quaternion components of ankle rotation were converted to Eular angles. Sampling frequency 

100Hz 

Mulasso et al., (2019)  ADAMO System (Caretek SRL.,Turin, Italy).                                                                                                
Tri-axial accelerometer worn on wrist 

Embedded step-count algorithm. Sampling frequency 50Hz 

Lepetit et al., (2019)  APDM (Opal, Portland, USA)                       

Tri-axial accelerometer, gyroscope, magnetometer worn on chest 

Fusion algorithm. Sampling frequency 128Hz 

Yuki et al., (2019)  Lifecorder (Suzuken, Aichi, Japan) 
Uniaxial accelerometer. Body-location not specified 

Data recorded in 4-second epochs. No further information available  

Ziller et al., (2020)  ActiGraph wGT3x-BT, (ActiGraph, LLC., FL., USA). 

Tri-axial accelerometer worn at hip 

Sampling frequency 100Hz, 10-second epochs. Data processing using ActiLife Software 6, 

(ActiGraph LLC., FL., USA) 

Chen et al., (2020)  Active style Pro HJA- 350IT, (Omron Healthcare, Kyoto, Japan). 
Triaxial accelerometer worn at the waist 

Data recorded in 60-second epochs. No further detail available 

Kikuchi et al., (2020)  Active style Pro HJA-750C, (Omron Healthcare, Kyoto, Japan). 

Triaxial accelerometer worn at the hip 

Data recorded in 60-second epochs. Analysis using application developed by Omron 

Healthcare, Kyoto, Japan) to read METs data from accelerometer.  

Apsega et al., (2020)  Shimmer, (Dublin, Ireland).                          
Tri-axial accelerometer & gyroscope worn on each thigh, shin and dorsum of foot  

Sampling frequency 256 Hz. Butterworth second order low pass filter with an 8 Hz cut-off 
and an additional least square method 25th order filter with a 10 Hz cut-off for composite foot 

acceleration data. A gait event detection algorithm was developed. 
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Seven different measures of mobility and PA were reported. Mobility measures included; temporal-

spatial gait parameters of speed, total steps, double support, stride length, time and variability (Apsega 

et al. 2020; Galán-Mercant and Cuesta-Vargas 2013; Greene et al. 2014; Greene et al. 2014; 

Martínez-Ramírez et al. 2015; Schwenk et al. 2015; Theou et al. 2012; Zhou et al. 2019), postural 

transitions: acceleration counts of sit to stand (STS), stand to walk, stand to sit (Greene et al. 2014; 

Lepetit et al. 2019; Millor et al. 2017; Millor et al. 2013; Parvaneh et al. 2017; Razjouyan et al. 2018; 

Theou et al. 2012), trunk angular velocity (Galán-Mercant and Cuesta-Vargas 2013; Greene et al. 

2014), upper limb kinematics (Lee et al. 2018; Toosizadeh, et al., 2015; Toosizadeh et al. 2016), 

intensity of PA and percentage of time in walking, standing, sitting and lying (Castaneda-Gameros et 

al. 2018; Chen et al. 2020; Huisingh-Scheetz et al. 2018; Jansen et al. 2015; Jansen et al. 2019; 

Kikuchi et al. 2020; Mulasso et al. 2019; Parvaneh et al. 2017; Razjouyan et al. 2018; Schwenk et al. 

2015; Theou et al. 2012; Yuki et al. 2019;). Two studies examined PA intensity with the aim to 

objectively define and compare with the low PA criterion of a frailty classification tool (Chen et al. 

2015; Ziller et al. 2020). Balance parameters included sway of ankle, hip and centre of mass (Greene 

et al. 2014; Martınez-Ramırez et al. 2011; Schwenk et al. 2015; Toosizadeh et al. 2015) and chair-

stand kinematics including number of STS cycles, acceleration and trunk displacement (Greene et al. 

2014; Lepetit et al. 2019; Millor et al. 2013; Millor et al. 2017). 

3.3.3 Participant characteristics 

Participants ranging in age 63 – 90 years were recruited from community, assisted-living or hospital 

environments. Four studies (Lepetit et al. 2019; Martınez-Ramırez et al. 2011; Millor et al. 2013; 

Zhou et al. 2019) included a healthy young cohort (age range 18-54 years) for comparison. For those 

studies that reported sex there was an overall predominance of females.  

 3.3.4 Quality assessment 

With the exception of one study that scored 12, the methodological quality of studies demonstrated a 

minimum result of 70% (14 out of a possible 20, range 14 - 20) using the AXIS tool (Appendix 3.5). 

Quality appraisal of all 29 studies is presented in Table 3.2. The tool used does not apply a numerical 

score or rating because of the author’s assertion of the non-linear weighting of each aspect of the 
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assessment and each section (Downes et al. 2016b). No study was excluded based on methodological 

score. 

Table 3.2 AXIS Methodological Quality Assessment  

AXIS Methodological Quality Assessment (Yes = 1, No = 0, Not known = 0) 

*Q 13 “Does the response rate raise concerns about non-response bias?” *Q19 “Were there any 

funding sources or conflicts of interest that may affect the authors’ interpretation of the results? 

‘No’ is a positive response, therefore ‘No’ counts as ‘1’ 
Study Q

1 
2 3 4 5 6 7 8 9 1

0 
1
1 

1
2 

13
* 

1
4 

1
5 

1
6 

1
7 

1
8 

19
* 

2
0 

Tota
l 

Martinez-

Ramirez et 
al., (2011)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 15 

Theou et 

al., (2012)  

1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 16 

Millor et 
al., (2013)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 14 

Galan-

Mercant 

and 
Cuesta-

Vargas 

(2013) 

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 14 

Galan-

Mercant 

and 
Cuesta-

Vargas 

(2013) 

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 14 

Greene et 

al., (2014)  

1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 14 

Greene et 

al., (2014)   

1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 12 

Chen et 

al., (2015)  

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 18 

Toosizade

h, Mohler, 
Wendel et 

al., (2015)  

1 1 1 1 1 0 0 1 1 1 1 1 0 

 

0 1 1 1 1 1 1 16 

Toosizade
h, Mohler 

and Najafi 

(2015)  

1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 16 

Schwenk 
et al., 

(2015)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 15 

Martinez-
Ramirez et 

al., (2015)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 15 

Jansen et 

al., (2015)  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 

Thiede et 

al., (2016)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 15 

Parvanneh 
et al., 

(2017)  

1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 15 

Millor et 

al., (2017)  
1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 14 

Huisingh-

Scheetz et 

al., (2018)  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 

Lee et al., 
(2018)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 14 

Castaneda

-Gameros 
et al., 

(2018)   

1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 16 
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Razjouyan 

et al., 

(2018)  

1` 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 14 

Mulasso et 

al., (2019)  

1 1 0 1 0 0 0 1 1 1 1 1 0* 1 1 1 1 1 0 1 14 

Zhou et 

al., (2019)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 14 

Lepetit et 

al., (2019)  

1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 15 

Jansen et 

al., (2019)  

1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 14 

Yuki et 

al., (2019)  
1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 16 

Ziller et 

al., (2020)  

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19 

Chen et 

al., (2020)  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 

Kikuchi et 

al., (2020)  

1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 18 

Apsega et 

al., (2020)  
1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 16 

 

3.4 Discussion 

This systematic review was undertaken to examine which parameters of mobility and PA obtained 

from a wearable sensor have been used to assess and quantify frailty, which type of body-worn 

sensors and specific body-locations have been used, and how different parameters are associated with 

discriminating the stages of frailty. Of the 29 studies included in the review, seven distinct aspects of 

mobility and PA with a multiplicity of subdivisions were examined, using 13 different sensor brands 

on eight different body-locations. Some studies use a combination of body-locations. This 

heterogeneity makes comparison and analysis difficult and thus precludes recommendations on 

devices. It is worth noting however that while brands of sensors reported differ, the properties are 

comparable. Studies will be discussed under headings referring to the various mobility and PA 

parameters, sensors used and body-location of sensors. 

3.4.1 Parameters of Mobility and Physical Activity  

3.4.1.1 Physical Activity Parameters  

Time spent in non-sedentary activity is the most commonly examined parameter of mobility and PA 

in the literature reviewed. Subdivisions of PA patterns and PA behaviour examined include time spent 

in non-sedentary activity; time spent in various intensities of activity; number of postural transitions, 
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number of bouts, length of unbroken bouts and variability in bouts of the different measurements of 

PA.  

There was some commonality of metrics among the 12 studies in this group (Castaneda-Gameros et 

al. 2018; Chen et al. 2020; Huisingh-Scheetz et al. 2018; Jansen et al. 2019; Jansen et al. 2015; 

Kikuchi et al. 2020; Mulasso et al. 2019; Parvaneh et al. 2017; Razjouyan et al. 2018; Schwenk et al. 

2015; Theou et al. 2012; Yuki et al. 2019) and some consensus. Razjouyan et al., (Razjouyan et al. 

2018) agree with earlier findings of (Theou et al. 2012) that total time spent in non-sedentary activity 

correlates well with a frailty index, demonstrating significant differences between levels of frailty. 

This is supported by (Jansen et al. 2019) in a study which examines the effect of frailty levels on 

motor capacity and mobility performance. The authors suggest that capacity does not necessarily 

determine performance or function but there is a strong association between the two and frailty. These 

findings are contradicted by (Schwenk et al. 2015a) who suggest that percentage of time spent 

walking is a poor discriminator of frailty levels. These authors (Schwenk et al. 2015a) suggest 

variability in walking bouts described as more static and less complex PA combined with shorter 

walking bouts as a more sensitive measure of frailty. Similarly, it is suggested that sedentary time is 

associated with frailty ( Kikuchi et al. 2020; Razjouyan et al. 2018) but this is refuted in another study 

(Castaneda-Gameros et al. 2018).  

Some studies measured intensity of PA, but as is common with many of the parameters in the studies 

included in this review, there is little consistency in how the metrics are defined or measured. 

Categories of PA intensity are consistent insofar as they are referred to as variations of low, medium 

or high ( Castaneda-Gameros et al. 2018; Chen et al. 2015; Chen et al. 2020; Jansen et al. 2015; 

Kikuchi et al. 2020; Mulasso et al. 2019; Razjouyan et al. 2018; Yuki et al. 2019; Ziller et al. 2020;) 

but how each category is defined differs from measurement of acceleration counts per minute 

(Castaneda-Gameros et al. 2018; Jansen et al. 2015) to metabolic equivalents (MET) ( Chen et al. 

2020; Jansen et al. 2015; Kikuchi et al. 2020; Razjouyan et al. 2018; Yuki et al. 2019) and magnitude 

of mobility e.g., lying, sitting, walking pace (Mulasso et al. 2019). Counts per minute as a metric of 



 42 

PA intensity are not universal and there is marked disparity between the scales used (Castaneda-

Gameros et al. 2018; Huisingh-Scheetz et al. 2018; Jansen et al. 2015; Ziller et al. 2020).  

There is some agreement that moderate to vigorous activity is inversely related to frailty. Those 

studies that differentiate between levels of frailty agree that PA intensity discriminates non-frail from 

pre-frail and to a lesser extent pre-frail from frail (Castaneda-Gameros et al. 2018; Chen et al. 2020; 

Kikuchi et al. 2020; Razjouyan et al. 2018; Yuki et al. 2019). This is refuted by (Jansen et al. 2015) 

who found no significant between-group differences. The much lower counts per minute used in this 

study may account for this finding. Acceleration counts as measured in one study (Theou et al. 2012) 

are referred to as postural transitions or counts per minute (CPM) in others (Huisingh-Scheetz et al. 

2018; Yuki et al. 2019; Ziller et al. 2020). One study (Parvaneh et al. 2017) in which postural 

transitions are further defined as STS, stand to sit, stand to walk etc. purports the ability of the number 

of postural transitions to discriminate between levels of frailty while the others suggest discrimination 

between frail and non-frail only (Huisingh-Scheetz et al. 2018; Ziller et al. 2020). 

Within the literature included in the review, the most common correlation between frailty levels and 

PA demonstrated are moderate – vigorous PA (MVPA) (Castaneda-Gameros et al. 2018; Chen et al. 

2020; Kikuchi et al. 2020; Razjouyan et al. 2018; Yuki et al. 2019) , bouts of PA (Chen et al. 2020; 

Jansen et al. 2019; Razjouyan et al. 2018; Schwenk et al. 2015) and total number of steps (Chen et al. 

2020; Jansen et al. 2019; Razjouyan et al. 2018; Theou et al. 2012; Yuki et al. 2019). 

3.4.1.2 Temporal-Spatial Parameters of Gait including Trunk kinematics 

Seven studies ( Jansen et al. 2019; Martínez-Ramírez et al. 2015; Millor et al. 2017; Mulasso et al. 

2019; Schwenk et al. 2015; Theou et al. 2012; Zhou et al. 2019) examined gait speed, velocity, or 

time to complete a walk test as part of their research. Five included gait speed with temporal-spatial 

parameters including step time, regularity, stride time, length regularity, percentage of time in double 

support, and trunk kinematics of angular velocity and trunk displacement (Apsega et al. 2020; Greene 

et al. 2014; Greene et al. 2014; Martínez-Ramírez et al. 2015; Schwenk et al. 2015;). One study 

examined trunk kinematics only, during the STS, Stand to Sit and turn transitions of the 10-m Timed 
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Up and Go (TUG) test (Galán-Mercant and Cuesta-Vargas 2013; Galán-Mercant and Cuesta-Vargas 

2013). While there is consensus regarding the association between gait speed/velocity and the 

identification of frailty (Theou et al. 2012; Schwenk et al. 2015; Galán-Mercant and Cuesta-Vargas 

2013; Zhou et al. 2019; Apsega et al. 2020) there is disparity in the significance of the results. All 

agree on the ability of gait speed/velocity to discriminate between non-frail and frail however the 

effect size varies considerably, even between studies using the same body-location (Schwenk et al. 

2015a; Zhou et al. 2019). Variation in the methodology of gait speed measurement may be a 

contributory factor in the disparity, with distance over which speed was measured varying from 3m to 

20m. One study suggests that the ability to distinguish between pre-frail and frail, arguably a more 

important distinction, lies within the development of models including capacity and performance 

(Jansen et al. 2019). This study included measures of normal and fast walking speed as measures of 

capacity. 

3.4.1.3 Balance  

Balance is measured in different ways throughout the literature varying in the nature of the 

assessment, the conditions under which the assessment took place and duration of each task. Those 

that assessed balance during a period of quiet standing did so over different time periods ranging from 

10 – 40-seconds ( Greene et al. 2014; Martınez-Ramırez et al. 2011; Schwenk et al. 2015; Toosizadeh, 

Mohler, Wendel, et al. 2015) . Conditions varied between participants standing with feet together, feet 

semi-tandem, eyes open and/or eyes closed while another measured balance during a 30-second chair-

stand exercise (Millor et al. 2013). Balance was evaluated by examining displacement of trunk 

(Greene et al. 2014; Martınez-Ramırez et al. 2011; Millor et al. 2013; Schwenk et al. 2015), hip and 

ankle (Schwenk et al. 2015a; Toosizadeh, Mohler, Wendel, et al. 2015) in anteroposterior and medial-

lateral directions and during different phases of the task (Millor et al. 2013).  

Studies that investigated the effect of balance parameters on the identification of frailty agree on a 

greater anteroposterior sway in frail groups under conditions of feet together, eyes closed but no 

between-group significance (Martınez-Ramırez et al. 2011; Toosizadeh, Mohler, Wendel, et al. 2015; 

Schwenk et al. 2015a). Millor et al., (Millor et al. 2013) concur to some extent in their assessment of 
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lateral sway. However, synthesis of data is difficult because of the study characteristics. These studies 

varied in their methodology and analysis. One study (Martınez-Ramırez et al. 2011) proposes analysis 

of the orientation and acceleration signal-intensity as a novel and perhaps more appropriate approach 

to discriminating between frailty levels than sway or power variables of balance tests. Results of this 

study indicate that the higher frequencies of orientation and acceleration signals obtained through 

wavelet decomposition analysis in healthy populations are distinguished from the lower frequencies 

typical of a frail population.  

One study that examined a broad range of variables suggests that the predictive validity of balance 

parameters is inferior to those of gait and PA parameters (Schwenk et al. 2015a). Subsequently it has 

been suggested that kinematics of STS have greater sensitivity, specificity, accuracy and precision 

values than those of gait parameters, specifically velocity (Millor et al. 2017). This is supported by 

one study which, using a model combining data from balance, PA and chair kinematics, yields a 

higher accuracy percentage in identifying frailty than each of the individual tests (Greene et al. 2014). 

3.4.1.4 Upper Limb Kinematics  

Three studies ( Lee et al. 2018; Toosizadeh, Mohler and Najafi 2015; Toosizadeh et al. 2016)  

examined kinematics of the upper limb, specifically the elbow, in the development of a frailty 

assessment tool that does not rely on gait. All agree on the ability of the variables derived from an 

elbow flexion/extension task to distinguish between levels of frailty. 

3.4.2 Sensors and Body- Location 

With the exception of two studies (Theou et al. 2012; Yuki et al. 2019) in which a uni-axial 

accelerometer was used, all studies report the use of either a tri-axial accelerometer, gyroscope or a 

combination of both, with the inclusion of a tri-axial magnetometer reported in eight studies (Apsega 

et al. 2020; Galán-Mercant and Cuesta-Vargas 2013; Lepetit et al. 2019; Martınez-Ramırez et al. 

2011; Martínez-Ramírez et al. 2015; Millor et al. 2013; Millor et al. 2017; Zhou et al. 2019). The uni-

axial accelerometer was positioned at the waist and used to record steps in conjunction with 

acceleration counts (Theou et al. 2012) and total number of steps with PA intensity (Yuki et al. 2019). 
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The most common body-location for the tri-axial sensors was the lumbar spine (Greene et al. 2014; 

Jansen et al. 2019; Martınez-Ramırez et al. 2011; Martínez-Ramírez et al. 2015; Millor et al. 2013; 

Millor et al. 2017; Schwenk et al. 2015; Toosizadeh, Mohler, Wendel, et al. 2015), but in other 

studies, these sensors were positioned at the chest (Galán-Mercant and Cuesta-Vargas 2013; Greene et 

al. 2014; Lepetit et al. 2019; Parvaneh et al. 2017; Razjouyan et al. 2018; Theou et al. 2012), shins 

(Toosizadeh, Mohler, Wendel, et al. 2015; Zhou et al. 2019; Greene et al. 2014; Schwenk et al. 2015; 

Greene et al. 2012; Jansen et al. 2019; Apsega et al. 2020), wrist (Mulasso et al. 2019; Toosizadeh, 

Mohler and Najafi 2015; Toosizadeh et al. 2016; Lee et al. 2018; Huisingh-Scheetz et al. 2018), waist 

(Jansen et al. 2015; Chen et al. 2020), hip (Castaneda-Gameros et al. 2018; Kikuchi et al. 2020) thigh 

(Schwenk et al. 2015a; Apsega et al. 2020) and foot (Apsega et al. 2020) 

There was some commonality with the body-locations used and metrics obtained, for example all 

balance parameters were obtained using a tri-axial gyroscope positioned at the L3 (Martınez-Ramırez 

et al. 2011; Millor et al. 2013; Toosizadeh, Mohler, Wendel, et al. 2015; Schwenk et al. 2015a; 

Greene et al. 2012). However, in some studies a sensor positioned at the L3 was used to examine 

temporal-spatial parameters of gait (Martínez-Ramírez et al. 2015; Millor et al. 2017). One study used 

a combination of L3 and shin to measure balance parameters, presumably because the study examined 

open-loop and closed-loop postural control strategy (Toosizadeh, Mohler, Wendel, et al. 2015).  

Body-location of sensors measuring PA included chest (Schwenk et al. 2015; Razjouyan et al. 2018; 

Parvaneh et al. 2017; Greene et al. 2012; Jansen et al. 2019; Galán-Mercant and Cuesta-Vargas 2013), 

wrist (Mulasso et al. 2019; Huisingh-Scheetz et al. 2018), hip (Castaneda-Gameros et al. 2018; 

Kikuchi et al. 2020) and waist (Theou et al. 2012; Chen et al. 2020). One study in this group 

(Schwenk et al. 2015a) used a combination of body-locations but reports that data for PA was 

retrieved from only the sensor located at the chest. 

Correlation between accelerometer counts and step-counts in one study (Theou et al. 2012) was less in 

the higher frailty index cohort, which is surprising considering both were obtained from the same 

device. This perhaps suggests less sensitivity in accelerometers in detecting lower intensity of 

movement. This supports the idea mooted that activity below a cut-off point considered in some 
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research as non-wear time may in fact reflect low intensity activity (Gorman et al. 2014). The same 

study (Theou et al. 2012) found that minute-by-minute accelerometer-derived step-count and 

acceleration-counts correlated positively with heart rate values. This is interesting considering as 

referred to previously, heart rate monitors capture indications of physical activities that do not require 

trunk displacement and can be used to indicate energy expenditure and PA behaviours e.g., sedentary 

time. 

3.5 Limitations  

While every effort has been made to ensure a thorough search of the relevant databases, it is possible 

that some literature was missed. An updated search performed prior to thesis submission reduces the 

risk of any over-sight. The inclusion of English-only publications may have resulted in omission of 

some relevant studies. Applying the age profile criteria of >60 years in the inclusion may be perceived 

as a limitation but this was done to optimise the literature included and is in accordance with the 

World Health Organization and the United Nations who have adopted >60 years in reference to older 

adults as opposed to the arbitrary 65 years commonly adopted (WHO 2015). Due to the heterogeneity 

of metrics, the variation in body-location of sensor placement and the difference in methods of 

analysis among the studies included in the review, meta-analysis was not possible. This however does 

not invalidate the findings. Many studies involved small numbers of participants and some combined 

frail and pre-frail cohorts for statistical analysis. This reduces the potential to discriminate between 

levels of frailty, which is considered an important objective.  

3.6 Conclusions 

Despite its limitations, this review, the first to comprehensively synthesise data from the last decade 

of research in this field, makes a valuable contribution to identifying how wearable sensors have been 

utilised to assess frailty in older adults, the body-locations of sensor-placement used and the 

parameters of PA and mobility that best assist in the discrimination of frailty levels. The review 

highlights the heterogeneity of parameters examined in relation to frailty identification and the body-

locations used. Measurements of PA have proved to be the most frequently used parameter when all 

variations of number of postural transitions, number of steps, percentage of time in PA and intensity 
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of PA are considered. Only one study failed to demonstrate an association between PA and levels of 

frailty. Gait-speed was found to be the next most prevalent parameter examined, with all studies 

included in the review demonstrating a correlation between walking speed and levels of frailty. A 

higher sensitivity compared with other mobility parameters is noted. 

Considering the facts that up to 95% of older adults are community-dwelling, that not all older adults 

develop frailty, and that research suggests older adults can transition between levels of frailty, this 

review highlights the need for further research to identify a feasible, user-friendly device and body-

location that can be used to independently, objectively measure and identify signs of pre-frailty in 

community-dwelling older adults. This could facilitate early identification and targeted intervention to 

reduce the burden of frailty in an ageing population. Future reviews could focus on important open 

research questions related to wearable technology and older adults including acceptance, feasibility 

and facilitation of ageing in place. 

This chapter has presented a systematic review demonstrating how wearable sensors have been used 

to identify and distinguish between levels of frailty in older adults. The findings were used to inform 

the research of sensor positioning and parameters of gait, mobility and PA to capture in an effort to 

facilitate early recognition of risks of frailty among community-dwelling older adults. The following 

chapter reports on a laboratory-based study which was conducted to compare measurements of 

mobility and PA obtained from body-worn sensors placed in different locations on the body. 
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Chapter Four - Laboratory-Based Study 

Introduction  

The previous chapter presented a systematic review which was conducted to examine how parameters 

of gait, mobility and PA obtained from wearable sensors have been used to evaluate frailty among 

older adults. As demonstrated, there are many studies to support the use of wearable sensors to detect 

activity levels among older adults, for example in measuring walking, running, sitting, lying, 

ascending or descending stairs (Pannurat et al. 2017; Cleland et al. 2013; McCullagh et al. 2016). 

However, there is little consensus within the literature regarding the best placement of a sensor to 

accurately and reliably monitor each different activity (Theou et al. 2012; Tedesco et al. 2017; 

Pannurat et al. 2017). Ankles, thigh and waist sensor placements have demonstrated high accuracy of 

step detection at different gait-speeds. The wrist has been proposed as a location for sensor placement 

that is convenient and accessible for use by older adults (Kolasinska et al. 2018) however, the 

systematic review presented in chapter three identifies just two studies which evaluated the wrist as a 

body location for sensor placement (Huisingh-Scheetz et al. 2018; Mulasso et al. 2019). Only one of 

these studies includes the wrist as the body-location for a single sensor to capture parameters of PA 

(Huisingh-Scheetz et al. 2018). The other study evaluating a wrist-worn sensor involved a remote 

monitoring system which composed of a wrist-watch to collect data pertaining to daily activity which 

was then transmitted to a base station in the user’s home for off-site monitoring and analysis (Mulasso 

et al. 2019). 

This chapter reports on a laboratory-based study comparing measurements of gait obtained from 

body-worn sensors placed in different locations on the body in two groups, a cohort of healthy older 

adults and of healthy younger adults. It also compares step-count obtained from body-worn sensors 

with a criterion measure of direct observation, and with a validated inertial sensor and software 

system. Parameters of gait and PA have been identified in chapter 3 as indicators of frailty risk and 

adverse health outcomes. The ankle and waist are selected to confirm the literature supporting the 

accuracy of data from sensors positioned at these body-locations (Schwenk et al. 2015a; Zhou et al. 

2019). The wrist is included to examine if data obtained from a sensor positioned at body-location 
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deemed conveniently accessible for use by older adults i.e. the wrist (Kolasinska et al. 2018) 

compares with that obtained from the waist and ankle. 

The remainder of the chapter is outlined as follows; section 4.1 outlines the aims and objectives of the 

study, section 4.2 describes the materials and methodology, section 4.3 presents the results that are 

discussed in section 4.4. Sections 4.5 and 4.6 present the limitations and conclusion of the study. 

4.0 Background 

In a climate where health services are struggling to meet the needs of older adults (Abdi et al. 2019), 

mitigating the risks associated with ageing must be a priority of health care providers to reduce the 

physical and socioeconomic burden and reduce the demand on health care resources (Faller et al. 

2019). Most older adults wish to remain at home and ageing in place is a key goal of national ageing 

strategies worldwide (World Health Organization 2017). The changes associated with ageing are not 

consistent among older adults however, and are influenced by extrinsic factors including an 

individual’s behaviours and the environment (WHO 2015; Singer et al. 2019).  

Gait is an indicator of health status; changes in gait parameters are associated with age (Schimpl et al. 

2011), and have been identified as a key prognostic indicator for disability (Fortune et al. 2014; Perera 

et al. 2014; Studenski et al. 2011). Parameters of gait commonly measured include speed, step-length, 

stride-length, and variability. Gait-speed has been identified as the strongest predictor of disability, 

prolonged hospital-stay and quality of life (Bair et al. 2019; Bortone et al. 2021; Pamoukdjian et al. 

2015), while variability in gait has been shown to negatively associate with levels of PA (Ciprandi et 

al. 2017). Walking is considered the main contributor to PA in adults, therefore it is important to 

measure gait parameters as part of an assessment of mobility and PA. Accurately measuring step-

count is an important first step in measuring walking and PA (Bassett et al. 2017). PA has 

traditionally been measured in either self-reported estimates or structured, supervised measurements 

of gait (Phillips et al. 2018). Historically these objective measurements involved costly, complicated, 

and time-consuming laboratory-based assessments. Self-reported estimates of PA by their nature are 

subjective with a risk of bias (Razjouyan et al. 2018) and have poor validity (Phillips et al. 2018). 
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The proliferation of wearable sensors and their anticipated evolution over the coming years suggests 

more proactive solutions to healthcare, ageing and functional decline with new developments from the 

user’s perspective (Ometov et al. 2021). This will enable older adults to take on a more independent, 

proactive role in monitoring and addressing risk factors thereby developing self-regulation and self-

efficacy. Self-regulating is the monitoring and controlling of ones behaviours to achieve a goal, and is 

influenced by the perception of self-efficacy, the belief that one can achieve a goal (Clark and Dodge 

1999; McAuley and Blissmer 2000). Both self-monitoring and self-efficacy have been identified as 

determining factors in exercise behaviours,  with higher levels of self-monitoring and self-efficacy 

associating with better health outcomes (Clark and Dodge 1999). 

4.1 Aims and Objectives 

To address the second objective of this thesis, the aim of this study was to conduct a laboratory-based 

study to establish how measures of mobility and PA obtained from a single sensor positioned at 

different body locations compare with each other; with a criterion measure; and with a validated 

medical-grade sensor and software system. 

The objectives of this study were; 

1. To collect sensor data from inertial sensors positioned at three different body-locations (the 

ankle, the waist, and the wrist) in two different cohorts; a healthy younger adult group aged 

18-65 years and a healthy older adult group aged >65 years, during a Timed Up and Go 

(TUG) test performed under different conditions, and during a 3-minute treadmill walk at a 

slow speed. 

2. To compare step-count obtained from the inertial sensors positioned at each body-location 

during a three-minute treadmill walk with that of criterion measure, direct observation. 

3. To compare step-count obtained from a validated sensor and software system during each of 

the TUG tests, with that obtained from inertial sensors positioned at different body locations, 

and with a criterion measure. 
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4. To compare temporal parameters of gait obtained from the validated research-grade inertial 

sensors positioned at the ankle during the treadmill walk with that obtained from the waist 

and the wrist and identify if one is more accurate than the other. 

4.2 Materials and Methods 

4.2.1 Study design 

A laboratory based cross-sectional study was conducted to compare sensor data collected from 

different body locations in two cohorts of adults during a series of mobility and PA tests. Inertial 

sensor data collected from sensors positioned at the waist, wrist and ankles were compared with each 

other, with a criterion measure and with that of a validated sensor system.  

The study protocol received institutional ethics approval (Appendix 4.1). 

4.2.2 Participants 

Participants were recruited through advertisements in a local golf club, tennis club and physiotherapy 

department (Appendix 4.2). Inclusion criteria were 18 - 65 years of age, or > 65 years of age, healthy, 

independently mobile, physically capable of performing a series of mobility and PA tests, have no 

cognitive or neurological deficits and have no history in the past 12 months of orthopaedic trauma or 

surgery. Healthy individuals were selected for convenience during the COVID-19 pandemic when 

level 5 travel restrictions were in place nationally (gov.ie 2020). It was deemed conceivable that the 

incidence of pre-frailty among the older participant sample recruited from the community could 

reflect that of the general population. It is acknowledged that the incidence of frailty was less likely as 

participants were recruited from sports clubs. As gait characteristics e.g. gait speed and step length 

change with age (Schimpl et al. 2011; Oberg et al. 1993) a younger cohort was included to examine 

any differences between the two cohorts in the accuracy of the data obtained from the sensors and 

criterion measures. Healthy young participants have been included in studies within the literature for 

comparative purposes and to provide a healthy benchmark (Zhou et al. 2018; Hafer and Zernicke 

2020; Pang et al. 2019; Soaz and Diepold 2016). Those interested were assessed for eligibility, and 

fully informed about the study by telephone when potential participants contacted the researcher. A 
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participant information leaflet (PIL) was then provided either by email, by post or by hand (Appendix 

4.3).  

A convenience sample of twenty community-dwelling volunteers was recruited (n = 10 aged > 65 

years of age and n = 10 aged 18 – 65 years). Many earlier studies  (Tedesco et al. 2019b; Lee et al. 

2020) have included similar sample sizes for validation purposes as demonstrated in a systematic 

review by Ngueleu 2019 (Ngueleu et al. 2019). The first ten volunteers in each group available to 

contact by phone, willing to participate and fitting the inclusion criteria were enrolled in the study.  

There were those who enquired about the study but declined participation for reasons including 

concerns regarding the activity required being unsuitable, reluctance to travel to the test centre and 

fears of COVID-19 risks. 

All participants signed a written informed consent form prior to participation (Appendix 4.4). 

Participants also fulfilled COVID-19-specific requirements including a COVID-19 questionnaire 

(Appendix 4.5), temperature check and hand hygiene prior to data collection. 

4.2.3 Data collection  

The study was carried out in two different sites for logistical reasons. All participants in the over-65 

years of age group were assessed at site one while all those in the 18-65 years of age group were 

assessed at a separate site (site two). The set-up in both sites were comparable except for the floor 

surface; a carpet-tile surface at site one and a wooden floor at site two. Measurements of height and 

body mass were taken along with demographic details of date of birth, sex, past medical history, and 

current medications. These data were recorded on a case report form (CRF) (Appendix 4.6). The PA 

and mobility tests consisted of a TUG test under three different conditions and a treadmill walk. 

Prior to the beginning of the study, the inertial sensors (Shimmer 3, Shimmer Research, Dublin, 

Ireland) were calibrated according to the Shimmer 9DoF Calibration procedure (Shimmer 2013). Prior 

to each participant instrumentation, sensors were configured according to the same application with 

sampling rate 102.4Hz; acceleration signal range ± 2g; wide range accelerometer, gyroscope and 

magnetometer sensors enabled; Gyro on the fly calibration and 9DoF algorithms set. 
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4.2.3.1 Timed Up and Go (TUG) Tests 

The TUG test is a reliable and valid test of functional balance and mobility that measures in seconds 

(s), the time taken by a participant to stand up from a standard chair seat height, walk a distance of 3-

meters (m) (10 feet), turn 180 degrees, walk back to the chair and sit down (Podsiadlo and Richardson 

1991). A TUG-cognitive or TUG-manual further tests functional balance and mobility through the 

performance of concurrent tasks (Lundin-olsson et al. 1998; Shumway-Cook et al. 1997). A TUG-

Cognitive test involves the inclusion of either a language or visual spatial task while performing a 

standard TUG test. A TUG-Manual test involves the inclusion of a second functional task. The TUG 

test under different conditions was selected to provide objective data representative of the short 

distances of mobility performed for functional activities in a real world setting of community-

dwelling older adults (Deblock-Bellamy et al. 2022; Kumar et al. 2020). It is suggested that dual-task 

walking is comparable with everyday walking in older adults (Hillel et al. 2019)The Kinesis QTUG 

sensor and software system (QTUG) (Kinesis Health Technologies, Dublin, Ireland) is a validated 

tool which measures temporal-spatial parameters of gait and uses proprietary algorithms to provide a 

quantitative falls and frailty risk score obtained during a standard TUG test. It is designed as a 

clinician-administered performance test for clinical evaluation.  

Prior to performing the TUG test participants were instrumented with the Kinesis QTUG sensors, one 

positioned on each shank as per manufacturer’s instruction. Each sensor was aligned with the vertical, 

medio-lateral and anterior-posterior axes of the body and contained a tri-axial accelerometer, tri-axial 

gyroscope and a magnetometer. The Kinesis QTUG sensors were secured over outer clothing with 

reusable straps (Fig. 5.2). The data derived from the QTUG sensors were streamed via Bluetooth to a 

handheld tablet (Samsung Galaxy Tab A 2016) which automatically calculated a frailty risk based on 

analysis of temporal-spatial gait parameters. Data were saved on board the tablet in text form for 

offline analysis. The QTUG  was used during each TUG test performed under different conditions. 

The QTUG sensors collected data during the TUG tests only. 
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4.2.3.2 Three-minute Treadmill walk 

Shimmer inertial sensors containing a tri-axial accelerometer, gyroscope and magnetometer providing 

9DoF inertial sensing were used to collect data during the three-minute treadmill walk. Only the 

accelerometer data were used in the analysis. A treadmill walk was selected to control the gait speed 

to reflect that of older adults (Abellan Van Kan et al. 2009). The three-minute duration was selected to 

capture multiple gait cycles for analysis, and steady state treadmill walking has been recommended 

for laboratory-based evaluation of wearable sensors (Johnston et al. 2020). 

Participants performed the set of TUG tests first, rested in sitting for a minimum of 1-minute and then 

performed the three-minute treadmill walk. Prior to the TUG tests and the treadmill walk, participants 

were instrumented with Shimmer inertial sensors, one each placed at waist level, above the third 

lumbar vertebra (L3), bilateral ankles 5-centimeters (cms) above the lateral malleolus, and bilateral 

wrists 2cms proximal to the ulnar styloid (Fig. 4.1). Each sensor was aligned with the vertical, medio-

lateral and anterior-posterior axes of the body. Ankle sensors were secured over socks or tights and 

wrist sensors were secured beneath outer clothing, with elastic tubular bandage and tape. The waist 

sensor was secured over outer clothing with a strap and tape.  The raw accelerometer data from the 

sensors were captured and stored onto the on-board memory. On completion of each participant’s 

sensor data collection, these data were transferred onto a personal computer (PC) via USB-C 

connection, labelled and stored as excel files using the participant’s ID code, for post processing and 

analysis. 

The body-locations for positioning of the Shimmer sensors were selected based on previous studies 

(Apsega et al. 2020; Chen et al. 2020; Jansen et al. 2019; Millor et al. 2017; Schwenk et al. 2015; 

Toosizadeh, Mohler, Wendel, et al. 2015; Zhou et al. 2019). The ankle has been recommended for 

accurate gait-event detection at slow speeds (Soaz and Diepold 2016) that may reflect the self-

selected pace of older adults. As acceleration signals increase in magnitude from the head to the 

ankle, highest activity recognition accuracy is anticipated from a sensor positioned at the ankle 

(Cleland et al. 2013). As a body-location for sensor-positioning the ankle is the most frequently 

recommended location (Prasanth et al. 2021). However, with ageing comes a reduction in fine motor 
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skills and dexterity which can create barriers to the use of wearable sensors (Takemoto et al. 2018). 

While the ankle sensor-placement may provide the best quality data, it may not be the most 

convenient location for use by older adults. It was therefore deemed important to compare data from 

different sensor-placements including those more easily accessed by older adults. A study of 

acceptability and usability of wearable sensors among older adults investigating the preferred body-

location of wearable sensors among this cohort found that incorporating a sensor into familiar 

accessories was the preferred option (Kolasinska et al. 2018). The most common placements of 

accessories included the wrist and waist. Identifying a body-location that can be used by older adults 

to independently capture objective measurements of mobility and PA will assist in a more proactive 

approach to self-care and preventative measures. This will play a significant role in supporting healthy 

ageing and promoting independent living (Baig et al. 2019). 

Participants first performed a TUG test under three different conditions with a minimum of 1-minute 

rest between tests; at normal pace, at normal pace while counting in 3s backwards from 100 (TUG-

cognitive) (Shumway-Cook et al. 1997), and at normal pace while carrying a glass of water (TUG-

manual) (Lundin-olsson et al. 1998).  

The chair used was without armrests, with a seat-height of 45cms. In the seated position, the 

participant’s feet rested on the floor with toes positioned behind a floor-mark which indicated the start 

of the 3m distance. A second floor-mark at 3m distance indicated the turning point. The manual start-

stop function of the QTUG system was operated to coincide with the signal to start and with the finish 

of each TUG test and therefore used to manually time each TUG test. The instruction given to each 

participant was “on the count of 3-2-1-Go, on ‘Go’ you will stand up, walk at your own pace to and 

around the tape on the floor, back to the chair you stood up from and sit down. The test will start 

when I say ‘Go’ and finish when your bottom reaches the chair. You can use your arms or hands on 

the chair for support as you like”. For the TUG-cognitive, the participants were instructed to start 

counting backwards as soon as they heard ‘Go’ and to finish counting when they had sat down 

completely. For the TUG-manual, the participants were instructed to stand, pick up the glass of water 



 56 

positioned on a table beside the chair, complete the walk and replace the glass on the table before 

sitting down. 

The three-minute treadmill walk test which followed the TUG tests after a minimum 1-minute rest, 

was timed using the treadmill timer (Sole Fitness S77, Salt Lake City, USA). The three-minute timing 

started when the treadmill reached the appointed speed (0.8m/s i.e., 2.9km/hr) at approximately10-

seconds (s). A speed of 0.8 m/s was adopted because it is reflective of the speed of community-

dwelling older adults and is a useful cut-off point for prediction of adverse outcomes (Abellan Van 

Kan et al. 2009). Participants were instructed to hold the handrail if preferred, to take long steps 

toward the front of the moving belt and to keep walking on completion of the three-minutes until the 

treadmill belt came to a standstill. The three-minute time ended the recording of sensor-steps. The 

extra steps taken were not included in the manual or the sensor step-count and therefore not analysed. 

All participants reported being familiar with treadmill use so no period of familiarisation was given. 

Data from the treadmill walk was collected using the Shimmer sensors only. 

The criterion measurement of steps taken during the TUG tests was determined by a manual step-count 

performed by direct observation by the researcher in real-time with the 18-65 years of age group, while 

retrospective observation of video-recordings was used to obtain the criterion measurement of step-

count during the TUG tests in the > 65 years of age cohort. The rationale for not video-recording the 

TUG tests performed by the younger cohort was the sole decision of the researcher. This decision was 

based on the perception that there would be less need to be engage with the younger cohort during the 

test and so the multi-tasking of counting steps directly while monitoring the QTUG system could be 

managed. Non-identifiable video-recordings of the treadmill walk test in each cohort and the TUG tests 

performed by the older cohort were taken using a smartphone (Samsung Galaxy A4, Samsung 

Electronics Co., Ltd, South Korea). 
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Figure 4.1. Schematic illustration of Shimmer sensor 

placement 

Figure 4.2. Illustration of QTUG and Shimmer   

sensor placement 

4.2.4 Data Management  

All participant data was pseudonymised. A data dictionary was created for all the data collected in the 

study (Appendix 4.7). Data were exported into a Microsoft Excel spreadsheet (Microsoft Office 

Excel, 2016, Microsoft Corporation, Redmond, CA, USA) and recorded using the coding created in 

the data dictionary. Data from the QTUG sensors were saved as PDF files. Video-recordings were 

exported to a PC as MP4 files. All data files were password protected and stored on a password 

protected PC. COVID-19 data and paper-based case report forms were stored in a locked cabinet as 

per data management plan (Appendix 4.8). 

As part of a collaborative research agreement, Shimmer sensor data were shared with external 

collaborators for processing. A Data Protection Impact Assessment (DPIA) was completed to identify 

and address any risks to personal data of participants, as required by general data protection 

regulations (GDPR). This document was accepted by the data protection officer (DPO) of Dundalk 

Institute of Technology (Appendix 4.9).  
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4.2.5 Data Processing 

4.2.5.1 TUG tests 

Step-count data were obtained from the QTUG sensor and software system tablet where it was live-

streamed and stored during each of the TUG tests.  

4.2.5.2 Three-minute Treadmill walk 

To measure temporal features of the gait cycle (step-count, step/stride time, step time variability, and 

stride asymmetry), accelerometer data obtained from the Shimmer sensors positioned at the waist and 

both ankles during the treadmill walking test were used to estimate initial contact and final contact 

times using the Teager-Kaiser gait event detection algorithm (TKGED) (Flood et al. 2020; Flood et al. 

2020). The TKGED algorithm first transforms the acceleration signal in the anterior-posterior axis using 

the Teager-Kaiser energy operator and then applies a two-step peak finding method to identify initial 

and final contact events (Flood et al. 2020). Amplitude and temporal threshold scaling factors of the 

TKGED algorithm were chosen with respect to step time and stride time for data from the waist-

mounted and ankle-mounted sensors, respectively. From the estimated initial and final contact times, 

step-count, mean step/stride time, step time variability, and stride asymmetry features were derived 

for both waist-mounted and ankle-mounted sensors (Flood et al. 2020). Step Time Variability was 

calculated as standard deviation of step times. Stride asymmetry was calculated as the absolute 

difference between left and right mean stride times. Both are measured in seconds (s). This data 

processing was performed using MatLab 2020a (MathWorks, Natick, USA). The TKGED algorithm 

was applied to the accelerometer data from the wrist but was found to be not suitable. Other 

algorithms (Bui et al. 2018; Cho et al. 2016) were considered however, examining the performance of 

these was beyond the scope of this thesis. 

4.2.6 Data analysis 

Statistical data analysis was performed using Microsoft Excel-16, and SPSS-26 (IBM Corporation, 

Armonk, NY, USA). Descriptive statistics of continuous variables age, height and body mass are 

presented as mean and standard deviation (SD). Data were tested for normality using the Shapiro-
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Wilk test. A p value of < .05 was considered statistically significant. Because of the small sample size, 

the relation between sensor-based step-count and criterion and between data obtained from ankle and 

waist sensors were analysed using Spearman’s rank correlation coefficient. Spearmans rank 

correlation coefficient is used to describe the strength and direction of non-normally distributed data 

and is measured on a scale of -1 to +1, where 0 indicates there is no linear association. The association 

is stronger as the coefficient nears -1 or +1 (Schober and Schwarte 2018). Conventional values for 

interpreting a correlation coefficient as very strong (0.9 – 1.0), strong (0.7 – 0.89), moderate (0.4 – 

0.69) or weak ( 0.10 – 0.39) were used in the analysis (Schober and Schwarte 2018). Many studies 

within the literature have included correlation coefficients when examining the same output measure 

from different devices or tools. Using Spearman’s rank correlation coefficient (rs) Tully et al (Tully et 

al. 2014) report on the relationship between the step-count obtained from a Fitbit Zip, ActiGraph 

GT3X accelerometer and a Yamax CW700 pedometer, while Mandigout et al (2019) use rs to examine 

the relationship between step-count obtained from activity trackers positioned at the waist and at the 

hip (Mandigout et al. 2019). The relationship between total sleep time obtained from two different 

activity trackers has been reported (Gruwez et al. 2017) while the relationship between energy 

expenditure as measured by a Fitbit Charge HR2 and an Apple Watch has been reported using 

correlation coefficient (Nuss et al. 2019). 

 

Bland Altman plots (BAPs) are presented to demonstrate the strength of agreement between the 

criterion and sensor data. The x-axis of the BAP represents the mean of both measurements using the 

formula:   

criterion + new sensor data/2’ 

while the y-axis represents the difference between each method using the formula:  

criterion - sensor data (Giavarina 2015).  

Mean bias represents the over or under-estimation of step-count or parameters of gait by each sensor 

compared to the criterion. Mean difference between the methods of measurement should not be 
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significantly different from zero (Bland and Altman 1986). It is also expected that 95% of differences 

should fall between ± 1.96 SD. This is referred to as limits of agreement (LOA) and computed as  

  mean bias ± 1.96 SD. 

These LOA provide sample estimates only, which may especially for small sample sizes be biased 

estimates of the population and considerably inaccurate (Carkeet 2015). Calculating confidence 

intervals (CIs) for sample LOA is a way to estimate their reliability, is necessary to examine how 

precise the estimates are and to estimate the 95% probability that results apply to the population 

(Bland and Altman 1986; Mantha et al. 2000). Carkeet (2020) suggests CI’s are not commonly 

reported and while their use is increasing since 2015 in recognition of their importance, the 

percentage of published articles including CI’s for LOA remains low (Carkeet 2020). It has been 

suggested that BAPs should not be interpreted without the inclusion of CI’s (Hamilton 2007). In this 

study CI’s for LOA were calculated using the formula  

observed value – t(se) 

 where t is the student’s T distribution and se is the standard error of the LOA (Bland and Altman 

1986).  The BAP defines the limits but does not indicate whether or not the limits are acceptable or 

appropriate. For a sensor location to be deemed appropriate, the limits of agreement should be within 

a range that maintain clinical relevance and should be defined a priori (Giavarina 2015).  Agreement 

of between 3 and 20% of the mean of the criterion step count or measures of physical activity  has 

been proposed as acceptable (Simpson et al. 2015; Bai et al. 2016; Schneider et al. 2003; Thorup et al. 

2017). An error margin of ±10% of the mean criterion was selected a priori as an acceptable 

agreement for step-count during the TUG tests and step-count and parameters of gait during the 

treadmill walk test. 

As a measure of accuracy between methods of data collection mean absolute error (MAE) and mean 

absolute percentage error (MAPE) were calculated between step-count obtained from the observed 

count and each sensor location and between temporal parameters of gait obtained from each sensor 

location. The following formula was used to calculate MAPE. 

criterion – sensor / criterion  x 100  
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When comparing sensor data from each location with each other the ankle was taken as the criterion. 

Based on previous studies the MAE and the MAPE would be within 1 unit and 10% respectively of 

the mean of the criterion (Simpson et al. 2015; Kooiman et al. 2015; Bai et al. 2016, Tedesco 2019).  

Intra-rater reliability for the observed step-count during each of the TUG tests and the treadmill walk 

test in the older age group was assessed using the intraclass correlation coefficient (ICC) (2-way 

mixed-model single measure) with 95% Confidence Intervals (95% CIs). ICC values range from 0 to 

1 where 1 corresponds to perfect agreement. An ICC of 0.80 or higher was considered high, 0.60–0.79 

moderate and less than 0.60 was considered to be poor relative reliability (Olsen and Bergland 2017). 

4.3 Results 

Twenty participants were enrolled in the study; 10 healthy older adults aged > 65 years (age 68.7 ± 

3.68 years, height 164.85 ± 7.45cm, weight 71.75 ± 11.52kg, female n = 5) and 10 healthy young 

adults aged 18 – 65 years (age 47.7 ± 11.49 years, height 173.5 ± 8.76cm, weight 75.5 ± 13.91kg 

female n = 5). Researcher-error configuring the Shimmer sensors, with a consequent error in 

timestamps resulted in missing data from n=2 participants in the >65 years of age group therefore data 

from eighteen participants were included in the analysis of the parameters of gait as measured on the 

treadmill. Video-recording of one male participant in the healthy older adult group was of poor quality 

and not deemed usable therefore data from nine participants from this cohort were included in the 

analysis of step-count as measured during the TUG tests. Data from all 10 participants in the younger 

cohort were included. The results of the Shapiro Wilk test in each age group indicated a significant 

departure from normal distribution of variables, however skewness fell within acceptable range of ± 2 

at p value <.05 (Ghasemi and Zahediasl 2012).  

The TKGED algorithm proved to be unsuitable for use in the analysis of data obtained from the sensors 

positioned at the wrist during the treadmill and TUG tests. This same algorithm proved unsuitable for 

use in the analysis of data obtained from the sensors positioned at the waist during the TUG tests, 

possibly due to the turn element of the TUG test interfering with the algorithm. Therefore, only data 

obtained from the sensors positioned at the waist and ankles are presented for the treadmill test. Both 

the QTUG and shimmer sensors contain inertial sensing via accelerometer, gyroscope and 
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magnetometer and were positioned at the same body-location therefore, shimmer sensor data obtained 

from the ankle were not further examined. Data obtained from the QTUG sensors and from the 

criterion measure are presented for the TUG tests.  

  

4.3.1 TUG tests 

The mean criterion step-count for the TUG, TUG-cognitive and TUG-manual in the younger age 

group was 12, 13.4 and 12.9 respectively; and 14.66 for each TUG test in the older age group. The 

criterion refers to the observed step-count. Results of the Spearman’s rank correlation coefficient 

indicated that in the older adult cohort there was a very strong positive correlation between the 

criterion measure of  step-count and that captured by the QTUG sensor and software system in the  

TUG test and the TUG-manual (rs .920, and .914, p<.001 respectively). There was a strong positive 

correlation in the TUG-cognitive for this group (.824, p<.01). Intra-rater reliability for each of the 

TUG tests was between perfect and excellent for each of the TUG tests in the older adult group (ICC 

.993 CI’s .970-.999, p<.001; .893 CI’s .433-.979, p=.006; 1.0 for the TUG, TUG-COG and TUG-

MAN respectively. 

In the younger cohort here was a moderate positive correlation in the 1st TUG test (rs .633, p<.05) and 

a strong positive correlation in the TUG-cognitive and TUG-manual tests (rs .776 and .809,  p<.01). 

 (Table 4.1). Video-recording of the younger age group was not captured and so intra-rater reliability 

could not be examined. 

Mean absolute error ranged between 0.4 and 1 in the younger group (MAPE 3.3% to 7.75%) and from 

0.3 to 1.3 (MAPE 2.25% to 8.9%) in the older adult cohort. All MAE and MAPE values are within 

the pre-defined acceptable limits of error (Table 4.1). 

The BAPs demonstrate the mean bias, LOA and 95% CI’S between the criterion and QTUG sensor 

(Fig. 4.3). In the younger cohort the QTUG sensor on average under-estimated step-count (mean bias 

0.4, 0.9 and 1, LOA -1.4 to 2.2; -0.15 to 1.9; -.5 to 2.5; 95% CI’s -2.5 to -0.24 and 1.4 to 3.4; -0.83 to 

0.5 and 1.27 to 2.6; -1.5 to .45 and  1.5 to 3.5 for the 1st TUG, TUG-cognitive and TUG-manual 

respectively). In the older adult cohort the QTUG sensor under-estimated step-count by 1.3, 0.3, and 
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0.7; LOA -.05 to 2.7; -2.7 to 3.4; -1.7 to 3.3; 95% CI’s -1.4 to 0.4 and 1.8 to 3.6; -4.9 to - 0.7 and 1.3 

to 5.5; -3.5 to -0.05 and 1.6 to 5 for the 1st TUG, TUG-cognitive and TUG-manual respectively (Table 

4.2). The upper LOA are beyond the pre-defined acceptable range of ±10% of the mean criterion step-

count.  The 95% CI’s are wide and exceed the pre-defined ±10% range of acceptance. There was no 

apparent relationship between the difference and the magnitude of the step-count. There was no 

significant correlation between the difference and the mean of each step-count. 

There are a different number of data points visible on each BAP. This is because of overlap of 

measurements e.g. in the 1st TUG <65 years of age there are three measurements of 11.5, in the TUG-

cognitive BAP there are two measurements each of 12.5 and 13. 5, while in the TUG-manual there are 

two  measurements of 13.5. 

Table 4.1 Comparing step-count from QTUG with criterion 

Group Test Observed step-

count 

 

QTUG step-

count 

 

Mean 

Absolute 

Error 

Mean  

Absolute  

% Error 

rs 

 

Age 

18-65 years 

 

TUG 12 (1.15) 11.6 (1.17) 0.4 3.33 0.633* 

TUG-

cognitive 

13.40 (0.96) 12.5 (0.84) 0.9 7.50 0.776** 

TUG-manual 12.90 (1.37) 11.90 (1.19) 1.0 7.75 0.809** 

Age 

>65 years 

TUG 14.66 (2.12) 13.33 (2.34) 1.33 8.90 0.920*** 

TUG-

cognitive 

14.66 (3.27) 14.33 (3.27) 0.33 2.25 0.824** 

TUG-manual 14.66 (1.93) 13.88 (2.57) 0.78 5.32 0.914*** 

Data are presented as Mean (SD). Abbreviations: Percentage (%),Spearman’s rank correlation coefficient (rs), Standard 

deviation (SD). *p<.05; **p<.01; ***p<.001 
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Table 4.2. Mean bias, Limits of Agreement, Standard error and 95% Confidence intervals for step-count 

measured by QTUG and criterion during the TUG tests in >65 and <65 years of age cohorts 

   Limits 

of 

agreement 

 95% 

Confidence 

intervals of LOA 
 Variable Mean 

Bias 

Lower 

 
Upper Standard 

error 

of LOA 

(√3s2/n) 

Lower 

 
   Upper 

Age 

18-65 

years 

n = 10 

 

1st TUG 0.4 -1.4 2.2 0.5 -2.5 to -0.24 1.4 to 3.4 

TUG-cog 0.9 -0.15 1.9 0.3 -0.8 to 0.5 1.27 to 2.6 

TUG-man 1.54 -0.5 2.5 0.4 -1.5 to 0.45 1.5 to 3.5 

Age 

>65 years 

n = 9 

1st TUG 1.3 -0.5  2.7 0.4 -1.4 to 0.4 1.8 to 3.6 

TUG-cog .33 -2.7 3.4 0.9 -4.9 to - 0.7 1.3 to 5.5 

TUG-man .77 -1.7 3.3 0.75 -3.5 to -0.05 1.6 to 5 

Abbreviations: Limits of Agreement (LOA); Standard deviation (s); Sample size (n); Timed Up and Go 

cognitive (TUG-cog); Timed Up and Go manual (TUG-man). 
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Figure 4.3 Bland-Altman Plots demonstrating level of agreement between counted and sensor-obtained step-

count for each age group and each TUG test. Abbreviation: >65 years of age cohort (>65s); 18-65 years of 

age cohort (<65s); Timed Up and Go (TUG); Cognitive (COG); Manual (MAN)  

••• Upper Limit of agreement (LOA); ⁃ ⁃ ⁃ Lower LOA; ₋₋₋₋ Bias. … Upper Confidence Interval range;  

… Lower Confidence Interval range. 

 

4.3.2 Three-Minute Treadmill Walk Test  

The Spearman’s rank correlation coefficient indicated there was a strong positive correlation between 

step-count measurement from the data recorded from both the ankle and waist Shimmer sensors and 

the criterion measure during the treadmill walk (rs 0.912, 0.875 p<.01 and 0.802, p<.05; 0.878 p<.01) 

in the younger group and older group respectively (Table 4.3). Intra-rater reliability for the criterion 

step-count  as measured in the older age group during the treadmill walk test was excellent (ICC .997, 

CI’s.986-.999 p<.001). There was a strong positive correlation between ankle and waist sensor step-

count, mean step-time and mean stride time in both the younger and older group (.964, .988, .988, 

p<.01) (.982, 1.0, 1.0 p<.01) respectively. There was a moderate, not statistically significant 

correlation between the step-time variability obtained from the ankle and waist sensors in the >65 

years of age group (.405, p>.05) and poor correlation in the younger age group (.200). Stride 

asymmetry showed poor correlation between the two locations in both cohorts (.176 and .286 

respectively) (Table 4.3). Bland-Altman plots demonstrating mean bias, LOA and 95% CI’s for each 

strongly correlated variable are presented in Fig. 4.4. On average, compared to the criterion measure 

the ankle shimmer sensor under-estimated step-count in the treadmill walk test in the younger cohort 

and over-estimated in the older age group (mean bias 6.6 and -16.4 respectively). The waist sensor 

under-estimated step-count compared to the criterion in both groups but agreed with the sensor 

positioned at the ankle in step-count, mean step and stride time. There was no significant correlation 
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between the difference and the mean of any variable. There was no apparent relationship between the 

difference and the magnitude of each variable apart from one outlier in the younger cohort. The 95% 

CI’s are wide and exceed the pre-defined ±10% range of acceptance. 

The difference in the MAPE between step-count obtained from criterion measure of observed count 

and that from the ankle and waist sensors was less than 5% in each age group (Table 4.3). The MAE 

between mean step time and mean stride time obtained from each sensor-location in each age group 

was negligible. The MAE and MAPE for asymmetry and variability between each sensor location was 

large in each cohort (Table 4.3). 

Table 4.3 Comparing step-count obtained from ankle and waist-mounted sensors with criterion 

during the three-minute treadmill walk test. 

Group Sensor 

Location 

Sensor 

Step-count 

Observed 

Step-

count 

Mean 

Absolute 

Error 

Mean Absolute 

Percent Error 

rs 

Age 18-65 

years 

 

Ankle  300.60 

(48.53) 

307.20 

(47.75) 

6.60 

(9.33) 

2.16 

(3.08) 

.912** 

Waist  301.10 

(48.63) 

6.10 

(9.30) 

2.37 

(3.09) 

.875** 

Age >65 

years 

 

Ankle  294.88 

(17.31) 

311.25 

(38.96) 

16.37 

(28.80) 

4.56 

(7.11) 

.802* 

Waist  295 

(16.89) 

16.25 

(29.20) 

4.50 

(7.21) 

.878** 

Data are presented as Mean (SD). Abbreviations: Spearman’s rank correlation coefficient (rs), 

Standard deviation (SD). **p<.01, *p<.05 
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Table 4.4. Comparing gait parameters between inertial sensors positioned at two different body-

locations during the three-minute treadmill walk test. 

Group Parameter Ankle 

Sensor 

Waist 

Sensor 

Mean  

Absolute 

Error 

Mean Absolute 

Percentage 

Error 

rs 

 

 

 

 

 

Age 

18-65 

years 

 

 

 

Step-count 300.60 

(48.53) 

301.1 

(48.63) 

0.7  

(.94) 

0.16  

(.38) 

.964** 

Mean Step 

Time (s) 

.614  

(.088) 

.613  

(.087) 

0.01 x 10-2  

(.002) 

0.16 

(.290) 

.988** 

Mean 

Stride Time 

(s) 

1.22  

(.176) 

 

1.22   

(.176) 

0.19 x 10-2 

(.003) 

0.15 

(.270) 

.988** 

Stride 

Asymmetry 

2.15 x 10-3  

(2.80 x 10-3) 

1.20x10-3   

(0.7x10-) 

0.09 x 10-2 

(.003) 

206 

(305) 

.176 

Step Time 

Variability 

.07   

(.04) 

.06   

(.02) 

0.98 x 10-2 

(.05) 

36.67 

(27.80) 

.200 

 

 

 

Age 

>65 

years 

Step-count 294.88 

(17.31) 

295  

(16.89) 

0.38  

(0.51) 

0.05  

(.22) 

.982** 

Mean Step 

Time (s) 

.62  

(.04) 

.62  

(.039) 

0.01 x 10-2 

(.09 x 10-2)  

0.01 

(.16) 

1.0** 

Mean 

Stride Time 

(s) 

1.23  

(.08) 

1.23  

(.08) 

0.02 x 10-2  

(.002) 

0.01 

(.17) 

1.0** 

Stride 

Asymmetry 

0.08 x 10-2  

(0.07 x 10-1) 

0.07 x 10-2  

(0.08 10-1) 

0.01 x 10-2  

(.001) 

149 

(165) 

.286 

Step Time 

Variability 

.08  

(.03) 

.04  

(.01) 

0.04 

(.03) 

40 

(23.80) 

.405 

Data are presented as Mean (SD). Abbreviations: Spearman’s rank correlation coefficient (rs), 

Standard deviation (SD). **p<.01 

 

Table 4.5. Mean bias, Limits of Agreement, Standard error and 95% Confidence intervals for variables 

measured by ankle and waist shimmer sensors during the treadmill walk test in >65 and <65 years of age 

cohorts    Limits of 

agreement 

 95% Confidence intervals of 

LOA 

 Variable Mean 

Bias 

Lower 

 

Upper Standard 

error 

of LOA 

(√3s2/n) 

 

Lower 

 

Upper 

Age 

18-65 

years 

n = 10 

 

SC Observed-

Ankle 

6.6 -11.69 24.89 14.9 -45.97 to 

22.57 

-9.4 to 59 

SC Observed – 

Waist 

6.1 -12.13 24.33 5.09 -23.8 to -.423 12.63 to 36.03 

SC Ankle – Waist -.5 -2.5 1.49 .5608 -3.78 to -1.21 .207 to 2.78 

Mean Step Time 

Ankle - Waist 

.0013 0 .0036 .0009 -.0023 to 

.0023 

.0013 to .0059 

Mean Stride Time 

Ankle - Waist 

.0024 -.0065 .0065 .0018 -.0107 to -

.0024 

.0024 to .0107 
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Age 

>65 

years 

n = 8 

SC Observed -

Ankle 

-16.37 -40.25  

 

 

 

 

72.99 

 

17.68 -80.90 to .41 

 

32.33 to 

113.65 

SC Observed – 

Waist 

16.25 -41.17 

 

73.67 

 

17.94 -82.43 to .09 32.41 to 115 

SC Ankle – Waist .125 -1.38 

 

1.13 

 

.39 -2.26 to -.5 .25 to 2.0 

Mean Step Time 

Ankle - Waist 

.0001 -.0018 .0020 .0005 -.0006 to -.003 

 

-.0032 to -

.0008  

Mean Stride Time 

Ankle - Waist 

 

.0002 

 

 

-.0038 .0041 .0012 -.0066 to -.001 .0069 to .0013 

Abbreviations: Limits of agreement (LOA); Sample size (n); Step-count (SC). 
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Figure 4.4. Bland-Altman Plots demonstrating level of agreement between; ankle-sensor and manual step-

count; waist-sensor and manual step-count; ankle and waist sensor step-count; ankle and waist sensor mean 

step time; ankle and waist sensor mean stride time. Abbreviation: >65 years of age cohort (>65s). 18-65 years 

of age cohort (<65s). Manually observed step-count (Manual); Step-count (SC); Mean (M); Time (T). 

Treadmill (TM). Mean Stride Time (MStrT). 

 ••• Upper Limit of agreement (LOA); ⁃ ⁃ ⁃ Lower LOA; ₋₋₋₋ Bias.••• Upper Limit of agreement (LOA); ⁃ ⁃ ⁃ 

Lower LOA; ₋₋₋₋ Bias; … Upper Confidence Interval range; … Lower Confidence Interval range 

 

4. 4 Discussion 

This study examined the correlation and agreement between step-count obtained from a criterion 

measure of direct observation with that obtained from research-grade wearable sensors positioned on 

the ankles and the waist in a cohort of healthy older adults and young adults during a 3-minute 

treadmill walk and during TUG tests performed under different conditions. Additionally, gait features 

obtained from sensors positioned on the ankle and waist were compared. Bland Altman plots were used 

to examine the strength of agreement between the different methods. For a method to be replaced with 

another, a strong agreement between both methods is necessary, with differences falling within an 

acceptable, pre-determined range. A high correlation between methods of measurement can conceal a 

considerable lack of agreement (Bland and Altman 1986). The BAP allows us to examine the 
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difference between the two methods (on the y-axis) and the assumed true value i.e. the average of the 

two methods represented on the x-axis (Mantha et al. 2000).  

Walking accounts for the largest proportion of leisure and everyday activities and so it makes sense to 

measure it as part of an assessment of mobility (Bassett et al. 2017; Tudor-Locke and Rowe 2012). 

Accurately measuring step-count is an important first step in measuring mobility and PA (Hurt et al. 

2019). A young cohort was included for comparison, to examine if the outcomes observed were 

specific to either age group. This comparison is reflected in previous literature where a healthy younger 

cohort is included to compare results between different cohorts and to provide a healthy benchmark 

(Zhou et al. 2018; Pang et al. 2019).  

Results suggest a strong relationship between the criterion measure of step-count, and step-count 

obtained from the QTUG sensor system during the TUG tests and between each sensor-location in both 

cohorts during the treadmill walk test. Strong correlations were also observed between gait parameters 

of mean step time and mean stride time obtained from both ankle and waist sensors during the 

treadmill walk. Agreement was demonstrated between all variables as indicated by the MAE and 

MAPES (Tables 4.1 and 4.4) and mean bias which all fell within the pre-defined limits of acceptable 

difference between the two methods. However, limits of agreement illustrated in the BAPs between 

which 95% of the values are expected to fall are not within the ±10% range pre-defined and do not 

represent a clinically acceptable difference between the two methods. While the 95% CI’s do contain 

the LOA in each of the BAPs, the range of the intervals is wide, reflective of the small sample size. 

This further disparages the LOA and thus limits the external validity of the findings (Olofsen et al. 

2015). The approximate method for calculating the 95% CI’S was employed (Bland and Altman 1986). 

The exact method may have been more appropriate (Carkeet 2015).  

Spearman’s correlation for step-count between the ankle sensor and criterion, while significant in both 

cohorts, was less so in the older age group (rs .912 and .802 for younger and older cohorts 

respectively). This is reflected in the mean bias (6.6 and -16.37) and LOA (-11.7 to 24.9 and -40.25 to 

73) for younger and older cohorts respectively as presented in the BAPs (Fig. 4.4). This is consistent 

with previous studies which suggest reduced accuracy of sensor-derived measures of PA in an older 

age group with reduced gait-speed (Evenson et al. 2015; Tedesco et al. 2019b). In this present 
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investigation, while gait speed was controlled with the use of a treadmill, the difference in cadence 

between younger and older adults is evident in the mean step-count. The discrepancy in the correlation 

and agreement between the criterion and each sensor-location may be due to reduced accuracy of the 

gait features extracted from data recorded at the waist compared to the ankle as suggested in earlier 

studies (Cleland et al. 2013; Storm et al. 2016). One such study acknowledges the difference in 

accuracy between sensor locations is significant statistically but argues the results are close and 

therefore the difference is marginal in practical or clinical terms (Cleland et al. 2013). The discrepancy 

between the observed and sensor step-count may also be due to the accuracy of the observed step-

count. Intra-rater reliability in the older cohort was excellent but inter-rater reliability was not 

established. Video recording was not undertaken in the younger cohort and so reliability could not be 

evaluated. 

Within each cohort, the MAE between the criterion measure of step-count and step-count obtained 

from each sensor is similar suggesting the accuracy of step-count extracted from accelerometers in 

both sensor-positions are comparable. The values of the MAE are small (Table 4.4) suggesting that in 

both cohorts, each sensor-location is acceptable in terms of accuracy of step-count. This is supported 

by an earlier study which found negligible differences in accuracy of measured step-count between 

ankle and waist-mounted sensors during free-living walking (Storm et al. 2016). Similarly, a study 

examining the accuracy of waist and ankle-mounted sensors in gait analysis at speeds reflective of 

older adults found < 10% error between ankle sensor and waist sensor derived step-count (Simpson et 

al. 2015). The MAPE between ankle and waist sensor derived step-count in the current study of 

younger and older adults was 1.6% and 5% respectively. 

Because the study was not carried out with frail adults who would be expected to demonstrate 

different gait characteristics including gait speed (Bortone et al. 2021; Apsega et al. 2020; Martínez-

Ramírez et al. 2015), the correlation and agreement would possibly be even lower in a frail cohort and 

results cannot be extrapolated to such a population. The magnitude of the step-count measured within 

the older adult cohort is somewhat higher than that reported in a study examining cadence of older 

adults 61 – 85 years of age (Tudor-Locke et al. 2021).   
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Temporal parameters of stride asymmetry and step time variability could not be accurately derived 

from the waist-mounted sensor as illustrated by high MAPE values in both age groups (Table 4.4). 

Variability in parameters of gait can be affected by arm swing (Bailey et al. 2022). Video-recording of 

the treadmill walk test included footage of the lower limbs only, and whether or not a participant held 

the handrail of the treadmill was not recorded in real-time during the test and so the effect of arm 

swing on lower limb variability was not considered. However, temporal parameters of mean step time 

and stride time were consistent between ankle and waist-mounted sensors with MAPE values < 2% 

(Table 4.3). This is consistent with previous studies suggesting high accuracy of waist-mounted 

sensors for other applications such as fall detection (Ozdemir, 2016). The reported results could be 

promising for future examination of free-living walking and temporal parameters of gait in older 

adults as waist-mounted sensors are potentially more suitable for application by older adults than 

ankle-mounted sensors (Kolasinska et al. 2018) and may be more suitable for unsupervised 

monitoring outside of clinical settings (Rahemi et al. 2018).  

In this study, accelerometer data were captured using research grade inertial sensors. The raw data 

from these Shimmer sensors requires processing to extract parameters of gait, and data from the 

sensors positioned at the wrist were not suitable for the selected algorithm. For this reason objectives 

number 2 through to number 4 as outlined in section 4.1 could not be fully evaluated. Other 

algorithms were considered but their application was deemed beyond the scope of this thesis. While 

the results of this study demonstrate that the research-grade wearable sensors used can produce 

accurate data, this work also highlights the potential difficulties for both clinicians and their 

clients/patients in monitoring parameters of gait and PA using research grade devices. These barriers 

include the need for specific algorithms, specialised data extraction and analysis - all of which 

complicates extracting useful, actionable information from them. The reliance to date on researchers 

within a specific field of expertise for the analysis of data is acknowledged in the literature (Tolley et 

al. 2021). This demonstrates the need for further research to establish if parameters of mobility and 

PA related to frailty could be captured using an alternative, commercial, less research-based sensor 

system that can be monitored and interpreted by older adults, their family members / carers and/or 

GP.  
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4.5 Limitations  

Limitations to this study include the small sample size, the method of data collection and the securing 

of the sensors above outer clothing as opposed to adhering directly to the skin. Each is discussed 

separately in this section. A small sample was selected for convenience but is supported in the 

literature (Alinia et al. 2017; Lee et al. 2020; Tedesco et al. 2019b). Data were collected in two 

different laboratory settings during a structured treadmill walk test. While not unique for data 

collection to occur in different settings (Bohannon and Wang 2019) in the interests of consistency, the 

one location for data collection is preferable. It has been suggested that treadmill walking may not 

reflect real-life walking patterns (Storm et al. 2016) and that laboratory-based gait analysis 

demonstrates less variability and higher cadence than free-living assessment thus reflecting 

participant’s “best performance” (Brodie et al. 2015). However, treadmills have been widely used in 

similar type studies as they allow for collection of data at controlled speeds. The three-minute 

timeframe appointed in this study allowed for the capture and analysis of many gait cycles, 

examination of gait patterns of older adults and examination of any differences in the gait parameters 

between the two age groups. This work will contribute to future studies examining gait parameters in 

older adults in free-living conditions. 

To accurately determine gait parameters, accurate detection of initial foot contact and final foot 

contact is necessary (Storm et al. 2016). Positioning of the sensors above outer clothing and not 

directly to the skin may have affected identification of the final contact point of the foot and thus 

influenced the results of the variability and asymmetry variables. This method was chosen for 

convenience and with reference to earlier studies (Cleland et al. 2013; Atallah et al. 2011). Future 

research should ensure sensors are affixed directly and securely to the skin to optimise integrity of the 

data collected. 

4.6 Conclusions 

Most assessment tools for identifying frailty or functional dependence incorporate a measurement of 

mobility (Fried et al. 2001; Gill et al. 1995; Rockwood K 2005). As people age there is a tendency to 

move less. Having an objective method for older adults to measure their mobility and thus be alerted to 
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any decline in PA may facilitate early intervention and reduce the associated risks. This study has 

demonstrated a strong relationship between step-count, a parameter of mobility and PA obtained from 

body-worn sensors, and a criterion measure of direct observation in a group of healthy older and 

healthy young adults in a laboratory setting. It is a first step in identifying the potential for a wearable 

sensor positioned on a body location conveniently accessible for older adults use, to record a single 

parameter of mobility in older adults that can indicate a risk of functional decline. Other studies have 

included step-count as one of a multitude of parameters to examine frailty (Razjouyan et al. 2018; Yuki 

et al. 2019) but not, to the author’s knowledge as a stand-alone parameter. The wrist has been 

suggested as an ideal location for measuring PA, a potentially convenient, accessible location for use 

by older adults. However, this study has demonstrated the obstacles encountered using research-grade 

devices including the need for a specific, suitable algorithm and a specialist analyst to extract and 

process data from the wrist.  It asks the question if community-dwelling older adults, their family 

members or carers can independently capture and interpret parameters of mobility and PA related to 

frailty risk using an alternative, consumer-grade sensor. The home-based study presented in the next 

chapter investigates whether community dwelling older adults can capture relevant data unsupervised 

during a structured mobility assessment, using a consumer-grade device. 
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Chapter Five - Home-Based Study 

Introduction 

The previous chapter outlined the strong correlation and agreement between body-worn sensor data 

and a criterion measure in parameters of mobility and PA among older adults in a laboratory setting. 

The results suggest the potential for a single wearable sensor positioned on either the waist or the 

ankle to capture a single parameter of mobility that can indicate a risk of functional decline. Only the 

data from the sensors positioned at the waist and ankles were presented in the results because data 

from the wrist sensor could not be analysed with the selected algorithm. Research grade wearable 

sensors were used in this study, and while the results show they can produce accurate data, this work 

also highlighted the difficulty that clinicians/patients/ those without expertise in data science may 

have in extracting useful, actionable information from them. 

This chapter reports on a study conducted to investigate if community-dwelling older adults can 

capture objective, quantitative measures of mobility and PA unsupervised in their own home, and if 

the data captured correlates with frailty risk. While the waist has been identified in chapter 4 as a 

suitable body-location for positioning of a single sensor to collect parameters of mobility and PA 

relevant to frailty, the difficulties associated with a research-grade wearable device have been 

discussed. The results of the laboratory based study were inconclusive. The study used research grade 

devices which needed specialist data analytics to extract meaningful information from the raw data 

collected and the application of an algorithm different to the one selected. The wrist has been 

identified in the literature as a convenient location for use by older adults and a watch is an accessory 

older adults may routinely wear. For these reasons, the home-based study aimed to explore the 

potential of a consumer grade device positioned at the wrist, a potentially more accessible body-

location for use by older adults than the ankle or the waist. It aimed to investigate if a wrist-worn 

consumer-grade device could replace the use of a research-grade sensor in the capture of parameters 

of mobility and PA, to provide meaningful, actionable data with sufficient detail to discriminate 
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between stages of frailty and would remove the need for specialist analytics. This study also aimed to 

examine if older adults could capture this data unsupervised. 

The remainder of the chapter is outlined as follows; section 5.1 outlines the aims and objectives of the 

study, section 5.2 describes the methodology, section 5.3 presents the results that are discussed in 

section 5.4. Sections 5.5 and 5.6 present the limitations and conclusion of the study. 

5.0 Background 

Wearable sensors have been successfully used to collect objective, quantifiable parameters of mobility 

and PA that have been shown to distinguish between levels of frailty (Vavasour et al. 2021). The 

majority of studies examined were carried out in laboratory or under test conditions however, due to 

the insidious onset of frailty the signs of which are reflected in the decline of every day functions, the 

collection of continuous data in the home setting is considered more appropriate (Brodie et al. 2015; 

Mueller et al. 2019). 

 A recent systematic review identifies that body-worn sensors are the most commonly used 

technology in the identification of frailty in non-clinical settings (Bian et al. 2020). The previous 

chapter identified the difficulties associated with a research grade wearable sensor including the 

necessity for the selection and sourcing of an appropriate algorithm, which, in turn requires specialist 

application for data processing and analysis. Data captured by consumer grade devices are processed 

instantaneously on board the device and presented via the device or accompanying application. This 

facilitates interpretation by the user and eliminates the need for specialised processing and analysis. 

The proliferation of consumer grade wearable sensors provides an opportunity to capture parameters 

of mobility and PA in real-world, non-clinical/laboratory settings over an extended period. The 

literature demonstrates the use of technology among older adults ranging from mobile phone use to 

smartwatches and technology for telehealth, social media and online activity (Yap et al. 2022; Keogh 

et al. 2020). Facilitating older adults to engage with the capture of PA data independently, 

unsupervised in their own home could provide them with an indication of reduced activity, potentially 

alter the development or progression of frailty and thus lessen the associated physical, psychosocial 

and economic burden. The use of technology to monitor PA has shown positive outcomes in terms of 
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self-efficacy and subsequent increase in levels of PA (O’Brien et al. 2015; Nyman et al. 2016). 

According to market research in the US, adults over the age of 55 years are the fastest growing group 

of wearable sensor users (eMarketer 2019) suggesting that this cohort are ideally placed to benefit 

from such an initiative.  

The goal of this study is to contribute to the literature on how wearable sensors can be used to 

discriminate between levels of frailty in community dwelling older adults; to establish if older adults 

can capture parameters of mobility and PA relevant to frailty risk, unsupervised in their own home; 

and to explore older adult’s attitudes to the use of technology to capture such data. 

5.1 Aims and Objectives 

To address the thesis objectives numbered 3 through to 5 outlined in chapter 1, the aim of this study 

was to establish if community-dwelling older adults can capture unsupervised, in their own home, 

objective measures of mobility and PA that correlate with frailty. These include but are not limited to 

total step-count, number of bouts of activity or postural transitions, time spent in sedentary activity 

and parameters of gait (Theou et al. 2012; Schwenk et al. 2015a; Parvaneh et al. 2017; Razjouyan et 

al. 2018; Huisingh-Scheetz et al. 2018; Ziller et al. 2020). 

To achieve this the following objectives were identified; 

1. To measure mobility and PA in community-dwelling people >65 years of age using wearable 

sensors and validated functional assessment tools.  

2. To examine the correlation between sensor-data captured during supervised and 

unsupervised mobility tests.  

3. To examine the correlation between sensor-data obtained during unsupervised and free-living 

PA with traditional functional and frailty assessment tools. 

4. To explore the usability of a wearable sensor system among community-dwelling older 

adults for independent capture of activity data during a mobility test, following a period of 

training and education.  
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5. To examine the experience and attitudes to the use of technology for ongoing monitoring of 

physical activity among this cohort. 

5.2 Methodology  

5.2.1 Study Design 

A mixed methods cross-sectional design was deemed appropriate for this study to investigate older 

adult’s ability to capture sensor data independently and to examine the perceptions and experience of 

older adults in the use of such technology. A 48-hour study duration was selected as a planned 

longitudinal study was not possible due to the uncertainty surrounding the COVID-19 pandemic. Data 

collection for this study was opportunistically scheduled immediately following the relaxation of 

travel and home-visiting restrictions (gov.ie 2020) and took place during October – December 2020. 

A 48-hour period is supported in the literature for the collection of mobility and PA data (Theou et al. 

2012; Schwenk et al. 2015b; Parvaneh et al. 2017; Razjouyan et al. 2018; Jansen et al. 2019).  Studies 

of longer duration, up to one week, have more often focused on measures of intensity of PA rather 

than parameters measured in this study (Castaneda-Gameros et al. 2018; Mulasso et al. 2019; Kikuchi 

et al. 2020). A combination of supervised test conditions and unsupervised free-living data collection 

was selected to capture both objective functional assessments and everyday activity. While it has been 

suggested that laboratory or test conditions correlate well with free-living activity (Portegijs et al. 

2019), this particular study reported on association rather than the more appropriate measure of 

agreement between each setting. A more comprehensive study found significantly better performance 

in parameters of gait measured in laboratory conditions compared with a free-living environment with 

wide limits of agreement and confidence intervals (Hillel et al. 2019). The collection, analysis and 

integration of qualitative and quantitative data is illustrated in Fig. 5.1. 
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5.2.2 Participants 

Participants were recruited through advertisements in local golf, bridge and church community groups 

between August and November 2021(Appendix 5.1). Upon receipt of Health Service Executive (HSE) 

ethics approval on October 14th, advertisements were also placed with a gate-keeper in an outpatient 

ortho-geriatric clinic and an outpatient musculoskeletal clinic in two local hospitals from October 15th  

until November 16th, 2021.. Those interested were fully informed about the study and assessed for 

eligibility by the primary researcher. Screening for inclusion / exclusion criteria took place by 
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Figure 5.1 Study diagram showing data collection, analysis and integration of qualitative and quantitative 

data 
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telephone when potential participants contacted the researcher in response to the advertisements. 

Interested parties were provided with written information either by email or by hand (PIL Appendix 

5.2). Participants were enrolled in the study when they subsequently contacted the researcher to 

indicate their interest. Those included were; > 65 years of age, independently mobile, physically 

capable of performing a series of mobility and physical activity tests, had no cognitive or neurological 

deficits and no history in the past 6 months of lower limb orthopaedic trauma or surgery that would 

interfere with the ability to exercise. A sample of 52 was based on power 0.8, effect size 0.8, p value 

0.05 (AI-Therapy Statistics 2018). This is justified in the literature with previous studies including 

similar sample sizes (Apsega et al. 2020). Every effort was made to ensure gender balance among the 

participant group. The study protocol received institutional and HSE ethics approval (Appendices 5.3 

and 5.4), and all participants signed a written informed consent form prior to participation (Appendix 

5.5). Participants also fulfilled COVID-19-specific requirements (COVID-19 Protocol - Appendix 5.6).  

5.2.3 Data Collection 

Participants were visited by the primary researcher in their homes for data collection on two 

occasions, 48-hours apart, between September 2021 and December 2021.  A summary of the activities 

performed, and the data collected at each point is presented in Table 5.1.
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Table 5.1 Summary of activities performed and data collection 

Timeline Activities 

1st visit by 

researcher to 

participant’s 

home 

Temperature 

check, COVID-

19 questionnaire, 

Consent signed, 

Demographics 

recorded. 

FFP, FEFAQ, 

SPPB completed. 

 

Supervised 

QTUG 

performed. Data 

stored on-board 

tablet for offsite 

analysis. 

 

QTUG and 

Smartwatch 

instruction. 

Booklet and 

support contact 

provided 

48-hours between 

researcher visits 

Smartwatch data 

collected during 

waking hours 

Day 1 

Unsupervised 

QTUG performed 

by participants in 

their own home 

Day 2 

Unsupervised 

QTUG performed 

by participants in 

their own home 

Frailty scores 

from QTUGs 

stored on-board 

QTUG.  

After 48-hours: 

2nd visit by 

researcher to 

participant’s 

home  

SUS completed. 

 

Interview of 

convenience 

sample n=10. 

Technology 

collected from 

participant  

 

Offsite Data 

Collection  

QTUG frailty 

scores retrieved 

from QTUG 

system and 

recorded in CRF 

SC, ST and n 

bouts of activity 

retrieved from 

smartwatch via 

manufacturer’s 

web application  

  

Abbreviations: Fried’s Frailty Phenotype (FFP); Frail Elderly Function Assessment Questionnaire (FEFAQ); 

Short Physical Performance Battery (SPPB); Quantified Timed Up and Go test (QTUG); System Usability 

Scale (SUS); Number (n); Case Report Form (CRF); Step-count (SC); Sedentary Time (ST). 
 

5.2.3.1 First visit 

During the first visit signed consent was obtained and measurements of height and weight were taken 

along with demographic details of date of birth, sex, past medical history and current medication. The 

researcher performed a frailty assessment with each participant based on Fried’s Frailty Phenotype 

Frailty Assessment tool (FFP) (Fried et al. 2001) (Appendix 5.7), and The Frail Elderly Functional 

Assessment Questionnaire (FEFAQ) (Gloth et al. 1999) (Appendix 5.8). Participants were also 

requested to perform two PA tests, namely; the Short Physical Performance Battery of tests (SPPB) 

(Guralnik et al. 1995) (Appendix 5.9) and a Timed Up and Go (TUG) (Podsiadlo and Richardson 

1991). These data were recorded on a case report form (Appendix 5.10). Selection of mobility and PA 

tests were selected based on previous similar-type studies (Galán-Mercant and Cuesta-Vargas 2014; 

Apsega et al. 2020; Rodríguez‐gómez et al. 2021). 
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The FFP is a clinical frailty assessment tool validated for use with community-dwelling older adults 

(Fried et al. 2001) selected for use as it is recognised as the most frequently adopted frailty assessment 

tool (Buta et al. 2016). It consists of five phenotypes of weight loss, exhaustion, low level of activity, 

weakness as measured by grip strength, and gait speed. Weight loss scored one point for unintentional 

weight loss >4.5kg in the previous year or a body mass index (BMI) <18.5kg/m2. Exhaustion was 

assessed subjectively through two questions regarding perception of energy and how regularly one 

had rested in bed during the day over the previous four weeks – one point was scored if the answer to 

the first question was negative and ‘every day’ for the latter. Low level of activity scored one point if 

self-reported frequency of high and moderate activity was “never or hardly ever”. Handgrip strength 

and gait speed were measured objectively and scored according to pre-determined cut-off points 

(Fried et al. 2001) and (Www.cgakit.com 2015) respectively. One point was scored for weakness if 

handgrip strength was less than a pre-determined cut-off weight (in kg) for sex and BMI categories. 

One point was scored for slowness if time to complete the TUG test was equal to or exceeded 19 

seconds.   Individuals are considered non-frail or robust if they fulfil none of the criteria, pre-frail if 

they fulfil one or two and frail if they meet three or more of the five criteria.  

The FEFAQ is a reliable instrument for measuring function in frail older adults and is sensitive to 

changes in functional status. The 19-item clinician-applied questionnaire focuses on lower-level 

activity with a higher score indicating greater functional impairment (Gloth et al. 1999). Items include 

transfers, mobility, activities of daily living (ADLs), household tasks and higher order functional tasks 

such as managing finances. It has demonstrated content and construct validity in the measurement of 

frailty and was selected because it is reported to score positively on ceiling and floor effects (De Vries 

et al. 2010). This was considered important as participant recruitment from both community-based 

social groups and geriatric clinics suggested there could potentially be a wide spectrum of functional 

abilities. 

The SPPB is a series of tests to assess balance; side by side, semi-tandem and tandem standing, 

walking speed; time taken to walk 3-m, and the ability to rise from a chair repeatedly. It was selected 

for inclusion because it tests important domains of physical function including balance, strength and 
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gait speed. It covers the requirements for screening as suggested by ADVANTAGE JA (Rodríguez-

Laso et al. 2020) insofar as it has been validated to predict frailty and disability (Verghese et al. 2013; 

Bandinelli et al. 2006), is quick to implement and requires no special equipment. The SPPB has been 

used in many studies examining frailty or comparing frailty assessment tools (Pritchard et al. 2017; 

Checa-López et al. 2019; O’Hoski et al. 2019; Rodríguez‐gómez et al. 2021). Each section is scored 

from zero or one to four with a final cumulated score between one and 12, the higher score indicating 

higher function. A TUG test is a reliable and valid test of functional balance and mobility, selected for 

its ubiquitous use and high sensitivity for identifying frailty (Clegg et al. 2015). It has been described 

in detail in chapter 4. The chair used was without armrests, with a seat-height of 45cms. Each home 

visited had a chair without armrests, of 45cm seat height available for use. It must be noted however, 

some chair seats were cushioned while others were not. This detail was not recorded. Another 

difference encountered during the home-visits was the floor surface which varied between carpet, tile 

and linoleum covering. This detail was recorded but not included in the analysis.  

In the seated position for the TUG test and in the standing position for the walk part of the SPPB, the 

participant’s feet rested on the floor with toes positioned behind a floor-mark that indicated the start 

of the 3m distance. A second floor-mark at 3m distance indicated the turning point (TUG test) or 

finish point (SPPB). For the purpose of the TUG test, participants were allowed to use their upper 

limbs to assist with standing up. For the purpose of the repeated chair stand in the SPPB, participants 

were instructed to place their arms across their chest. The 3m walk test in the SPPB is repeated twice 

and the fastest time is included in the calculations. 

Prior to performing the TUG test participants were instrumented with the Kinesis QTUG sensors, one 

positioned on each shank as per manufacturer’s instruction. Each sensor was aligned with the vertical, 

medio-lateral and anterior-posterior axes of the body and contained a tri-axial accelerometer, tri-axial 

gyroscope and a magnetometer. The Kinesis QTUG sensors were secured over outer clothing with 

reusable straps (Fig. 5.2). The data derived from the QTUG sensors were streamed via Bluetooth to a 

handheld tablet (Samsung Galaxy Tab A 2016) which automatically calculated a frailty risk based on 

analysis of temporal-spatial gait parameters. Data were saved on board the tablet in text form for 
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offline analysis. The Kinesis QTUG sensor and software system (QTUG) (Kinesis Health 

Technologies, Dublin, Ireland) as described in chapter 4 is a validated tool which measures temporal-

spatial parameters of gait and uses proprietary algorithms to provide a quantitative falls and frailty 

risk score obtained during a standard TUG test. It is designed as a clinician-administered performance 

test for clinical evaluation of frailty and falls risk. It was selected for use as an example of a validated 

sensor and software system to explore if after a period of instruction and supervised use, older adults 

could use it independently to capture a frailty risk score. The theory was that experience with 

technology would enhance future use (Choi et al. 2022) and if participants could use a system 

designed for clinician administration after a brief instruction, using an accompanying guidance 

booklet, there would be potential to successfully use another form of technology(Jin et al. 2019). The 

format and duration of the education was driven by the restrictions of the COVID-19 pandemic, 

which created uncertainty regarding a window of opportunity to access participants and which limited 

the time the researcher could spend in the company of participants. The education session was 

delivered individually as person-centred implementation of technology has shown to have positive 

benefits (Ollevier et al. 2020). Support was provided in the form of an information booklet and off-

site phone support where required.  

 

 
 

Figure 5.2 Image of QTUG sensor system and placement 
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5.2.3.2 Unsupervised 48-hour period 

Following the supervised, researcher-administered activity and mobility tests and on removal of the 

sensors, participants were instructed in the use of the Kinesis QTUG sensor system and a consumer-

grade smartwatch (Withings ScanWatch, Issy-les-Moulineaux, France). Challenges are associated 

with consumer grade wrist-worn devices for example when walking with a mobility aid or at slow gait 

speed (Tedesco et al. 2019a). However, strong correlation between a Withings smartwatch (Withings 

Pulse O2) and a criterion measure of step-count has been demonstrated in healthy young adults in 

free-living conditions (Gruwez et al. 2017). Strong intra-device reliability has been demonstrated for a 

Withings smartwatch (Withings Pulse O2) for step detection in a young cohort over a prescribed 

walking route (O’Connell et al. 2016). No studies examining reliability in an older cohort were 

identified for the Withings ScanWatch specifically however, good reliability for wrist-worn activity 

trackers has been demonstrated among older adults, including those walking with a mobility aid and 

at self-selected pace (Martinato et al. 2021; Floegel et al. 2017). The Withings ScanWatch was 

selected based on an evaluation framework designed and developed to aid selection of wearable 

activity monitors (Connelly et al. 2021; Byrom et al. 2018) and includes scoring several commercial 

smartwatches and activity trackers on domains including everyday use, functionality and 

infrastructure / support (Appendix 5.12). 

Participants were requested to repeat the QTUG test unsupervised, in their own home along the same 

course and using the same chair as in the supervised test, once each day over the following 48-hours 

and to apply the QTUG sensor system for the duration of each test. Participants were provided with an 

illustrated information booklet (Appendix 5.11) and a support contact if needed. Participants were 

also requested to wear the smartwatch on their non-dominant wrist during waking hours for the 48-

hour study duration. It is suggested that positioning of a wearable sensor on the non-dominant wrist 

improves the accuracy of activity detection during daily activities compared to the dominant wrist 

(Chen et al. 2016) and its use is supported by other studies (Huisingh-Scheetz et al. 2018; Koolhaas et 

al. 2017; Minici et al. 2022). Participants did not need to interact with the smartwatch but were 
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instructed in the use of its functions should they wish to investigate and use them. Participants were 

not provided with access to the accompanying application.  

5.2.3.3 Final visit 

5.2.3.3.1 System Usability Score 

The researcher visited each participant a second time for collection of the technology not less than 48-

hours after the initial visit. Participants were asked to complete the system usability score (SUS) 

(Appendix 5.13), a validated outcome measure which measures the usability of a system (Brooke 

2020). It consists of a 10-item questionnaire with five response options for respondents ranging from 

strongly disagree to strongly agree, resulting in a score between 0 and 100. Usability is defined by the 

International Organisation for standardisation (ISO) as the extent to which a system, product or 

service can be used by specified users to achieve specified goals with effectiveness, efficiency and 

satisfaction within a specified context (ISO 2013). The system usability score was used to examine 

the participant’s perception of the QTUG system. Because the participants were not specifically asked 

to engage with the ScanWatch or provided with details or access to the accompanying application, its 

usability was not scored. However, participants were asked to record on a 5-point scale if they thought 

they would like to use the smartwatch frequently. The response was recorded separately to the system 

usability score. 

5.2.3.3.2 Interview 

A convenience sample of ten participants were selected to answer questions relating to their previous 

experience with technology. The participants were randomly selected for interview using a computer-

generated number system (https://www.calculator.net/random-numbergenerator.html) (Calculator.net 

2008). Initially their responses were not audio-recorded. However, it became apparent that the 

questions asked generated discussion and required more probing. It was agreed to select another 

sample, ten different individuals for interview, to adopt a semi-structured approach to questioning, 

and to audio-record these interviews. This subsequent sampling process took place after the study had 

commenced when most of the participants had already completed the trial, therefore a random sample 

was not possible. The interview protocol was designed and developed with a member of the 

https://www.calculator.net/random-numbergenerator.html
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supervisory team. It was piloted on one participant who had already completed the study and no 

subsequent changes to the protocol were deemed necessary. All of the last 15 participants yet to take 

part in the data collection were invited to take part in the interview. The first ten who agreed to 

participate were interviewed. Three participants declined to take part and the last participant was not 

interviewed as the proposed quota of ten had been reached and it was anticipated that data saturation 

would be achieved with n=10. The analysis of interview data included the second group of 

participants only. 

A semi-structured interview approach was chosen to explore and focus on each individual's 

experience. Questions included participant’s previous experience with technology (type, frequency 

and reason for use), their interest and perception of their ability using the new technology, their 

perception of its usefulness, and their ability to complete each test independently. Questions were 

guided by the overarching research aim using the Technology Acceptance Model (Davis 1989) and 

are listed in Appendix 5.14. According to the literature (Yap et al. 2022) the Technology Acceptance 

Model is one of the most commonly used theories for predicting technology acceptance at an 

individual level, identifying attitude, perceived ease of use and perceived usefulness as indicators for 

an individual’s acceptance and engagement with technology. According to (Davis 1989) perceived 

ease of use refers to the degree to which the prospective user expects the target system to be free of 

effort and perceived usefulness is the prospective user's perception that using the system will increase 

his or her performance within a specific context. The number of participants selected to take part in 

the semi-structured interview was justified by the literature that suggests 10 interviewees will reveal 

>80% of the issues around usability of a system; The interview was used to examine participant’s 

perceptions of both the smartwatch and the QTUG system.  

For convenience and to comply with COVID-19 precautions, the primary researcher was the only 

interviewer present. The risk of interview bias as a result of subjectivity, interviewer expectations or 

pre-conceptions is higher when there is only one interviewer present (Kallio et al. 2016). This may 

result in selective data collection or leading questions on the part of the interviewer, or social 

desirability on the part of the participant where the participant responds with what (s)he might 

perceive the researcher wants to hear (Jager et al. 2020). The risk of bias was  reduced through the use 
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of an interview protocol, designed with an experienced supervisory team member and field tested with 

a participant not subsequently included in the data analysis (Kallio et al. 2016). The audio-recording 

of this interview was checked by a member of the supervisory team as an additional quality step to 

ensure no leading or biased questions were included. 

Audio-recordings of the interviews were transcribed verbatim by the primary researcher. A random 

sample of two transcripts were checked by a member of the supervisory team for accuracy.  

5.2.3.3.3 Smartwatch Data 

Measures of total step-count, number of bouts of activity and sedentary time were extracted from the 

smartwatch using the Withings’ Health Mate web application (https://healthmate.withings.com). 

Parameters of mobility and PA that are easy to understand by a non-clinical / non-expert population, 

that are strongly associated with health and are reflected in the literature were selected for data 

collection. Step-count is strongly linked to health (Bassett et al. 2017), time spent in sedentary time 

has been shown to correlate strongly with frailty (Razjouyan et al. 2018) while number of bouts of 

activity and time spent in non-sedentary activity has been shown to negatively correlate with frailty 

(Theou et al. 2012; Razjouyan et al. 2018; Jansen et al. 2019). To standardise the data, only that 

collected between the hours of 8am and 8pm was included in the analysis. These hours were selected 

in an attempt to capture the majority of participant’s waking time, an untestable assumption on the 

researcher’s part, supported by previous studies (Leroux et al. 2019). Participants with data from these 

twelve hours of wear time for each of the two days were considered valid and were included in the 

analysis. The total step-count is the total number of steps detected by the smartwatch during the 

selected timeframe. A bout of activity is each unit of activity in 60-second epochs as identified by the 

smartwatch when activity is detected. Maximum number of bouts refers to the number of consecutive 

activity detections in 60-second epochs and reflects continuous activity during a break in sedentary 

time. Sedentary time is defined as the duration between each bout of activity and is recorded in hours, 

minutes, and seconds. The maximum sedentary time is calculated for each participant and is the 

longest uninterrupted sedentary time i.e., time between activity bouts when no steps are detected.  
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5.2.4 Data Management 

All participant data were pseudonymised. A data dictionary was created for all the data collected in 

the study (Appendix 5.15). The ScanWatch data were downloaded from the Withings HealthMate 

web application and stored in a parent Microsoft Excel spreadsheet labelled with the ScanWatch 

identification code and dates of data collection. ScanWatch data for the selected hours of 8am – 8pm 

for each day were extracted from the parent excel file and stored in a separate excel file labelled with 

each participant’s ID and recorded according to the data dictionary. The parent excel file was saved, 

unchanged. Data from the QTUG sensors were saved as PDF files. Audio-recordings were exported to 

a PC as MP3 files. All data files were password protected and stored on a password protected PC. 

COVID-19 data and paper-based case report forms were stored in a locked cabinet as per data 

management plan (Appendix 5.16). 

A Data Protection Impact Assessment was completed to identify and address any risks to personal 

data of participants, as required by GDPR. This document was accepted by the data protection officer 

of Dundalk Institute of Technology (Appendix 5.17).  

 

5.2.5 Data Analysis 

5.2.5.1 Quantitative Analysis 

Statistical analysis was performed using Microsoft Excel-16, SPSS-26, and WEKA V3.8.6 

(University of Waikoto, New Zealand). Descriptive statistics of continuous variables are presented as 

mean and standard deviation (SD). Quantitative data from the QTUG and smartwatch were tested for 

normality using the Shapiro-Wilk test. A p value of < .05 was considered statistically significant. 

Independent t-tests and Mann-Whitney U tests were used to examine the variance in total steps, 

number of bouts of activity and maximum sedentary time between frailty groups as identified based 

on the FFP. Because of the relatively small sample size and the non-normally distributed data, the 

relationships between the researcher-administered and the unsupervised QTUG frailty risk scores, the 

unsupervised QTUG frailty risk and results of the SPPB / FEFAQ and free-living PA data were 

analysed using Spearman’s rank correlation coefficient. Conventional coefficient values for very 
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strong (0.9 – 1.0), strong (0.7 – 0.89), moderate (0.4 – 0.69) or weak ( 0.10 – 0.39) were used in the 

analysis (Schober and Schwarte 2018). To further investigate the influence of each variable in the 

prediction of frailty, machine learning classifiers were used to establish optimum thresholds for the 

QTUG frailty risk estimate and for each parameter obtained from the smartwatch. The thresholds are 

the proposed levels of activity for each variable, activity below which, predicts a risk of frailty as 

classified using the FFP. The mean of each variable was used as the starting point for threshold 

selection and the highest accuracy percentage indicated the optimum threshold selected. Random 

forest models were then fitted separately with all variables using information gains attribute 

evaluation ranker and a 10-fold cross validation mode. Ten-fold cross validation divides the data 

randomly and trains the model using 10 (–1) folds and tests it on the remaining 9. This process is 

repeated 10 times, with each fold used as a training fold to optimise the robustness of the model 

(Sajeev et al. 2022). The system usability score for the QTUG system was calculated using standard 

methodology (Brooke 2020).  

 

5.2.5.2 Qualitative Analysis 

For qualitative interview data, thematic analysis was used to identify common themes, topics and 

patterns across the interview data set.  Inductive thematic analysis involved line by line coding of the 

transcripts and followed a six-step process of familiarisation, coding, generating themes, reviewing 

themes, defining and naming themes, and writing up  (Braun and Clarke 2006). A description of the 

analytical steps undertaken is presented in Table 5.2. Familiarisation involved reading and re-reading 

the transcripts to achieve a sense of the whole. Repeated reading facilitated line by line open coding 

of units of meaning to capture an overview of the main points of interest relevant to the research 

question. These codes were then collated into categories and sub-categories from which common 

themes became apparent. These themes along with the transcripts were reviewed to ensure they were 

an accurate reflection of the data. Two researchers separately coded two interviews to ensure 

consistency and guarantee a systematic, inclusive approach to the data analysis. Given the small data 

set, two interviews was deemed sufficient. It is generally accepted that due to resource limitations, not 
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all interviews are examined for inter-coder reliability (O’Connor and Joffe 2020). Agreement was met 

through discussion rather than using statistics to determine reliability. This approach is not unique. 

While it is apparent from the literature that a quantitative approach to inter-coder reliability is widely 

accepted  there is controversy and debate around the idea of applying a quantitative measure to an 

interpretive methodology (Whittemore et al. 2001; O’Connor and Joffe 2020). It is suggested that the 

credibility of qualitative research can be demonstrated through the reporting of a transparent process 

of methodology and analysis (Tong et al. 2007; Johnson et al. 2020). 

 Table 5.3 outlines how individual codes were grouped to determine sub-categories and categories.  

Table 5.2. Analytical steps (Braun and Clarke 2006) 

Familiarizing yourself with your data Verbatim transcription of all the interviews by 

the researcher. This provided an opportunity for 

initial familiarisation. The interview transcripts 

were read through several times. Initial thoughts 

and pre-codes were documented.  

Generating initial codes Data-driven codes were documented until no 

new codes were identified. 

Searching for themes Final coding was examined for themes and sub 

themes in relation to the research question and 

the studies’ goals. 

Reviewing themes The interview audios were listened to once more 

to ensure that all relevant themes had been 

captured during the analytic process. 

Defining and naming themes Discussion between the researcher and 

supervisor to ensure themes were relevant to the 

research questions. Applying relevant names to 

describe the core of the theme. 

Producing the report Discussion between the supervisory team about 

the themes and how to describe them in a report. 
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Table 5.3. Individual codes ascribed to each category and subcategory 

Categories 

 
Previous experience 

with technology 

Attitude to technology QTUG Smartwatch Interest in future use 

Subcategories Frequency of use 

 

Technology in general 

 

Perceived ease of use 

 

Perceived ease of use 

 

QTUG frailty risk 

indicator 

 

 “codes” 

 

 “Every day” #39 

 

“several times a day” 

#40 

 

“Never” #47 

 

“not very often” #48 

 

 

 “I’m more interested in 

the crochet” #50 

 

“I’m not all that 

interested …I’m more 

the arty type” #48 

 

“If only you had 

enough time to spend 

on it” #45 

 

“…. I usually go to the 

other one (feature-

phone)…lazy!” #47 

 

 

 

 

 “With the help, I had 

help” #50 

 

“It was fine, I was a little 

bit scared of it because 

there were so many bits 

to remember but once I 

got the hang of the bits it 

was very simple really” 

#40 

 

“…once I had somebody 

to read it because 

between the magnifying 

glass... I found it fine” 

#43 

 

“It was… alright” 

(tentative) ”I had help” 

#48 

 

“ a lot of pieces you had 

to remember and the 

sequence” #49 

 

“Very difficult…the 

sequence and the actual 

use…I studied the paper 

and tried to divide them 

 “The watch was 

marvellous, keeping 

track, I even did my 

ECG” #39 

 

“Yes, I checked my 

steps and my 

heartbeat. I tried to 

check my ECG once 

but I couldn’t really 

read it (ECG) anyway 

so I gave up” #40 

 

“It was comfortable” 

#45 

 

“I think I didn’t keep 

my hand over it (the 

timer) for long 

enough” #40 

 

“I found it hard to 

manipulate” 

#50 

 “yes, maybe a 

simplified version for 

users…” #40 

 

“Probably I would but 

at the moment I feel I 

can manage…” #43 

 

“If there was somebody 

monitoring… I think it 

would be helpful” #45 

 

 “there seems to be a lot 

more on it than I 

understand and really 

wouldn’t be necessary 

for me…” #46 

 

“if there was a hcp 

monitoring and giving 

the feedback…yes” #50 

 

“I think I’d go by how I 

feel” #43 

 

“Not rea… I deal with 

people who are all 

nearly worse off than I 

am myself so I wouldn’t 
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out, did one section at a 

time…complex” #49 

 

“No problem” #51 

 

“We did think a lot of 

people wouldn’t 

remember or would 

definitely be challenged” 

#39  

“… I couldn’t have done 

it without (the booklet)” 

#45 

really think it would be 

useful for them, but for 

ordinary people it 

would be useful, it’s 

good to know where you 

are…” #49 

 

“I suppose, yeah… but 

as I say you just have to 

be careful yourself” 

 

“Yes.. maybe in 10 

years” (laughs)#51  

 Type of device Technology used in 

study 

QTUG Challenges 

 

Smartwatch 

Challenges 

Interest in future use 

Smartwatch 

  “Phone, laptop, ipad, 

computer, the whole 

lot” #51 

 

“I use the old 

fashioned Nokia” #50 

 

“and an internet 

radio…” #40 

 

 

“I didn’t even try, I just 

asked my friend” #47 

 

“I don’t think anything 

would influence my 

activity.. I am as I 

am…” #51 

 

“I never looked at it” 

#47 

 

”like a fun toy”… #40 

 

“marvellous” #39, #50 

 

 “I found the Velcro on 

the straps difficult, the 

actual sensor technology 

wasn’t a problem… the 

velcro isn’t easy to 

manage” #46 

 

“so many bits to 

remember” 

“…it was really the 

sequence and the number 

of steps involved” #49 

 

“but now I’m very slow 

and my typing is quite 

bad…” #49 

 

 

“But it takes me time to 

get used to it…” #45 

 “something simpler 

would be better…” 

#48 

 

 

 “Yes and I was telling 

a couple of friends of 

mine…” #39 

 

“Probably not. It was 

interesting but … 

probably not”#40 

 

“I just check it myself, 

without technology” 

#46 

 

“At my age now, what 

would I be doing with 

it?” (laughs) #47 

 

“Yes”  

“Yes I think I would, as 

a stimulus, a 

motivation”  
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 “having a tracker might 

help…” #48 

 

“I don’t think anything 

would influence my 

activity.. I am as I 

am…” 

#51 

 Reason for use  Perceived usefulness 

QTUG 

Perceived usefulness 

Smartwatch 

 

  “playing solitaire or 

candy crush” #49 

 

“watching films, 

playback, Netflix, 

shopping, historical 

research, gambling…” 

#51 

 

“for sending 

messages, and 

Facebook because 

they (family and 

friends) send me 

messages on it. I use 

Whatsapp quite a bit” 

#43 

 

“just calls” #48 

 “I think It’s of great use.. 

to alert people how frail 

they are” #40 

 

“I think it will be…when 

I saw 100% fragility, 

that’s very high, I didn’t 

think I was anything near 

that” #45 

 

“the information it has 

given me is very 

interesting to me” #46 

 

 

 “No, I looked at the 

time once, that was 

all” #47 

 

“what’s the point in 

counting the steps, you 

just keep going 

anyway…” #50 

 

 

 

 

   Perceived confidence   

    “I got help straight 

away … I felt I wouldn’t 

do it right, you wouldn’t 

have information if I’d 
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been left alone with it 

(laughs)” #50 

 

“I remembered but 

called someone just in 

case” #39 

 

“I suppose I am a little 

bit alright on 

technology” #40 

 

“I’m fairly ok on the 

computer” #39 

“not confident exactly” 

#40 

“I use an ordinary phone 

for texts, I can use that 

one well. The other one 

is more complicated, I 

can get a message if it 

comes in and if I can find 

the keyboard I can 

answer but…. I usually 

go to the other one 

…lazy!” #47 

 

“I googled once but 

whatever I did it didn’t 

work…” #47 

“I’m not very good at 

them (computers), still 

learning” #45 
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5.3 Results 

Of the 52 participants recruited, 51 are included in the analysis (age 77.45 ± 8.38 years, height 163.56 

± 8.36cm, weight 72.04 ± 13.53 kg, female 76%; n=39). There was one withdrawal prior to complete 

data collection due to ill health, unrelated to the study. Assistive walking aids were used by n=3 

participants. No persons from the hospital-based clinics fulfilled the inclusion criteria within the 

recruitment timeframe. Potential reasons for this are the absence of the consultant geriatrician during 

the month of recruitment and the presence of ongoing COVID-19 restrictions. Both conditions 

resulted in reduced attendance at each clinic. 

According to the FFP, 12% of participants were classified as frail (n=6), 61% pre-frail (n=31), and 

27% non-frail (n=14). There was a strong correlation between frailty status as identified by the FFP 

and the SPPB assessment tool (rs .626, p<.001), but a weak positive correlation between the FFP and 

the FEFAQ (rs .340, p 0.01). 

Smartwatch data from six participants were not available for analysis due to: lost data due to 

researcher error (n=2), incomplete data obtained from the manufacturer’s web application (n=2), and 

smartwatch not provided to participants (n=2) due to the presence of a permanent pacemaker, a 

contraindication for the smartwatch selected. All remaining participants had twelve hours wear time 

between the hours of 8am and 8pm for each day and were thus included in the analysis. 

5.3.1 Quantitative Results 

5.3.1.1 Usability  

Sixty-three percent (n=32) of participants (mean age 74.34; SD 7.83) (86%, 55% and 50% of NF, PF 

and F cohort respectively) successfully obtained a frailty risk score unsupervised, in their own home 

using the Kinesis QTUG system. A further 29% (n=15) attempted to perform the QTUG test but were 

unsuccessful (mean age 82.68; SD 6.62) (14%, 45% and 50% of NF, PF and F cohort respectively). A 

total of 8% (n= 4) (mean age 82.5; SD 3.19) declined to take part in the training and the unsupervised 

test. Descriptive statistics of both successful and unsuccessful participants in each frailty group are 

presented in Table 5.4. The system usability score was completed by 80% of all participants (n=41) 
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with missing data due to participant unavailability on the day of collection of the sensor system and 

smartwatch. Percentile scores of the system usability score range from 2.5 to 92.5. Mean scores are 

presented by frailty group in Table 5.5. Fifty-three percent of participants (n=22) who provided 

smartwatch data and completed the system usability score reported an interest in the future use of a 

wrist-worn device similar to the ScanWatch as identified by a score ≥ 4 on a 5-point Likert scale. 

Table 5.4. Number, percentage and age of successful and unsuccessful unsupervised QTUG by 

frailty status  

 Frailty Group n 

% of each 

cohort Age Mean (SD) 

Unsuccessful 

[includes Declined; n=4; 

PF n=1; F n=3;  

Age 82.5 (3.19)] 

NF 2 14 73.50  (6.36) 

PF 14 45 82.50  (5.67) 

F 3 50 89.67  (2.89) 

Total 19 37 82.68  (6.63) 

Successful NF 12 86 71.42  (7.14) 

PF 17 55 75.24  (7.76) 

F 3 50 81.00  (7.94) 

Total 32 63 74.34  (7.83) 

Total NF 14 27 71.71  (6.84) 

PF 31 61 78.52  (7.72) 

F 6 12 85.33  (7.15) 

Total 51 100 77.45  (8.39) 
Abbreviations: number (n), non-frail (NF), pre-frail (PF), frail (F), percentage (%), standard deviation (SD). 
 

 

Table 5.5. SUS Percentile score by Frailty status 

  SUS Percentile Score 

Frailty Status N Mean (SD) Min Max 

NF 12 65.41 (17.11) 45.00 92.50 

PF 26 48.07 (30.30) 2.50 92.50 

F 3 35.00 (26.10) 5.00 52.50 

Total 41 52.19 (27.82) 2.50 92.50 

Abbreviations: System usability score (SUS), number (n), non-frail (NF), pre-frail (PF), frail (F), standard 

deviation (SD). 

5.3.1.2 QTUG  

Results of the Spearman’s rank correlation coefficient (rs) between the QTUG frailty estimate and 

other variables indicate there was a very strong positive correlation between the supervised QTUG 

and the unsupervised QTUG tests for each of the two days (rs .942 and .874 day 1 and day 2 

respectively p<.001). There was an equally strong positive correlation between each of the two 
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unsupervised QTUG tests (rs .938, p<.001). Estimates of agreement would be more appropriate for 

analysing the same variables however, the data violated the assumptions of normality necessary for 

creating and interpreting Bland Altman plots. Neither log transformation or taking the square root of 

variables resulted in normal distribution.  

There was a moderate correlation between the FFP and each of day one and day two unsupervised 

QTUG tests (rs.549 and .460, p <.02 respectively). There was strong correlation between the SPPB 

and each of day one and day two unsupervised QTUG tests (rs -.789 and -.703, p <0.001) but no 

correlation between the QTUG tests and the FEFAQ. There was a moderate to strong correlation 

between the supervised QTUG and maximum sedentary time, total number of steps and total number 

of activity bouts (.507, -.611 and -.712 respectively p <.001). The unsupervised QTUG frailty 

estimate correlated best with the total number of bouts of activity. These results are presented in Table 

5.6.  

Predictive accuracy percentage, the number of correctly classified instances (CCI), sensitivity and 

specificity for each optimal threshold for each variable are presented in Table 5.7. Sensitivity is the 

ability of a test to correctly classify the presence of an outcome while specificity is the ability of a test 

to correctly classify the absence of an outcome (Parikh et al. 2008). When examined individually, the 

unsupervised QTUG performed well in the prediction of frailty, with a threshold frailty estimate of 

between 35 and 40% providing a predictive accuracy of 75.8%, (CCI 22/29) (sensitivity 54.5%; 

specificity 72.2%) (Table 5.7).  

Confusion matrices and detailed accuracy for models incorporating PA data obtained from the 

unsupervised QTUG tests and the smartwatch are presented in (Table 5.8). The y-axis of the 

confusion matrix shows the actual classification of NF, PF and F. The x-axis indicates how 

participants were classified by the model. The detailed accuracy report gives an indication of the 

performance of the model or classifier. Precision, recall, F-Measure and ROC Area (receiver 

operating characteristic) are considered the most appropriate measures to include. Precision indicates 

the true positives i.e. of all the data classified into each frailty cohort, what percentage of data actually 

belong there. Recall indicates the percentage of positives that were captured in each cohort. The F-

Measure provides a weighted average of precision and recall while the ROC Area indicates the 
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percentage of time the model would correctly classify a variable / participant. A measure of 0.8 is 

considered a strong result (Nahm 2022). 

Because of the small sample size in the model incorporating the combined data, when classified into 

non-frail, pre-frail and frail there was only one participant in the frail group. For this reason, in the 

analysis of data from the QTUG and the smartwatch combined, frailty status was distributed into a 

binary classification of non-frail and frail, with the frail group consisting of participants classified as 

pre-frail and frail. Prior to applying the machine learning analysis in the prediction of frailty, the 

information gains attribute evaluator ranked variables as follows; age, total step-count, number of 

bouts of activity (n-Bouts), maximum sedentary time (MAX_ST), mean sedentary time (Mean_ST) 

and unsupervised QTUG frailty estimate percentage. This ranking was used in the development of the 

prediction models presented. 

Table 5.6 Correlation between QTUG tests and other variables 
 FFP SPPB FEFAQ SC MAX_ST n Bouts 
Supervised QTUG .606** -.833** - -.611** .507** -.712** 
Unsupervised QTUG Day 1 .549* -.789** - -.255 .289 -.407* 
Unsupervised QTUG Day 2 .460* -.703** - -.405 .309 -.522* 
Data presented as Spearman’s correlation coefficient (rs). **Significant at p < .01;*Significant at p <.05. 

Abbreviations: Fried’s Frailty Phenotype (FFP); Short Physical Performance Battery (SPPB); Frail Elderly 

Function Assessment Questionnaire (FEFAQ); Step-Count (SC); Maximum Sedentary Time (MAX_ST);  

Number (n); Quantified Timed Up and Go test (QTUG). 
 

Table 5.7 Predictive accuracy percentage and the number of correctly classified instances for each 

optimum threshold 

Variable Threshold % 

Accuracy 

%  

Sensitivity 

%  

Specificity 

CCI 

n/29 

Unsupervised QTUG 40-49% 75 54.5 72.2 22 

Step-Count 1300-1400 58.6 0 94.4 17 

n-Bouts 150-200 51.7 18.2 27.8 15 

MAX_ST (minutes) 55 – 58 68.9 27.3 83.3 20 

Mean_ST (minutes) 8 72.4 9.1 100 21 

Abbreviations: Correctly classified instances per total sample (CCI n /29), number of bouts of activity 

(n_Bouts), Maximum sedentary time in minutes (MAX_ST). 
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Table 5.8 Prediction models and confusion matrices and detailed accuracy using ScanWatch and QTUG data 

Model 1 (n29)   Model 2 (n29)   Model 3 (n29)   
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5.3.1.3 Smartwatch 

Data collected from the smartwatch for each participant during the timeframe selected from the 48-

hour study duration (8am – 8pm on two consecutive days) were included in the analysis and consisted 

of total number of steps taken, total number of bouts of activity, mean and maximum sedentary time 

in hours and minutes. Table 5.9 presents the comparison of each activity by frailty status. There was 

significant variance between each frailty group in measures of total step-count and total number of 

bouts of activity (p < .01). Maximum sedentary time was not significantly different between groups. 
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The FFP and the SPPB significantly correlated with maximum sedentary time (rs .403, -.498), total 

steps (rs -.598, .653) and total number of bouts of activity (rs -.654, .755) respectively (p <.01) (Table 

5.10). Confusion matrices and detailed accuracy for models incorporating PA data obtained from the 

smartwatch are presented in (Table 5.11). 

Table 5.9. Physical activity and sedentary time by frailty status 

 NF 

(n=12) 

PF 

(n=28) 

F 

(n=5) 

Step-Count 16772 (7543) 9942 (7297) 1018 (558) 

Total bouts of activity n 536 (181) 322 (127) 108 (39) 

Maximum Sedentary Time (hours) 1.01 (.47) 1.50 (.83) 1.70 (.44) 
Data are presented as mean (SD). Abbreviations: Number (n). 

 

Table 5.10 Correlation between the FFP and SPPB and Smartwatch variables 

 Max ST Total SC Total n Bouts 

FFP .403** -.598** -.654** 

SPPB -.498** .653** .755** 
Data presented as Spearman’s correlation coefficient (rs). **Significant at p < .01 

Abbreviations: Fried’s Frailty Phenotype (FFP); Short Physical Performance Battery (SPPB); Maximum 

Sedentary Time (Max ST); Step-Count (SC); Number of bouts of activity (n-Bouts). 

 

Table 5.11 Prediction models, confusion matrices and detailed accuracy using Scanwatch data 
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5.3.2 Qualitative Findings 

Qualitative data from the interviews of ten participants selected are included in the analysis (mean age 

81.6 ± 6.78 years, range 71 – 90 years, male n = 1). All were pre-frail to some extent, scoring one or 

two out of five on the FFP. Demographics and associated participant identification (ID) are presented 

in Table 5.12. The duration of the interviews ranged between 3.25 and 13.25 minutes. Findings are 

discussed under the headings: Previous experience with technology, attitude to technology, perception 

of technology used during the study including perceived ease of use, perceived usefulness, challenges, 

confidence and interest in using a similar system or device in the future. Four categories and 11 sub-

categories identified through coding are presented in Table 5.13 

Table 5.12 Interview Participant demographics 

ID 39 40 43 45 46 47 48 49 50 51 

Gender FM FM FM FM FM FM FM FM FM M 

Age 75 72 88 86 87 81 84 82 90 71 

Frailty 

status 
PF PF PF PF PF PF PF PF PF PF 

 

Table 5.13 Categories and subcategories identified through coding of interview transcripts 

Category Subcategories 

Previous experience with technology 

 
 Frequency of use 

 Type of device 

 Reason for use 

Attitude to technology  Technology in general 

 Technology used in study 

Perception of technology used in the study 

(QTUG and Smartwatch) 
 Perceived ease of use 

 Perceived usefulness 

 Challenges 

 Confidence 

Interest in future use  QTUG 

 Smartwatch 

5.3.2.1 Previous experience with technology 

Most participants (n= 9) reported the use of a smartphone, tablet device and/or a PC on a regular 

basis, most reporting at least daily use with a small minority (n=3) reporting weekly use or less. All 

reported owning a phone of some kind. Most (n=8) reported they use their phone for calls and text 

messages with one respondent reporting its use for games and another for shopping and other 

functions. One participant reported using the phone for calls only and this being a feature phone type 

(a feature phone is a mobile phone that incorporates features such as the ability to access the internet 
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but lacks the advanced functionality of a smartphone). Another participant reported having both a 

smartphone and a feature-phone but reported more frequent use of the feature-phone citing ‘laziness’ 

and ease of use as the reason. 

“I use an ordinary phone for texts, I can use that one well. The other one is more 

complicated, I can get a message if it comes in and if I can find the keyboard, I can answer 

but…. I usually go to the other one…lazy!”(#47). 

Functions reported for laptop or PC use were broad and included shopping, email, research via 

Google or YouTube, games, gambling and attending mass on-line during the COVID-19 pandemic. 

Self-reported confidence with technology used on a regular basis varied from very confident to not so 

confident and still learning. 

“I suppose I am a little bit alright on technology” (#40) 

“I’m fairly ok on the computer” (#39) 

“I’m not very good at them (computers), still learning” (#45) 

 “…when the computers came….I was very good at it, but now I’m very slow …” (#49). 

5.3.2.2 Attitude to technology 

Attitude refers to a viewpoint or frame of mind and is the cognitive process which influences positive 

or negative affection toward technology (Au and Enderwick 2000). Attitude is used in the context of 

this study to examine the participants’ viewpoint regarding the technology. Attitudes to technology in 

general varied among the participants from  

“I’m more interested in the crochet” (#50) and “I’m not all that interested …I’m more the 

arty type” (#48)  

to  

“If only you had enough time to spend on it” (#45) and (I use it for) “everything!” (#40). 

Attitudes to the technology used in the study were equally diverse with a cohort agreeing that it was 

“marvellous” (#39, #50), “like a fun toy” (#40) and those who disregarded it completely  

“I didn’t even try; I just asked my friend” (#47).  
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Overall, there was agreement that technology was necessary at the very least for communicating with 

family and friends, especially those “abroad” or “away”. Attitudes are influenced by perception and 

perceptions are discussed in the following paragraphs. 

5.3.2.3 Perception of the technology used during the study 

Perception, defined as the way in which something is regarded, understood or interpreted is an 

opinion or belief that is influenced by past experience, education, values and culture, among others 

(Barnard et al. 2013). The consensus regarding the perception of the technology used for the duration 

of the study was that it was “fine” but further probing revealed a divide in participant’s impressions. 

While the majority managed to complete the required task using the QTUG system, many reported 

seeking help before attempting the task. So, for some of the participants “fine” appeared to mean that 

they had no difficulty or anxiety regarding the task as they relied on someone else to do it for them  

“It was easy – someone else used it, I just did the walk (laughs)” (#47)  

Whereas for others “fine” meant they managed to use the system and complete the task without much 

ado.  

“…once I got the hang of the bits it was very simple really” (#40).  

Several factors influenced perceived ease of use of the sensor system, complexity being foremost. 

Those who managed to complete the task successfully and independently using the QTUG system 

varied in their responses to the perceived ease of using the system ranging from “no difficulty at all” 

(just one participant, (#51) to various degrees of challenge. The QTUG system was deemed 

manageable, but difficult to navigate by most despite the availability of the illustrated information 

booklet. 

 “Very difficult…the sequence and the actual use…I studied the paper and tried to 

divide them out, did one section at a time…complex” (#49) 

“We did think a lot of people wouldn’t remember or would definitely be challenged” (#39) 

“I couldn’t have done it without (the booklet)” (#45). 

The perceived usefulness of the QTUG sensor system was more uniform than the perceived ease of 

use among the participants with the majority acknowledging they considered the information provided 

by the technology to be very useful, interesting and informative.  
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Responses regarding the perceived ease of use of the smartwatch were quite negative with few 

reporting full engagement with the functions available. Apart from one participant who was very 

enthusiastic;  

 “The watch was marvellous, keeping track, I even did my ECG” (#39) 

 the majority of participants struggled with the interface; 

 “I found it hard to manipulate” (#50) 

 “I think I didn’t keep my hand over it (the timer) for long enough” (#40). 

Perception as to the usefulness of the smartwatch was also less positive than for the sensor system, 

with participants agreeing for the most part that while it had a novelty factor, being able to interpret 

the information provided and failing to see its relevance to them reduced their perception of its 

usefulness. 

“Yes, I checked my steps and my heartbeat. I tried to check my ECG once but I couldn’t really 

read (interpret) it (ECG) anyway so I gave up” (#40) 

“I didn’t do the ECG or anything, I was just interested in looking at what it could do” (#49). 

Not all the challenges experienced were related to the technology itself with some experiencing 

problems as a result of the biophysical restrictions associated with ageing including dexterity and 

eyesight. 

“I found the Velcro on the straps difficult; the actual sensor technology wasn’t a problem… 

the velcro isn’t easy to manage” (#46) 

 

“I found it alright once I had somebody to read it because between the magnifying glass... I 

found it fine” (#43) 

“very difficult, now I’m very slow…” (#49). 

Many participants who expressed confidence with regular use of technology did not demonstrate the 

same level of assuredness with the technology used in the study. Often those who sought help with the 

use of the QTUG system were frequent users of multiple devices. Reasons given for immediately 

seeking assistance were mainly lack of confidence in their ability to achieve the task independently or 

fear of doing it incorrectly and not capturing the data needed by the researcher.  

“I got help straight away … I felt I wouldn’t do it right, you wouldn’t have information if I’d 

been left alone with it (laughs)” (#50) 

“I remembered but called someone just in case” (#39) 
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“not confident exactly” (#40). 

5.3.2.4 Interest in using a similar system or device 

Participants overall responded positively to questioning about the perceived usefulness of the QTUG 

system and to a lesser extent of the smartwatch however, this positivity did not translate into an 

interest in future use of such tools. It seemed participants and family were interested in the 

information and the novelty but when asked about their interest in using the QTUG system or the 

smartwatch the majority of participants suggested it would be more suitable for ‘others’. There were 

those who admitted to not exploring the functions or the information provided by the system or the 

smartwatch citing lack of interest or perceived relevance to their situation. Those who expressed an 

interest in future use were in the minority and did so with the caveat of the technology being simpler 

and easier to use. To further demonstrate a lack of real interest or intention to use, what could be 

described as adoption of the technology (Renaud and Van Biljon 2008), was participant’s general 

perception of the extent to which the use of a smartwatch would influence their activity level; 

 “I think I’d go by how I feel” (#47) 

“there seems to be a lot more on it than I understand and really wouldn’t be necessary for 

me…” (#46) 

“what’s the point in counting the steps, you just keep going anyway…” (#50) 

“Probably I would but at the moment I feel I can manage…” (#43) 

“I don’t think anything would influence my activity.. I am as I am…” (#51). 

The main reasons given for lack of interest in future use were the challenges related to the complexity 

of the technology used in the study but also the idea that they (the participant) were either too old to 

benefit or too young.  

“Yes... maybe in 10 years” (laughs) (#51) 

“At my age now, what would I be doing with it?” (laughs) (#47). 

Some alluded to an increase in interest if there was a clinician or health care professional monitoring 

the results, giving feedback and advising on appropriate intervention. 

“If there was somebody monitoring… I think it would be helpful” (#45) 

“if there was a health professional monitoring and giving the feedback…yes” (#50). 
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Two themes identified from the narrative are that of help being sought or deemed necessary, and 

acknowledgement of the usefulness of the technology but “for someone else”.   

5.4 Discussion 

This study examined the relationship between sensor data of mobility and PA obtained during both 

supervised and unsupervised, free-living activities among community-dwelling older adults, with 

traditional functional assessment using validated assessment tools and with frailty status as identified 

using a validated frailty assessment tool. The study also sought to investigate the usability of a 

wearable sensor system for independent and unsupervised capture of activity data during a mobility 

test and examine the experience and attitudes to the use of technology for ongoing monitoring of PA 

among this cohort.  

A sample recruited from community-based hospital clinics and social groups was expected to 

represent of the target population of community-dwelling older adults. The small number of frail 

participants was possibly impacted by the COVID-19 pandemic, which influenced recruitment from 

hospital clinics and potentially from the community groups. However, the 73% prevalence of frailty 

and pre-frailty combined in the sample is comparable with other similar studies (Pradeep Kumar et al. 

2021; O’Halloran et al. 2021; Roe et al. 2017) and reflects the population prevalence (Choi and Kim 

2015).  

Overall, the study found that the majority of participants were successful in obtaining a frailty risk 

score independently using a wearable sensor system; that parameters of PA obtained from the wrist-

worn smartwatch significantly correlated with traditional functional tests and frailty assessment tools; 

and that models incorporating variables from both the unsupervised QTUG and the smartwatch were 

successful in the prediction of frail / pre-frail status. It is important to remember that correlation is a 

measure of the strength and direction of the relationship between the variables measured and not a 

measure of agreement (Bland and Altman 1986).  
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5.4.1 QTUG 

The majority of the participants included in the study were successful in obtaining a frailty risk score 

independently using a wearable sensor system. It must be acknowledged that the Kinesis QTUG 

sensor and software system is designed for clinician-administration however it was used in this study 

as a validated tool for frailty assessment and to explore older adult’s ability to capture quantified 

measurements of mobility and frailty independently. Body-worn sensors are the most commonly used 

technology to examine mobility and PA in older adults (Bian et al. 2020), but reliance to date has 

been on researcher analysis of the data obtained (Tolley et al. 2021). An established trend of 

individuals self-monitoring information pertaining to their health and/or PA is evident in the literature 

and illustrates the interest people have in monitoring and analysing their own data, referred to as 

quantified self-assessment (Rawassizadeh et al. 2015; Vijayan et al. 2021).  

Those who were successful in obtaining a frailty score unsupervised were younger (mean age 74.34; 

SD 7.83) than those who failed to use the QTUG successfully (mean age 82.68; SD 6.62). However, 

the percentage of those in the pre-frail and frail cohorts was comparable (45% - 50% and 55% - 50% 

for PF - F cohort for successful and unsuccessful respectively).  

Frailty estimates from the QTUG tests correlated with the results of the functional tests and frailty 

assessment tools. The QTUG frailty estimates captured by participants unsupervised correlated 

strongly with those of the supervised QTUG, the SPPB and had moderate correlation with the FFP. 

This outcome is promising, suggesting that many older adults can independently capture information 

relevant to their risk of frailty that does not depend on a clinician or researcher for analysis. The 

Kinesis QTUG sensor system provides an objective estimate of frailty in the form of a frailty risk 

score, which can potentially be understood by each individual user without further analysis or 

interpretation being necessary. With a more comprehensive educational component or with a less 

complex sensor system to capture parameters of mobility and PA, it is possible the 37% of 

participants who did not complete the self-assessment could be facilitated to do so. The QTUG sensor 

system is designed for clinician-implementation therefore no studies examining its use in 

unsupervised tests were found. 
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One reason for the less strong correlation between the unsupervised QTUG tests and the FFP could be 

the result of the cut-off point for gait speed in the FFP assessment tool at ≥19 seconds as proposed by 

the Comprehensive Geriatric Assessment (CGA) (Www.cgakit.com 2015). The cut-off point of 19 

seconds could be considered quite high as other literature supports cut-off points as low as twelve 

seconds (Bischoff et al. 2003) and the QTUG algorithm uses a cut-off point of 13.6 seconds when 

estimating a frailty score (Kinesis 2023). If the algorithm is programmed with a higher cut-off time in 

seconds to detect gait speed indicative of frailty, subtle signs may be overlooked resulting in a lower 

frailty score. 

 

There was no correlation between the unsupervised QTUG frailty risk estimate and function as 

predicted by the FEFAQ. There was also poor correlation between the FEFAQ and the FFP which is 

surprising considering the FEFAQ has scored positively on content and construct validity, reliability, 

responsiveness and floor / ceiling effects when compared with other valid questionnaires (De Vries et 

al. 2010; Gloth et al. 1995). This is in contrast to the strong correlation found between the SPPB and 

the FFP, a finding that is supported by the literature (Pritchard et al. 2017; Rodríguez‐gómez et al. 

2021). However, the FEFAQ is designed to assess function at very low levels of activity (Gloth et al. 

1995) and because of the impact of COVID-19 resulting in recruitment exclusively from community-

based social groups, the sample included lower frailty and higher functional levels. This is a limitation 

of the study and affects the generalisability of the results. 

5.4.2 Smartwatch 

A consumer grade wearable device in the form of a smartwatch positioned at the wrist was used to 

monitor parameters of PA during free-living activities because of its ability to continuously and 

unobtrusively collect data relating to PA, summarise the data and provide feedback in a way a user 

can interpret and understand. The wrist, selected for accessibility, has been found in a study of older 

adults and care-givers, to be one of the preferred body-locations for placement of a wearable sensor 

(Kolasinska et al. 2018). Consumer grade activity trackers positioned at the wrist have demonstrated 

validity and reliability in measuring step-count and activity duration in older adults (Straiton et al. 

2018). There is an increasing body of evidence to support their use for continuous monitoring and 
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promotion of PA in older adults to improve activity behaviours and health (Brickwood et al. 2020; 

O’Brien et al. 2015; Straiton et al. 2018). Data obtained from activity trackers have been shown to 

increase users’ awareness of their activity levels (Ehn et al. 2018) and to be successful in increasing 

their engagement with PA (Nyman et al. 2016). This supports the proposal that if older adults have a 

means of independently measuring PA that identifies a risk of frailty, the risk of frailty development 

could be mitigated. A smartwatch, specifically the ScanWatch was selected for use in lieu of an 

activity tracker as it performed better in the evaluation framework in terms of the use of the device 

controls, wearable display visibility, and interpretability.  

Maximum sedentary time, total step-count and number of bouts of activity obtained from the 

smartwatch in the current study were found to be significantly correlated with frailty status as 

identified using a validated frailty assessment tool. Measures of sedentary time, step-count and 

number of bouts of activity selected as predictors of frailty are supported in the literature (Del Pozo-

Cruz et al. 2017;Kim et al. 2020; Rodríguez‐gómez et al. 2021). A large study examining sedentary 

time in community-dwelling older adults demonstrated a lower correlation coefficient between 

sedentary time and frailty (0.19 p.01) (Rodríguez‐gómez et al. 2021). A smaller study of community-

dwelling older adults in receipt of home care support demonstrated a correlation coefficient between 

step-count and frailty comparable with our study ( -0.52 p<.001) (Kim et al. 2020). The significance 

in the correlation between parameters obtained from the smartwatch and frailty status are diminished 

when frailty groups are analysed separately because of the small sample size in each group. However, 

the findings reiterate those demonstrated in other studies (Del Pozo-Cruz et al. 2017; Mañas et al. 

2019; Rodríguez‐gómez et al. 2021) supporting a reduction in sedentary activity and the introduction 

of breaks in sedentary time to influence frailty status. The magnitude of the findings compare with 

earlier studies of sedentary time (Gorman et al. 2014; Jansen et al. 2015; Kehler et al. 2018). Step-

count exceeds that observed in a previous study that reported a frailty prevalence of 35% (Kim et al. 

2020), but the step-count captured by the frail cohort is comparable with that of a frail cohort in a 

study of nursing home residents (Chan et al. 2016). It is important to acknowledge that the smaller 
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sample size may influence the results and carries a risk of type I error. The true effect, if present will 

need to be confirmed in a larger sample size and longer period of data collection. 

The use of a smartwatch is not without limitations. While providing feedback that can be interpreted 

without difficulty, accessing and engaging with the relevant application to obtain the information is 

necessary. The majority of participants who completed the usability questionnaire reported an interest 

in using a similar wrist-worn device in the future. This figure may be different if participants had been 

more comprehensively educated in the functions of the smartwatch, which may have also influenced 

the perceived usefulness. However, it may also have been different, either higher or lower if they had 

been required to access and engage with the accompanying mobile/web-based application. The 

outcome would very much depend on each participant’s inclination toward the technology and on 

their interest in engaging with the accompanying application.  

The use of a wrist worn device carries a risk that upper limb movement or activity may be erroneously 

misinterpreted and calculated as step-count (O’Connell et al. 2017) and reduced accuracy has been 

suggested during normal daily activities that involve upper limb movement (Chen et al. 2016; 

Tedesco et al. 2019a). Reduced accuracy is also suggested at varying gait speeds (Sears et al. 2017). 

Other body locations for sensor positioning may demonstrate higher accuracy in terms of step-count 

and PA detection (Chow et al. 2017) but the conveniently accessible wrist positioning has been shown 

to provide acceptable accuracy (O’Connell et al. 2016; Tedesco et al. 2019b) and the PA data is 

readily available without the need for pre-processing or specialised analysis.  

5.4.3 Predictive Models 

A machine learning classifier using 10-fold cross-validation was used to evaluate the performance of 

models derived from the parameters of PA obtained from the smartwatch and from the QTUG sensor 

system and smartwatch combined. It must be acknowledged that the sample size was powered based 

on t-test and correlation coefficients and is unlikely to be powered sufficiently for machine learning 

analysis. Previous studies using machine learning have included sample sizes ranging from 240 – 

5000 (Balki et al. 2019). Therefore, although results are comparable with other similar studies which 

will be subsequently discussed, all results must be regarded cautiously.   
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All models incorporating the variables obtained from the unsupervised QTUG and the smartwatch 

combined, performed better in the prediction of frail/pre-frail than non-frail as demonstrated in the 

confusion matrices in Table 5.8 each with sensitivity and specificity ≥0.70. This is an important 

finding as it has been established that positive transition between stages of frailty is more successful if 

identified at the pre-frail rather than the frail stage (O’Halloran and O’Shea 2018; Kojima et al. 2019), 

thus identifying an opportunity for appropriate allocation of scarce resources for timely intervention. 

The QTUG data also performed well when analysed separately with the threshold of a frailty risk 

score between 35-40% providing a prediction accuracy of 75.8%. This is in keeping with the literature 

on the Kinesis QTUG system that supports its use in the classification of frailty (Greene et al. 2019). 

It is interesting to note however that despite the QTUG performing well in the prediction of frailty, 

when ranked using information gains evaluation for the development of prediction models, the QTUG 

variable was ranked last and the prediction model performed better when the QTUG data was omitted, 

with 79.3% accuracy, compared to 72.4% (Table 5.9). One explanation for this may be the fact that 

the QTUG, while performed by the participants unsupervised in their own home, was performed in 

what could be perceived as test-like conditions and may have inadvertently resulted in response bias. 

The PA data obtained from the smartwatch was done so continuously, without any active engagement 

by the participants being required thus minimising any bias. As not all participants’ data were 

included in the analysis of the smartwatch data and not all participants successfully obtained a frailty 

score from the QTUG unsupervised, the sample size used in the predictive models incorporating data 

from both the QTUG and the smartwatch is reduced.  

Models incorporating parameters of PA obtained from the smartwatch performed best in the 

prediction of pre-frail with CCI n23/28 i.e., accuracy of 82% in each model (Table 5.11). This is 

consistent with the favourable prediction accuracy for pre-frail in the models incorporating the QTUG 

data. Thresholds derived from simple machine learning methods on each smartwatch variable 

demonstrate predictive accuracy for frailty ranging between almost 52% for number of bouts of 

activity, 58% for total step-count and almost 70% for maximum sedentary time. A predictive accuracy 

percentage of 52% when analysed alone is of little value as chance is expected to achieve 50% 
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accuracy and the sensitivity of each individual variable was low (0 – 54.5%). However, when 

analysed as part of the confusion matrix, the value of each variable increases. The threshold proposed 

for total step-count is supported by an earlier study proposing a reduced risk of frailty for older adults 

walking ≥ 5000 steps per day (Yuki et al. 2019).  While the QTUG provides a higher predictive 

accuracy at 75% it could be argued that the potential benefits of a smartwatch including its relative 

ease of use, make it an alternative worth considering. The collection of continuous data using a 

smartwatch as opposed to data collected by the QTUG sensor and software system during a specific 

mobility test could also be considered more suitable. The qualitative data analysis suggests older 

adult’s preference for a simpler device to capture parameters of their activity.  

This study has demonstrated that objective PA data associated with frailty can be monitored by older 

adults using a smartwatch, and some can capture an objective measurement of mobility and frailty 

using a sensor and software system. Activity monitors in the form of activity trackers or smartwatches 

provide users with real-time feedback about their PA, and do not require trained personnel to deliver 

or interpret the data (Brickwood et al. 2020). A smartwatch was selected for this study as a 

convenient, user-friendly method for continuous collection of activity data and demonstrated the 

ability of older adults to acquire continuous data of PA in free-living conditions. 

5.4.4 Usability 

The important question is if parameters of PA with sufficient predictive accuracy for frailty or pre-

frailty can be captured with a smartwatch or sensor system and used independently by older adults to 

identify to them their risk of frailty. The results presented in this study demonstrate that the 

parameters of PA, specifically total step-count and number of bouts of activity obtained by the 

ScanWatch correlate well with frailty levels especially pre-frail, and that a threshold for sedentary 

time, predictive of frailty can be identified with levels of accuracy exceeding those that could be 

explained by chance (Brownlee 2021). This suggests that the combination of PA and sedentary 

activity can be monitored regularly and unobtrusively by older adults as a way of objectively 

identifying their risk of frailty.  
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These findings fit well with previous research demonstrating correlation between sensor-based data, 

traditional functional assessment, and frailty status (Huisingh-Scheetz et al. 2018; Kim et al. 2020; 

Mulasso et al. 2019) and provide new insights into the ability among community-dwelling older 

adults to capture a frailty risk estimate independently, unsupervised in their own home. As well as 

collecting PA data that correlates with frailty risk using a smartwatch, participants also demonstrated 

the ability to capture a more comprehensive frailty estimate, using the Kinesis QTUG sensor and 

software system. Overall, the system usability score for the QTUG system ranged from 2.5 to 92.5 

demonstrating a wide variation in participants’ perception of its usability. The mean SUS score was 

lower with each increasing level of frailty however, the lowest score was in the pre-frail group (2.5 in 

the PF group compared with a lowest score of 5 the frail group) indicating that some frail participants 

perceived the technology more usable than their pre-frail peers. This is consistent with earlier studies 

examining factors that influence technology acceptance among older adults which demonstrated a 

weak association between age and technology use (Ha and Park 2020; Peek et al. 2014).  

The mean score of 52 falls below the score of 68 which is considered an average and acceptable score 

for the system usability score (Sauro 2011). Forty-four percent of those who completed the system 

usability score (n=18/41) scored ≥ 65 demonstrating that for many participants, the technology was 

deemed usable. The non-frail group came closest to the average of 68 (mean 65.4, range 45 – 92.5). 

The mean system usability score reduced in accordance with frailty status and age in keeping with 

previous studies (Bangor et al. 2009).  

Four participants declined to take part in the unsupervised activity test using the QTUG system, citing 

lack of interest or lack of confidence in their ability to perform the test independently. Twenty-nine 

percent of the participants who attempted to use the sensor system independently were unsuccessful 

for reasons including system or battery failure, poor eyesight and self-reported lack of confidence to 

attempt the test without family support. The latter two reasons are related to biophysical restrictions 

and reduced confidence, both associated with ageing, and confirm the literature which identifies these 

as limiting factors to the use of technology among older adults (Wang et al. 2021). Help was reported 

as being sought regardless of participant’s previous use of technology or self-reported ability. This, 

according to the participants was because of a lack of self-confidence in digital skills or a fear of not 
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providing the researcher with the necessary data. Lack of confidence in technology is referred to as 

digital anxiety in the literature and appears quite prevalent (Yap et al. 2022; Nimrod 2018; Di 

Giacomo et al. 2019). Self-confidence in digital skills is influenced by many factors including age, 

education and previous experience with technology, and in turn affects satisfaction, perceived 

usefulness and adoption or continued use of technology (Lee and Coughlin 2015). The predominant 

factor influencing self-confidence and consequent outcomes appears to be the training and support 

provided (Ehn et al. 2018; Neves and Mead 2020; Barnard et al. 2013).  

Training sessions that allow older adults to learn at an individual pace, with ongoing support and 

provision of educational literature have been shown to instil confidence and facilitate problem solving 

resulting in acceptance and adoption of technology among older adults (Desai et al. 2022). It is 

recognised that older adults have the capacity and the interest to learn to use technology but again, the 

design of the training is important (Schlomann et al. 2022). The limited duration and once-off nature 

of the training provided in this study may have contributed to the participants not being equipped to 

manage system or battery failure. The training provided did not include the opportunity for 

participants to first engage with the technology and subsequently ask questions or experience success 

in tasks, both of which are understood to build confidence and facilitate successful adoption of 

technology (Lee and Coughlin 2015). The training did include one-to-one training and a reference 

manual, and the request to repeat the test on two consecutive days facilitated ‘learning by doing’, all 

of which have been reported as preferred learning strategies of older adults (Schlomann et al. 2022). 

The very strong correlation between the two consecutive unsupervised tests (rs .938, p<.001) suggests 

that ‘learning by doing’ did not influence the outcome of the second unsupervised test. The system 

usability score is a validated and reliable tool for assessing the usability of a system but includes 

dimensions for learnability in two of the questions (four and eight) (Lewis and Sauro 2009; Sauro 

2011). Learnability is defined as the ease with which something can be learned (Harrison et al. 2013). 

Considering the nature of the training provided and the short duration of the education, if analysed 

separately the learnability dimension score may have contributed to the understanding and 

interpretation of the system usability scores. 
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A recurrent theme evident from the qualitative interview analysis was the suggestion by the majority 

of participants that the technology would be useful for someone else, either older or younger, 

physically ‘better off’ or ‘not as good’. Those who considered that the use of technology might 

influence their activity levels did so in a non-committal way “I think it would…” or “it might help”. 

Self-monitoring of health and PA is recognised as an important factor in management and prevention 

of chronic disease and declining function (Rodríguez‐gómez et al. 2021; Centre for Disease Control 

and Prevention 2022) however, patient’s willingness to self-monitor is variable (Huygens et al. 2017). 

There are many potential explanations for the reluctance among the participants to adopt the 

technology presented in the study. The literature suggests perceived ease of use and perceived 

usefulness of a device or system are major contributing factors to the reluctance among older adults to 

adopt continued use of technology (Preusse et al. 2017). A study by (Keogh et al. 2020) found that 

perceived usefulness outweighed perceived ease of use, a finding that is supported throughout the 

literature (Yap et al. 2022) and supports the findings of the current study. This suggestion is refuted 

by (Chen and Chan 2014) who propose that self-efficacy, anxiety and social support outweigh the 

effect of perceived ease of use and perceived usefulness as influences of continued technology use. A 

study by (Keränen et al. 2017) identified that frailty status was directly associated with a negative 

opinion of the usefulness of technology. This may also have been a factor in the current study 

involving older adults with varying degrees of frailty.  

Distinction has been made between acceptance of technology and adoption. Acceptance does not 

necessarily result in adoption which is defined as an individual embracing a technology and making 

full use of it (Renaud and Van Biljon 2008). Adoption and continued use of technology among older 

adults has been linked to their perception of the relevance of the technology to their lives and the 

perceived benefits (Vroman et al. 2015). Those who expressed interest in the QTUG system were 

generally positive regarding the smartwatch and equally, those who had little interest in the QTUG 

system had little interest in the smartwatch. It must be acknowledged that there was a lot more 

engagement required of the participant in the use of the QTUG system compared with the smartwatch. 

Participants were not uniformly instructed in the use of all the functions of the smartwatch and were 
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not given access to the accompanying application but rather requested to simply wear the device for 

the selected period of time. This may have influenced participant’s perception of the usefulness of the 

smartwatch relative to the sensor system. Different responses may have been obtained if participants 

had to interact with the application or indeed if they had been given the opportunity to access it. As 

well as considering the design and delivery of technology to older adults, demonstrating its relevance 

in the role of disease prevention and management of health may influence and motivate older adult’s 

adoption of technology to identify early signs or risk of frailty and should be included in future 

studies. 

5.5 Limitations 

The results of this study must be viewed in relation to its limitations. The sampling method for 

recruitment of participants resulted in a lack of gender balance and a lack of diversity in frailty status. 

While the prevalence of frailty in women is twice that of in men in Ireland (O’Halloran and O’Shea 

2018) the percentage of men in the overall sample was just 25%. This is in contrast with other frailty 

studies where the gender balance has been more reflective of the population (Rodríguez‐gómez et al. 

2021; Xue et al. 2020) but not a unique occurrence (Buchman et al. 2021). There is the possibility this 

gender imbalance is a result of volunteer bias whereby people want to take part in the study to help 

others, in the hope of others benefitting from their input, and women are known to volunteer at a 

higher rate than men (Salkind 2010). The predominance of participants from community groups and 

the lack of recruitment from hospital clinics may have influenced the imbalance in frailty status 

among the participants. More successful recruitment from the ortho-gerontology clinic in non-COVID 

times may have resulted in a more balanced sample.  

This gender imbalance is heightened in the sample of 10 participants selected for interview, as there 

was only one male included. Furthermore, the frailty status of all participants interviewed was pre-

frail thereby omitting the contribution of the frail and non-frail participants. This potentially limits the 

truth value of the multiple perspectives that could be expected from different cohorts, which 

influences the dependability that ultimately relies on variability. This potentially impacts on the 

application and generalisabilty of findings (Whittemore et al. 2001).  This imbalance can be explained 
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by the nature of the sample selected for interview, the fact that 75% of the sample population were 

female with a prevalence of 61% pre-frail. It is possible a purposive sample may have been more 

appropriate to ensure a better, more representative gender and frailty status balance.  

The short time frame of the study which was influenced by the COVID-19 pandemic, and the once-off 

training session did not facilitate self-paced learning or provide the benefit of time to explore the 

technology with ongoing technical support, both of which have been identified by older adults as 

crucial to their ongoing engagement with technology (Desai et al. 2022). Participants may have 

benefitted from a follow-up training session to address questions and provide support prior to carrying 

out the unsupervised QTUG test, which may have influenced the responses and results. The limited 

duration of the training session and the study overall possibly did not adequately allow for learnability 

of either the sensor system or the smartwatch which precluded the opportunity to explore more 

meaningfully the potential for engagement and adoption. The average duration of the interviews was 

relatively short, which may be the result of the inexperience of the researcher in conducting the 

interview and following up with appropriate probing questions or prompts. 

The restriction of the smartwatch data collection to between the hours of 8am and 8pm may be 

perceived as limitations to the study. Participants who engaged in activities or for example had a 

regular daily walk outside of the selected timeframe would not have been accurately represented in 

the data analysis. Older, more frail participants for whom activities of daily living may be the extent 

of their PA, may have had morning or bedtime routines omitted from the data analysis thus reducing 

their step-count or number of bouts of activity. Activities of daily living such as getting up and 

dressed or making breakfast are recognised as light intensity activity among older adults (NHS 2021). 

A small percentage of participants used a mobility aid such as a rollator frame or walking stick (n=3). 

The effect of the use of a mobility aid on the data was not analysed.  

Usability was demonstrated following a brief education session and hands on experience with one 

mobility test. This prior knowledge of the system may be perceived as a limitation to the study of 

usability however, the time involved in an education session, which could possibly be delivered 
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during a routine clinical visit or in a group setting could mitigate the time needed for regular clinician-

dependant, clinical-environment-based assessments. 

The positive outcome following such brief intervention is promising for the potential to introduce a 

sensor system for continuous self-monitoring of data pertaining to frailty risk by older adults, 

unsupervised in their own home. This independently obtained data can provide actionable 

information, reducing greatly the need for clinician and clinical-based monitoring. 

 

5.6 Conclusion  

This study has demonstrated the ability among community-dwelling older adults to obtain a frailty 

risk score unsupervised in their own home using a QTUG system. It also demonstrated the validity of 

a wrist-worn smartwatch to capture data relating to frailty status among older adults. This information 

is important as it facilitates older adults to monitor their mobility and PA and identify their risk of 

developing frailty. Thresholds for activity levels predictive of frailty risk have been proposed. The 

study has introduced the use of a sensor and software system to independently capture parameters of 

PA relating to frailty risk, has examined the literature relating to technology use among older adults, 

and has triangulated the data by exploring through semi-structured interview, older adults’ interest in 

engaging with such technology. Overall, participants demonstrated varying degrees of experience 

with technology, the minority being limited to the use of a phone, the majority reporting the use of 

multiple platforms including online functions. All, regardless of previous experience with technology 

were motivated to take part in the study. The majority undertook the training and endeavoured to use 

the smartwatch and QTUG system as required in this investigation. The results suggest researchers 

and manufacturers must continue to work together with older adult groups to develop devices suitable 

for use by this cohort. 
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Chapter Six - Concluding Remarks 

Through the objectives outlined in chapter 1, this thesis has achieved its aim and demonstrated that 

quantitative measures of mobility and PA captured independently by older adults can be used to 

discriminate between frail and non-frail community-dwelling older adults.  

Frailty is an avoidable and reversible biopsychosocial syndrome associated with ageing, resulting in 

adverse outcomes that are both life-changing and life-limiting, and which ultimately impacts on 

scarce healthcare resources. Current methods of screening for frailty involve traditional assessment 

tools which have inherent flaws, and wearable sensors which require expert analysis of data using 

specific algorithms that differ with each sensor-placement. Enabling older adults to recognise and 

monitor signs of frailty could influence mobility and PA behaviours, allow for earlier intervention and 

reduce the risk of developing frailty, thereby reducing the burden on the individual and society as a 

whole. The research presented in this thesis examines the parameters of mobility and PA associated 

with frailty, explores ways to collect this data and investigates if older adults could capture this data 

independently and unsupervised in their own home. 

As identified in the first objective outlined in chapter 1, a review presented in chapter 2 examines the 

literature that has discussed the aetiology of frailty; its prevalence as identified using traditional 

assessment tools and the implications of frailty on both the individual and the health service. It 

introduces the concept of the use of technology in frailty screening and suggests an increasing 

acceptance among older adults in the use of technology. A systematic review of the literature 

presented in chapter 3 examining how wearable technology has been used to evaluate frailty in older 

adults highlights the heterogeneity in research methodologies, the parameters of mobility and PA 

examined in relation to frailty, and the variation in the body-locations of sensor positioning to capture 

data. This review highlighted the need for further research to identify a convenient, user-friendly 

device and body-location that older adults could potentially use to independently monitor and quantify 

frailty risk. 
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The following chapter in the thesis addresses the second objective and reports on the results of a 

laboratory-based study that sought to investigate the correlation between parameters of mobility and 

PA obtained from sensors positioned at different body locations. Results of the study demonstrated a 

strong correlation between step-count and parameters of gait which correlated with frailty, obtained 

from a body-worn sensor positioned at the waist with a criterion measure and that obtained from a 

wearable sensor and software system. It offers a single parameter that can be measured to indicate a 

risk of frailty. The research also highlighted the difficulties encountered analysing the raw data 

obtained from the research grade sensors, the need for specialised analysts and specific algorithms 

developed for data obtained from different body-locations. Therefore, the next stage of the research 

sought to explore if older adults could capture this data unsupervised in their own home using an 

alternative sensor system, and if the data obtained could be used to independently monitor the risk of 

frailty.  

Results of the home-based study reported in chapter 5 address objectives 3 and 4 and demonstrate that 

older adults could indeed capture a frailty risk score independently, using a sensor and software 

system, and that parameters of PA that correlate with frailty could be obtained using a wrist worn 

smartwatch. Thresholds for the prediction of frailty were identified for each variable obtained from 

the smartwatch with varying predictive accuracy suggesting that a wrist-worn smartwatch can be used 

to obtain parameters of PA that could be used to indicate to them they are at risk of frailty. In 

fulfilment of the 5th and final objective of this thesis, the qualitative results of the home-based study 

identified older adult’s willingness to engage with technology and their ability to capture data 

pertaining to mobility and PA independently. However, the results also suggest that the participants 

included in the study failed to see the relevance of capturing such data to their situation or stage in 

life.  

Providing a user-friendly device for use by older adults to independently capture signs of frailty can 

mitigate the adverse outcomes of functional decline and disability. Results of this thesis will guide 

future work to highlight to community-dwelling older adults the importance of early frailty 

recognition, emphasise the relevance of its identification to their independence and quality of life, and 
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guide the development of a user-friendly device or sensor system suitable for use by older adults for 

continuous monitoring of data related to frailty risk. 
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Appendix 3.1 Systematic Review 

Vavasour, G., Giggins, O.M., Doyle, J. et al. How wearable sensors have been utilised to evaluate 

frailty in older adults: a systematic review. J NeuroEngineering Rehabil 18, 112 (2021). 

https://doi.org/10.1186/s12984-021-00909-0 

Appendix 3.2 Systematic Review Search Strategy 

Medline (Ebsco) Search strategy / terms  

Search Alert: "AB ( elderly OR aged OR older OR elder OR geriatric OR elderly people OR old 

people OR senior ) AND AB ( frailty OR frail OR “frailty syndrome” ) AND AB ( wearable 

technology OR wearable devices OR body-worn sensor OR inertial sensor OR inertial measurement 

unit OR IMU OR accelerometer OR accelerometry OR actigraphy OR pedometer OR activity monitor 

OR daily steps OR GPS OR global positioning system OR activity tracker OR fitness trackers OR 

physical activity tracking OR physical fitness tracker OR biosensing OR biosensor ) AND AB ( 

physical activity OR physical function OR mobility OR gait OR walking OR ambulation OR function 

OR locomotion OR mobility OR speed OR postural transition OR sit to stand OR chair stand ) AND 

AB ( validity OR validation OR validation study OR reliability OR reliability study OR accuracy OR 

comparison OR comparison study ) Date of Publication: 20100101-20201231 AND Apply equivalent 

subjects on 2020-03-31 06:13 AM" 

 

https://doi.org/10.1186/s12984-021-00909-0
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Appendix 3.3 Systematic Review Excluded Articles 

 

 Author & year Reason for exclusion 

1 Mueller 2019 Proof of concept. Not frailty 

2 Keppler 2019 Not frailty 

3 Chigateri 2018 Comparing algorithm with video 

4 Soaz 2016 Validation of step-detection algorithm 

5 Fontecha 2013 Development of app 

6 Da Silva 2019 Not wearables 

7 Chkeir 2019 Not wearables 

8 Thiede 2016 < 60 yrs 

9 Zhong 2018 < 60 yrs 

10 Rahemi 2018 < 60 yrs 

11 Martinez-Ramirez 2016 Participants cognitively  impaired 
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Appendix 3.4 Systematic Review Included Articles 

Author 
(Reference 
number) Year 

Population, 
Frailty 
Classification, 
Setting 

Objectives and 
Methods 

Sensor  and 
Location 

Measure of 
Mobility / PA 

Reported Findings Quality 
Assessment 
Score 

Martinez-
Ramirez et al., 
(Martınez-
Ramırez et al. 
2011) 2011 

N=56 
community 
dwelling or 
assisted living 
volunteers 
(28 male, 28 
female). 
 
FFP; 
14 F (age: 
79±4 years), 
18 PF (age: 
80±3 years),                                  
24 NF (age: 
40±3 years). 
                
Laboratory 

To examine 
signals from a 
tri-axial sensor 
during quiet 
standing 
balance tests in 
a frail, pre-frail 
and healthy 
population.                                 
 
Participants 
were 
monitored 
during 10 s of 
quiet standing 
under 4 
different 
conditions: 
FTO, FTC, FSO, 
FSC                

MTx XSENS 
worn on lumbar 
spine (L3).  

Postural sway (s) Postural sway showed no significant differences among groups (NF, PF, F) under all conditions 
p>0.05                                                                                                                                   Frail group 
showed greater values in FTC p<0.018 compared with NF, PF. 
 
 

15 

Theou et 
al.,(Theou et al. 
2012) 2012 

N = 50 
community 
dwelling 
female 
volunteers 
(age range:                                         
63-90 years). 
         
FI (Deficit 
model); 
17 high frailty 
tertile,           
17 moderate 
frailty tertile,  
16 low frailty 
tertile.                                    
 
Home  

To examine the 
association of 
frailty with 5 PA 
assessment 
tools and 
determine if PA 
is different 
across levels of 
frailty.                                                                                                                                                                                                                                                                                                                                                                      
 
Participants 
wore all 
sensors 
simultaneously 
during normal 
daily activities 
at home for 10 
hours. 
Maximum 

ActiTrainer 
worn at the 
waist. 
                                                        
Polar WearLink 
HR monitor at 
the chest. 
 
Garmin 
forerunner405 
GPS at the 
wrist. 
                        
Biometrics 
DataLOG P3X8 
EMG on VL and 
BB. 

Acceleration 
counts (n)    
Gait speed (m/s) 
Total step count 
(n) 
Time in non-
sedentary 
activity 
(counts/min)  
Bursts of VL & BB 
 

The FI was most significantly correlated with accelerometer steps (r = -0.644, p<0.01),  
PA minutes (r = -0.617, p<0.01) and  
MLTAQ (r = -0.603, p<0.01). 

16 
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voluntary 
exertions of 
Vastus Lateralis 
(VL) and Biceps 
Brachii (BB) 
were 
performed.  A 
PA 
questionnaire 
was also 
administered. 
                                                                                                         

Millor et al., 
(Millor et al. 
2013) 2013 

N = 47 
community 
dwelling or 
assisted living 
volunteers 
(26 male, 21 
female). 
         
FFP; 13 F 
(age: 85±5 
years),  
16 PF (age: 
78±3 years),  
18 NF (age: 
54±6 years).  
 
Laboratory.                     

To obtain 
kinematic 
measurements 
from 30 second 
chair sit to 
stand (CST) that 
can identify 
frailty.                                                                                                                                
 
Participants 
were instructed 
to stand up and 
sit down from a 
standardised 
chair at their 
preferred 
speed as many 
times as 
possible within 
30 seconds. 

MTx XSENS 
worn on lumbar 
spine (L3). 

Chair kinematics: 
Postural sway (s). 
Acceleration of 
STS (m/s2). 
Velocity (m/s). 
No. of cycles of 
CST (n)  
Impulse phase 
duration (s). 

Healthy participants performed a significantly greater n of STS cycles (22±7) compared with PF 
(15±5) and F (6±1). 
F participants had greater sway (30s) than PF (15s) or (Healthy (5s) p<0.001                                                                                                                                                                                                                                                                                                            
Velocity of STS showed significantly greater values among PF (0.8m/s) compared with F (0.5m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
Acceleration of STS and St-Si  differentiated between levels of frailty when no. of cycles could not 

14 
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Galan-Mercant 
et al (Al Galán-
Mercant and 
Cuesta-Vargas 
2013) 2013a 

N = 30 
volunteers 
aged > 65 
years. 
Dwelling not 
specified.                 
 
FFP; 
14 F (age: 
83.72±6.37 
years), 16 NF 
(age: 
70.25±3.32 
years). 
 
Laboratory 

To measure 
and describe 
variability in 3D 
acceleration, 
angular velocity 
and trunk 
displacement 
during the STS 
and St-Si 
transitions of 
10-m Extended 
Timed Get Up 
and Go 
(ETGUG) test in 
F and NF 
participants 
and to analyse 
the difference 
between the 
two groups.                                                                                                                   
 
Participants 
performed a 
10-m ETGUG 
test.  

IPhone4 
secured to 
chest.                            

Acceleration 
(m/s) in 3 axes. 
Angular velocity 
(deg/s) in 3 axes: 
Medial-Lateral 
(X),Vertical (Y) 
and Antero-
Posterior (Z) of 
STS and St-Si 
transitions 
 

Significant differences were found between the groups in accelerometry (P< 0.01) and angular 
displacement variables (P < 0.05) of both transitions 
 
 
 
                                            Mean (SD) 

STS F NF P value 

X Axis Min 
Acceleration  

-1.443 
(1.211) 

-3.136 
(1.198) 

<0.001 

Y Max 3.069 
(1.240) 

6.248 
(1.913) 

<0.001 

Y Min -1.471 
(0.788 
) 

(-6.182 
(2.415) 

<0.001 

RV Max 7.065 
(2.233) 

8.962 
(2.506) 

0.025 

 
                                            Mean (SD) 

St-Si F NF P value 

Y Axis Max 
Acceleration  

3.567 
(2.028) 

6.200 
(1.752) 

<0.001 

Y Min -2.950 
(2.441) 

-9.003 
(4.334) 

<0.001 

Z Min -3.770 
(1.928) 

-6.645 
(2.374) 

<0.001 

RV Max 7.213 
(2.566) 

10.652 
(3.510) 

0.003 

RV Min 0.364 
(0.255) 

0.808 
(0.479) 

0.002 

 
 
                                             Mean (SD) 

STS F NF P value 

X Axis Max Angular 
Velocity 

18.924 
(8.843) 

165.437 
(120.989) 

<0.001 

St-Si    

X Axis Max Angular 
Velocity 

38.146 
(18.918) 

145.150 
(129.161) 

<0.001 

 

14 
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Galan-Mercant 
et al., 
(Alejandro 
Galán-Mercant 
and Cuesta-
Vargas 2013) 
2013b 

N = 30 
volunteers 
aged > 65 
years. 
Dwelling not 
specified.                 
 
FFP; 
14 F (age: 
83.72±6.37 
years), 16 NF 
(age: 
70.25±3.32 
years). 
 
Laboratory. 

To measure 
and describe 
variability in 3D 
acceleration, 
angular velocity 
and trunk 
displacement in 
the turn 
transition of 10-
m Extended 
Timed Get Up 
and Go 
(ETGUG) test in 
F and NF 
participants 
and to analyse 
the difference 
between the 
two groups.                                                                                                                   
 
Participants 
performed a 
10-m ETGUG 
test.  

IPhone4 
secured to 
chest.                            

Acceleration 
(m/s) in 3 axes. 
Angular velocity 
(deg/s) in 3 axes: 
Medial-Lateral 
(X),Vertical (Y) 
and Antero-
Posterior (Z)  
Measurements 
of only the 
turning transition 
were examined. 

Significant differences were found between the groups in accelerometry (P< 0.01) and angular 
displacement variables (P < 0.05) during the turn transition    
                             
                                            Mean (SD) 

 F NF P value 

X Axis Min 
Acceleration  

-2.05 
(0.962) 

-5.77 
(2.43) 

<0.003 

Y Max 26.332 
(9.271) 

112.81 
(147.91) 

0.022 

Y Min -2.04 
(0.945) 

-9.448 
(6.937) 

<0.001 

Z Min -1.815 
(1.619) 

-7.204 
(2.438) 

<0.001 

X Axis Max Angular 
Velocity 

25.5 
(14.21) 

134.55 
(135.52) 

<0.001 

 
 

14 

Greene et al., 
(Greene, Emer 
P Doheny, et 
al. 2014) 
2014(a) 

N = 399 
community 
dwelling 
volunteers 
aged > 60 
years. 
 
FFP; 
30 F, 185 PF, 
184 NF 
 
Laboratory. 

To investigate 
an automatic, 
non-expert 
quantitative 
assessment of 
the frailty state 
based on a 
simple protocol 
employing 
body-worn 
inertial sensors.                                         
 
Participants 
performed a 3-
m TUG test. 

SHIMMER 
sensor worn on 
each shin. 

Temporal-Spatial 
gait, Angular 
velocity & Turn 
parameters of 3-
m TUG test      
                                                                                                                             
NOTE: results of 
sensor-derived 
data are not 
detailed in this 
article. Discussed 
in previous 
article in relation 
to falls (Greene 
et al. 2012; 
Greene et al. 
2010)  

*Authors report Inertial sensor-based method was more accurate in assessing frailty than max grip 
strength (MGS) or TUG time alone Mean accuracy 72.30% 95%CI. This increased to 75.20% when 
stratified by gender. *However  when stratified by gender MGS and manual TUG time produced 
mean classification accuracies of 77.65 and 71.82% respectively 

14 
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Greene et al., 
(Greene, Emer 
P. Doheny, et 
al. 2014) 
2014(b) 

N = 124 
community 
dwelling 
volunteers 
aged > 65 
years 
 
FFP; 
66 F, 58 NF 
 
Laboratory 

To develop 
classifier 
models to 
assess frailty 
(and falls risk) 
using sensor-
derived 
features of 
TUG, Five Time 
Sit to Stand 
(FTSS) and 
Balance tests. 
 
Participants 
performed 3 
tests: 
A 3-m TUG test.  
FTSS in which 
they were 
instructed to 
stand up and sit 
down from a 
standardised 
chair as quickly 
as possible five 
times. Balance 
was assessed 
during 40-s of 
quiet standing, 
feet 30-cm 
apart under 
conditions of 
eyes open (EO) 
and eyes closed 
(EC). 

SHIMMER 
sensor worn on 
each shin, right 
thigh, lumbar 
spine (L5) and 
sternum. 
 
A pressure 
sensor platform 
was also used 
for balance data 
collection 

Temporal-Spatial 
gait, Angular 
velocity & Turn 
parameters of 3-
m TUG test      
Time and 
acceleration 
parameters of 
FTSS 
Postural Sway 
distance, velocity 
                                                                                                                           
NOTE: results of 
sensor-derived 
data are not 
detailed in this 
article. Discussed 
in previous 
article in relation 
to falls (Greene 
et al. 2012; 
Greene et al. 
2010; Doheny et 
al. 2012; Doheny 
et al. 2013). 

Combining sensor data from all three tests to a single classifier model, stratified by gender yielded 
Accuracy in discriminating between F and NF: Male 94%; Female 84% (95% CI) 
 
Accuracy % of Sensor data from separate tests identifying frailty (CI 95%): 

 TUG BAL FTSS 

Male 89 78.48 73.33 

Female 72.3 68.46 80.11 
 

12 
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Chen et al., 
(Chen et al. 
2015) 2015 

N = 1527 
community 
dwelling 
volunteers 
aged > 65 
years. 
 
FFP; 
142 F,  
670 PF,  
715 NF 
 
Home 

To define the 
low PA domain 
of the CHS 
(Cardiovascular 
Health Study) 
frailty 
phenotype. 
 
Participants 
wore an 
accelerometer 
for one week 
with a 
minimum of 
600-minutes 
per day and 3 
days wear-time 

Active style Pro 
Body-location 
not specified 

Low energy 
expenditure 
(defined as 
scoring in the 
lowest 20% of 
energy 
expenditure of 
PA per day) 
(kcal/kg) 

Results demonstrate satisfactory internal construct validity of a frailty phenotype using 
accelerometer-based measurement of the low PA domain. 
 
 
Reported Low PA 19.5%; Accelerometer-based Low PA 19.1% 
 

 

Schwenk et al., 
(Schwenk et al. 
2015b) 2015 

N = 125 
community 
dwelling or 
assisted living 
volunteers 
aged > 65 
years.              
 
FFP; 
21 F, 60 PF, 
44 NF. 
 
Home.   

To evaluate the 
ability of 
sensor-based 
home 
assessment of 
established 
outcomes to 
identify PF and 
F. To explore 
new objective 
parameters 
which might 
increase the 
accuracy of 
frailty 
assessments.                                                                                                                                                                           
 
Gait 
assessment was 
carried out 
under single 
and dual-task 
(counting 
backwards in 
1's from 100) 

LEGSys, 
BalanSens, 
PAMSys with 
sensors located 
at shanks, 
thighs and 
lumbar spine.   

Gait speed (m/s)  
Stride time (s)  
Stride length (m)  
Double support 
(% of stride time)  
Gait variability 
(CV) of stride 
velocity (%) 
Sway ankle, hip 
(deg2) COM in AP 
and ML direction 
(cm)  
PA (Daily 
duration of 
postural 
transitions and 
movements such 
as walking, 
standing, sitting, 
or lying) as % of 
24-h  

Gait parameters stride length and double support had highest validity to separate NF from PF and 
PF from F in age-adjusted model (AUC .857 & .841).   
Stride length (m) 
NF vs PF p = 0.005, Cohen’s d = 1.07,  
PF vs F p = 0.015, d = 0.85,  
NF vs F p <0.001, d = d1.64 
Double Support (%)  
NF vs PF p <0.001, d = 0.93,  
PF vs F p = 0.043, d = 0.70, 
NF vs F p <0.001, d = 1.56 
 
PA parameters Walking bout duration variability was most sensitive for discriminating between 
frailty levels (AUC = 0.818).  
In PF screening Single-task walking speed had highest validity (AUC = 0.802) and no. of steps was 
most sensitive  (AUC = 0.763)  
Balance parameters, Hip sway best discriminated between NF/PF (p=0.004, Cohen’s d = 0.62) but 
not between PF/F (p = 0.999) or NF/F (p = 0.254) 

15 
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conditions. 
Participants 
walked 4.57m 
over-ground in 
their home at 
self-selected 
speed. Balance 
was assessed 
during 15s 
quiet standing 
with feet 
together, eyes 
closed.                                                                                                                                                                                            
PA was 
measured over 
a 24-hour 
period in 
participants 
home or 
assisted living 
setting. 

Martinez-
Ramirez et al., 
(Martínez-
Ramírez et al. 
2015) 2015 

N = 718 
community 
dwelling or 
assisted living 
volunteers 
(319 males, 
399 females).     
 
FFP;  
65 F (age: 
80±5.6 years),  
 
327 PF (age: 
76.5±5.6 
years),  
 
326 NF (age: 
73.4±5.5 
years). 
 
Setting not 
specified.              

To examine the 
acceleration 
signals 
obtained from 
a tri-axial 
inertial sensor 
and to extract 
parameters 
that will 
provide 
complementary 
information to 
identify frail 
populations.                                                                                                          
 
Participants 
walked in a 
straight line at 
self-selected 
speed over a 
distance of 3m. 

MTx XSENS 
worn on lumbar 
spine (L3).                                                                       

Temporal-Spatial 
gait parameters: 
Gait velocity, 
Step Regularity, 
Stride Regularity, 
Symmetry, Step 
Time CoV 
  

All parameters in vertical acceleration demonstrated significant differences between each frailty 
group (<0.05)                                                                                      In the AP component, significant 
difference in RMS (p<0.05) between PF/F and NF/F                                                                                                                                                            
In ML component, significant difference in symmetry parameter only, between NF/F only (p<0.05). 
                                                                                                                                                                      The 
sensitivity, specificity, accuracy and precision for prediction of frailty are significantly higher using 
a model combining gait velocity and gait parameters of step regularity.  

 AUC Gait 
Velocity 
(GV) 

AUC GV 
and Gait 
Parameters 

P value 

NF 0.782 0.863 0.004 

PF 0.535 0.683 0.028 

F 0.823 0.896 <0.001 

 
 

15 
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Toosizadeh, 
Mohler, 
Wendel et 
al.,(Toosizadeh, 
Mohler, 
Wendel, et al. 
2015) 2015 

N = 122 
community 
dwelling 
volunteers 
aged > 65 
years.     
 
FFP; 
19 F, 59 PF, 
44 NF.                                
 
Setting not 
specified.              

To use open-
loop and 
closed-loop 
mechanisms to 
explore 
differences in 
postural 
balance 
mechanisms 
between NF, PF 
and F 
individuals. 
 
Participants 
performed two 
15s balance 
trials, standing, 
feet close 
together, not 
touching, arms 
folded across 
chest, under 
two conditions; 
eyes open 
(FTO) and eyes 
closed (FTC). 

BalanSens 
located on 
lumbar spine 
and shin. 

Postural sway 
Hip and ankle 
joint sway AP 
and ML 
OLCL 
parameters: 
∆t(s); slope 
(cm2/s); sway 
(cm2) 

AP sway was higher in F group but with no significant difference between groups 
No significant result observed in ML sway between groups 
OLCL parameters: OL duration was approximately 33% (F) and 22% (PF) shorter compared with 
NF(Mean 1.9 +/-1.1).  
Sway was 164% (F) and 66% (PF) higher compared with NF (Mean .03+/-.02cm2/s)  
Results were more pronounced during FTC condition. 
 
Frailty prediction using Body Sway Vs OLCL parameters as independent variables: 
Sensitivity: F  77/100%    PF 56/74% 
Specificity: F  94/83%      PF 93/89% 
 
    

16 

Toosizadeh, 
Mohler, Najafi, 
(Toosizadeh, 
Mohler and 
Najafi 2015) 
2015 

N = 117 
community 
dwelling 
volunteers 
aged > 65 
years.     
 
FFP; 
16 F, 51 PF, 
50 NF.  
 
Home. 

To objectively 
identify frailty 
using wireless 
sensors and an 
upper 
extremity 
flexion motion 
assessment 
routine that 
does not rely 
on gait. 
 
Participants 
performed a 
50s trial of 
elbow flexion in 
a seated 
position in a 
chair at home 
while wearing 

BioSensics LLC 
on upper arm 
near biceps 
muscle and 
wrist.                     
 

Speed of elbow 
flexion (deg/s)  
Flexibility (deg)  
Power (deg2/s2  
Rise-time (s/100)  
Moment (Nm)  
Jerkiness (%) 
Speed-reduction 
(%) 
Flexion no. (n)  

All parameters extracted from elbow flexion task were significantly different between frailty 
groups (p<0.05). 
Speed had the largest effect size between NF/PF (1.48) and NF/F (2.83). Power had the largest 
effect size between PF/F (1.82). 
 
                                                     Mean (SD) 

Parameter NF PF F Pairwise  
p value (ES)  

Speed 1,117 
(247) 

792 
(187) 

461 
(215) 

NF/PF p<0.001 (1.48)  
NF/F p<0.001(2.83)  
PF/F p<0.001(1.64). 

Flexibility 134 
(22) 

115 
(24) 

87 
(28) 

NF/PF   
p 0.006 (0.83)  
NF/F  
p<0.001 (1.99)  
PF/F p<0.001(1.07). 

Power 205.1 
(116.3) 

79.3 
(40.5) 

23.5 
(15.7) 

NF/PF  
p<0.001 (1.44) 
NF/F 

16 
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the upper limb 
sensors. The 
50s trial 
consisted of 
20s of elbow 
flexion on both 
sides with 10s 
rest in-
between. 

p<0.001 (2.19) 
PF/F  
p = 0.45 (1.82) 

 
  
 
 

Jansen, (Jansen 
et al. 2015) 
2015 

N = 84 
community 
dwelling 
volunteers 
aged > 65 
years. 
 
ISAR-HP; 
10 F, 74 NF. 
 
Home. 

To assess 
differences in 
indoor and 
outdoor PA in 
older adults 
using GPS and 
accelerometers 
between NF 
and F older 
adults. 
 
Participants 
were instructed 
to wear the 
sensor during 
waking hours 
for seven 
consecutive 
days. 
 
 

ActigraphGT3X+ 
worn on right 
side of waist. 

PA Intensity 
(minutes per 
day) (classified in 
counts per 
minute (cpm).  
(Sedentary 0-50; 
Light PA 51-759; 
Moderate to 
Vigorous PA 
(MVPA) > 760). 
Metabolic 
Equivalent (MET) 
(minutes) 
Distance walked 
/ cycled (m). 

No significant differences between frailty groups are reported (p<0.05) 
 

Metric F Vs NF p value 

LPA (Weekly) p 0.79 

MVPA p 0.181 

MET minutes p 0.22 

Distance walked p 0.336 

Distance cycled p 0.75 
 

20 
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Toosizadeh et 
al., (Toosizadeh 
et al. 2016) 
2016 

N = 101 
hospital in-
patients aged 
> 65 years.     
 
TSFI 
(Rockwood); 
49 F (age: 
80±9 years), 
52 NF (age: 
78±10 years).                      
 
Hospital.  

To validate the 
accuracy of 
Upper-
Extremity-
Frailty (UEF) 
assessment in 
distinguishing 
between F and 
NF participants 
 
Participants 
performed a 
20s trial of 
elbow flexion-
extension as 
quickly as 
possible in 
supine position 

BioSensics LLC 
on upper arm 
near biceps 
muscle and 
wrist.                     

Speed of elbow 
flexion (deg/s)  
Flexibility (deg)  
Power (deg2/s2)  
Rise-time (s/100)  
Moment (Nm)  
Speed-variability 
(%) 
Speed-reduction 
(%) 
Flexion no. (n)  

UEF Sensitivity 78%; Specificity 82% for predicting Frailty.                                                      
The highest effect sizes between F & NF were observed in Speed (p<0.0001, Cohen’s d = 1.50), 
Flexion n (p<0.0001, Cohen’s d = 1.18) Power and Moment (p<0.0001, Cohen’s d = 1.10).  
Speed was 45% less among F group. 

15 

Millor et al., 
(Millor et al. 
2017) 2017 

N = 718 
community 
dwelling 
volunteers 
(319 male, 
399 female).       
 
FFP;  
31 F (age: 
79±6 years),  
 
206 PF (age: 
73±5 years),  
 
194 NF (age: 
74±5 years)                       
 
Setting not 
specified.              

To establish a 
set of objective 
and 
quantitative 
parameters of 
30-s CST that 
can classify 
frailty status. 
 
Participants 
performed as 
many CST 
repetitions as 
possible within 
30-s, at self-
selected speed, 
starting from 
seated position, 
with arms 
folded across 
chest, and one 
3-m walking 
test in a 
straight line 
over-ground at 
self-selected 
speed. 

MTx 
Orientation 
Tracker worn at 
the lumbar 
spine (L3).                                             

No. of CST cycles 
(n) 
Gait velocity (GV) 
(m/s)  
Chair kinematics 
(CK) (range of AP 
orientation 
(deg), 
acceleration 
(m/s) and power 
(Nm)) in 3 
directions 
(vertical, ML, AP) 
and in 3 phases 
(Impulse, Up, 
Down)   

Sensitivity, specificity, accuracy and precision values were significantly higher for the model based 
on CK (e.g., range of AP orientation, acceleration and power) than gait velocity or no. of cycles. 
 
                                                        AUC (95% CI) 

Parameter NF PF F 

nCycles 0.65 (0.529-0.789) 0.53 (0.410-0.650) 0.657 (0.536-0.765) 

GV NF 0.65  
(0.529-0.789) 

0.763  
(0.649-0.856) 

0.516 (0.395-0.635) 

CK 1.000  
0.649-0.856) 

0.938 
(0.395-0.635) 

0.936 (0.852-0.980). 

 
 
 
 
Mean(SD) of top 3 important parameters measured: (p<0.05) 
 

Parameter NF PF F 

Impulse AP 
Orientation 
range: 

18.81 (9.60) 22.01 (9.73) 25.76 (12.00) 
 

V Max power  
STS 

88.37 (50.75) 65.40 (40.18) 38.13 (34.75) 

Impulse V 
acceleration StSi 

1.21  
(0.37) 

1.10 
(0.39) 

 0.79 
(0.30) 
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Parvanneh et 
al., (Parvaneh 
et al. 2017) 
2017 

N = 120 
community 
dwelling 
volunteers. 
 
FFP; 
76 F/PF (age: 
80.7±8.68 
years),  
               
43 NF 
(74.23±6.15 
years).  
 
Home.                       

To monitor and 
assess postural 
transition 
differences 
among frailty 
levels. 
 
Spontaneous 
daily PA were 
recorded for a 
period of 48 
hours. The first 
24h was used 
for the purpose 
of this study 

PAMSys worn at 
the sternum in 
a shirt-
embedded 
pocket.           

Postural 
transitions: STS, 
St-Si, stand-to-
walk, walk-to-
stand, sit-to-
walk, and walk-
to-sit (further 
classified into 
'cautious' or 
'quick' sitting) 
(n),  
Ratio of cautious 
sitting (%) 

Between group comparisons (with adjustment for age) demonstrate statistical significance in  
Total transition n (p = 0.032) 
NF: n1,174 ±468; PF: 878±-333 
St-walk n (p = 0.011)  
NF: 475±208; PF: 332±148 
Wlk-st n (p = 0.011) 
NF: 453±202; PF: 314±141 
 
The ratio of cautious sitting was significantly higher (6.2%) in the PF/F compared to the NF group 
(p = 0.025, Cohen’s d = 0.22 

15 

Huising-
Scheetz et al., 
(Huisingh-
Scheetz et al. 
2018) 2018 

N = 651 
community 
dwelling 
volunteers 
(341 Female; 
310 Male). 
Aged >62 
years 
 
Modified 
Frailty 
Phenotype 
 
94 F 
317 PF 
240 NF 
 

To determine 
how hourly 
activity level is 
related to 
clinical frailty 
criteria in older 
adults. 

Participants 
were instructed 
to wear the 
sensor 
continuously 
for 72 
consecutive 
hours 

ActiWatch 
Spectrum worn 
on the non-
dominant wrist 

Mean hourly 
cpm 

Mean hourly CPM was approximately 7% lower per frailty point 
𝛽 -0.03 p≤0.001 
 

20 

Lee et al., (Lee 
et al. 2018) 
2018 

N = 100                    
hospital in-
patients                   
(age: 78.9±9.1 
years) 
 
TSFI 
(Rockwood); 
 49 F, 51 NF. 
 
Hospital 

To provide a 
physical frailty 
phenotype 
assessment 
tool using a 
single wrist-
sensor. 
 
Participants 
wore a sensor 
on the wrist 
and upper arm 
while 

LEGSys worn at 
wrist and upper 
arm. 

No. of cycles (n) 
Mean, CV and % 
Decline (PD )of 
kinematic 
parameters of 
elbow Flexion / 
Extension:  
Angular velocity 
range (deg/s) 
Angle range 
(deg) 
Power range 
(deg2/sec3) 

Model developed from single (wrist) sensor identified 5 dominant features with 80.0% accuracy in 
identifying Frailty (95%CI: 79.7-80.3%):         
                                                              Mean (SD) 

 NF F p value 

Mean of angle 
range 

106.67 (25.89) 81.35 (31.0) p<0.001 

PD of power 
range 

 -9.3 (26.95 -19.58 (24.01) p0.043 

CV of elbow 
extension time 

0.09 (0.05) 0.17 (0.23) p0.014 

Mean of elbow 
flexion time 

419.98 (129.98) 644.18 (357.60) p<0.001 

14 



 157 

performing 
elbow flexion 
and extension 
as many times 
as possible 
within a 20-s 
timeframe, 
while in supine 
position. 

Rising time, 
falling time, 
rising and falling 
time (ms) 
Flexion time, 
extension time 
(ms) 
Flex/ext rate 
(n/min)                                                                          

CV of elbow 
flexion time 

0.09 (0.05) 0.15 (0.15) p0.005                                                   

 
                                                       

Razjouyan et 
al., (Razjouyan 
et al. 2018) 
2018 

N =153 
community 
dwelling 
volunteers 
aged > 60 
years. 
 
FFP;  
33 F,  
78 PF, 42 NF. 
 
Home. 

To determine 
which sensor-
derived 
parameters are 
capable of 
discriminating 
between the 
three frailty 
categories, to 
identify the 
most significant 
independent 
parameters to 
discriminate 
pre-frailty, and 
to build a 
composite 
model to 
discriminate 
the pre-frail 
stage from non-
frail and frail 
stages. 
 
Participants 
wore a pendant 
sensor 
continuously 
for 48hours 
while 
undertaking 
normal activity 
including sleep. 

PAMSys worn at 
the sternum. 

Total time 
(%&min)Walking, 
Sitting, Standing , 
Lying and 
Sedentary Time  
Bouts(s) of 
Walking, Sitting, 
Standing , Lying 
Intensity: light 
/moderate-
vigorous activity  
Total steps(n)  
 
Sleep 
parameters 

 
Significantly different between groups were:  
 
                                    Mean (SD) 

Parameter  
 
 
NF 

 
 
 
PF 

 
 
 
F 

P value 
(Cohen’s d)  
NV v PF 

 
 
 
PF v F 

Total % Walk 8.7 
(3.9) 

5.1 
(3.3) 

 3.2 
(3.2) 

p0.000 
(d1.02) 

p0.012 
(d0.57) 

Longest 
unbroken 
walking bout(s): 

351.3 
(347.9) 

187.9 
(223.9) 

110.3 
(132.4) 

p0.001 
(d0.56) 

p0.002 
(d0.42) 

Total n. of 
steps:(N/1000) 

12.2 
(6.1) 

6.7 
(4.2) 

4.3 
(4.3) 

p0.000 
(d1.04) 

p0.018 
(d0.57) 

Longest 
unbroken 
stepping bout 

694.3 
(743.0) 

322.9 
(411.0) 

162.5 
(184.2) 

p0.000 
(d0.62 

p0.006 
(d0.57) 

Total duration 
of sedentary 
behaviour(h) 

9.6 
(2.6) 

11.7 
(3.2) 

13.2 
(4.2) 

p0.001 
(d0.73) 

p0.029 
(d0.40) 

Mod to vigorous 
activity (%) 

6.0 
(4.0) 

2.2 
(2.4) 

1.2 
(1.5) 

p0.000 
(d1.13) 
 

p 0.066 
(d0.50) 

 
 

14 
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Castaneda-
Gameros et al. 
2018) 

N = 60 
community 
dwelling 
volunteers 
aged > 60 
years. 
 
FFP;  
10 F, 23 PF, 
27 NF. 
 
Home. 

To examine the 
association 
between PA 
and sedentary 
time (ST), frailty 
and factors 
influencing PA 
behaviours in 
migrant older 
women from 
ethnically 
diverse 
backgrounds. 
 
Participants 
were instructed 
to wear the 
sensor for a 
period of 7 
days, only 
removing for 
bathing, 
swimming and 
sleeping. To be 
included in the 
analysis 
participants 
had to wear the 
device for at 
least 3 days 
including one 
weekend day, 
and for at least 
10-h/day of 
valid wear time. 

Actigraph GT3X 
worn at the hip. 

PA Intensity 
(min/day)  
(classified in 
counts per 
minute) (cpm)                                                                                 
Low-Light PA 
(LLPA)( 100-
1040cpm) 
High-Light PA 
(HLPA) (1,041-
1,951cpm) 
Moderate-
Vigorous 
PA(MVPA) 
(>1,952cpm) 
 
ST (<100 cpm) 
(min/day) 
 

Only MVPA was significantly different between NF/PF and F groups (18.4 and 18.7 vs. 3.4 
min/day)p=0.03 
                                                     Mean (SD) 

Parameter NF PF F p value 

ST 523.7 
(85.7) 

533.1 
(85.7) 

576.7  
(7.0) 

p 0.48 

LLPA 207.4 
(57.8) 

204.9 
(66.7) 

161.4 
(68.7) 

p 0.51 

HLPA 27.1 (13.6) 29.8  (17.2 18.4 (23.0) p 0.36 

MVPA 18.4 (19.9) 18.7 (17.6) 3.4 (4.5) p <0.01 

 
 
MVPA F/NF p 0.02; F/PF p <0.01 

16 
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Jansen et al., 
(Jansen et al. 
2019) 2019 

N = 112 
community 
dwelling 
volunteers 
aged > 65 
years. 
 
FFP;  
19 F, 53 PF, 
NF 40 
 
Home. 

To investigate 
whether the 
association 
between motor 
capacity and 
mobility 
performance is 
moderated by 
frailty status in 
older adults. 
 
Participants 
wore the 
LEGSys sensors 
while 
performing a 
walk test under 
two conditions:  
at self-selected 
speed over a 
distance of 
4.57m and as 
quickly as 
possible over a 
distance of 
10m. 
 
Participants 
wore the 
PAMSys sensor 
for a period of 
48 hours while 
carrying out 
normal 
activities 
 
 

PAMSys sensor 
embedded in a 
shirt. Location 
not specified. 
 
LEGSys sensors 
worn at 
bilateral shins, 
thighs and 
lumbar spine 
(specific 
location not 
indicated). 

Percentage of 
time walking or 
standing (%). 
Average number 
of steps per 
walking bout (n). 
Max number of 
steps in one 
walking bout (n). 
Normal walking 
speed (NWS) 
(m/s). 
Fast walking 
speed (FWS) 
(m/s). 

 
                                             Mean (SD) 

Parameter NF PF F P value 

% PA 25.0 
(7.1) 

18.9 
(6.0) 

16.4 
(7.3) 

< 0.001 

Max steps 
in one 
bout 

1668 
(1724) 

591 
(556) 

285 
(387) 

< 0.001 

Average 
steps per 
bout 

39 (24) 33 (15) 27 (12) 0.25 

NWS 1.18 
(0.15) 

0.92 
(0.22) 

0.64 
(0.25) 

< 0.001 

FWS 1.47 
(0.22) 

1.13 
(0.27) 

1.07 
(0.12) 

<0.001 

 
Using a moderation analysis to investigate how frailty changes the effect of motor capacity on 
mobility performance, association between motor capacity & mobility performance was found in 
PF and F groups only.                                       

14 
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Zhou et al., 
2019 

N =61 
community 
dwelling 
volunteers 
aged > 60 
years.                                    
N = 17 
volunteers 
aged 20 -35 
years. 
 
FFP; 8 F, 29 
PF, 24 NF.                          
 
Out-patients 
clinic.                   

To examine 
whether 
parameters 
from an 
instrumented 
trail-making 
task (iTMT) can 
distinguish 
different frailty 
stages and 
could describe 
different frailty 
phenotypes    
 
The iTMT 
included 
standing in 
front of a 
standard 
computer in 
double-leg 
stance and 
performing a 
series of virtual 
trail-making 
tests by 
rotating the 
ankle joint to 
move a 
computer-
cursor.  
For gait speed 
participants 
were instructed 
to walk at 
habitual speed 
for 20m. 

LEGSys worn on 
both shins        

Gait Speed (m/s).                               
Sensor data 
(iTMT-derived 
parameters):  
Time (s)  
Velocity (unit/s)  
Power 
(unit2/sec3)  
Exhaustion (%) 
(% of decline in 
max ankle 
rotation velocity 
from Trials 1-5 
and 11-15)  
Variability (%) 
(CoV of ankle 
rotation velocity 
during the first 
15 trials  

Results indicate Gait Speed (p0.032), iTMT Velocity (p0.025) and Power (p0.040) can significantly 
distinguish between NF/F  & PF/F groups (p<0.05).    

Parameter NF F (PF and F) p value 
(Cohen’s d) 

Gait speed 1.06 (0.19) 0.94 (0.24) p0.032 (0.56) 

iTMT: Velocity 6.31 (0.98) 5.67 (1.09) p0.025 (0.62) 

Power 90.56 (26.73 73.70 (28.47) p0.040 (0.61) 

Exhaustion 8.23 (15.19 9.41 (10.58) p0.698 (0.09) 

Variability 20.92 (4.94) 23.05 (7.84) p0.241 (0.33) 

                                           
iTMT Velocity, Power, Exhaustion and Variability enable significant (p<0.05) discrimination 
between presence and absence of frailty phenotypes as determined by the FFC; slowness (d=1.40), 
weakness (d=1.38), exhaustion (d=0.98) and inactivity (d=0.90) 
 

14 

Mulasso et al., 
2019 

N = 25 
community 
dwelling 
volunteers 
aged > 65 
years.                   
 
Part B of TFI;  

To investigate 
the 
relationships 
between the 
Mobility Index 
(MI) provided 
by the ADAMO 
System and a 
mobility 

ADAMO System 
accelerometer 
@ wrist  

Time spent in 
Low, Mod, 
Vigorous Activity 
(%) 
Time to 
complete walk 
test(s) 

4oo-m walk test correlates with physical frailty only. The MI is strongly associated with total frailty 
(Physical, Psychological & Social)                                                                                                  Significant 
differences were observed between F and NF individuals for Low, Moderate and Vigorous activity.   
                                             
                                              Mean (SD) 

Variable NF F P value (ES) 

Low activity 58.8 (6.6) 42.0 (8.3) P < 0.001 (0.657) 

Mod activity   P 0.008 (0.292) 

14 
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14 F                                         
11 NF 
 
Laboratory 
and Home 

screening tool 
with frailty. To 
test the 
acceptance of 
the ADAMO 
System 
Carewatch for 
PA 
measurement 
(as part of 
project 
(SPRINTT) to 
validate and 
implement a 
practical and 
clinical 
prevention of 
frailty).                                                                          
 
Participants 
attended a test 
centre and 
were timed 
walking 400m 
(8 laps of a 
corridor). They 
then at home 
wore a wrist-
watch 
continuously 
for 7 days. 

25.5 (7.6) 33.8 (10.6 

Vigorous 
activity 

 
15.7 (7.2) 

 
24.2 (10.8) 

P 0.035 (0.195) 
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Lepetit et al., 
2019 

N = 50 
volunteers 
aged > 65 
years.                       
Dwelling not 
specified. 
 
FI 
(Rockwood);  
24 healthy 
young (HY)  
(age: 25±3 
years),   
 
11 F (age: 
87±6 years),  
39 NF 
(Healthy 
Senior) (age: 
70±4 years).                                  
 
Laboratory.                             

To design a 
diagnostic tool 
to detect 
functional 
deficit based on 
a single sensor 
during STS. 
 
Participants 
were asked to 
perform STS at 
self-pace 
without UL 
assistance, 3 - 5 
repetitions as 
physical ability 
allowed. 

APDM worn at 
the chest. 

STS parameters 
including:  
Task duration 
(TD)(s) 
Trunk: COM 
velocity (m/s) 
Angular velocity 
(rad/s)  
Inclination (Incl)  
Acceleration 
(m/s2). 
Kinetic energy 
(mEK)(J) 

Frailty significantly influences STS (p<0.01).                                                                All mean-based 
parameters (mVG, mAcc, mAz, mAxy, mEK), max EK and maxVG decreased significantly for FS 
group compared with HY & HS (NF) groups 
 

Parameter NF F p value AUC 

mVG 0.390 (0.065) 0.242 (0.049) P <0.01 0.97 

mOmega: 0.637 (0.165); 0.43 (0.152 P <0.01 0.825 

TD 1.92 (0.38); 4.22 (2.02) 
 

p<0.01 0.923 

mAcc 1.69 (0.41 0.91 (0.39) p<0.01 0.911 

mAz 1.16 (0.33 0.54 (0.27)   p <0.01 0.935 

mAxy 1.03 (0.23); 0.63 (0.23) p <0.01 0.886 

mEK 2.97 (1.24 0.90 (0.51) p <0.01 0.965 

 
 

15 

Yuki et al., 
2019 

N = 401 To examine the 
association 
between frailty 
and PA 

 Steps (n) 
LPA, MVPA (min) 

Odds ratio for frailty: 
<5000 steps 1.85 [95% CI),  
MVPA for <7.5 minutes 1.80 (95% CI) 
No significant association was observed between frailty and LPA 

 

Ziller et al., 
(Ziller et al. 
2020) 2020 

N = 47 
community 
dwelling 
volunteers 
aged > 65 
years 
 
FFP; 
9 F, 15 PF, 23 
NF 
 
Home and 
Clinic 

To analyse the 
variance in 
prevalence of 
frailty by using 
different 
models and 
methods for 
measuring the 
Low PA (LPA) 
criterion of the 
frailty 
assessment 
tools. 
 
Participants 
were instructed 
to wear the 
sensor during 

Actigraph worn 
at hip 

Sedentary time 
(< 100 cpm) 
(hours/day). 
MVPA (> 1952 
cpm) OR 
> 1041cpm) 
(min/week). 
Daily steps 
(n/day) 
 
 
 
 
 
 
 

Using accelerometer-based data for the PA criterion and Fried’s cut-off points, Prevalence of 
frailty calculated:  
7F, 17 PF, 23 NF. 
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waking hours 
for seven 
consecutive 
days. Wear 
time of four to 
seven days with 
at least six 
hours were 
included. 
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Chen et al., 
2020 

N = 819 
community 
dwelling 
volunteers 
aged > 65 
years. 
 
98 F 
228 PF 
493 NF 
 
FRAIL J 
 
Community 
Center 

To investigate if 
sedentary 
behaviour, PA 
patterns and n 
steps are 
associated with 
frailty status 
and to 
determine 
optimal cut-off 
value of each to 
discriminate 
between F and 
NF. 
 
Participants 
were instructed 
to wear the 
sensor for 
during waking 
hours for 7 
consecutive 
days.  
To be included 
in the analysis 
participants 
had to wear the 
device for at 
least 4 days and 
min 10-h per 
day  

Active style Pro 
HJA- 350IT 
worn at the 
waist 

Sedentary Time 
(≤ 1.5 METs) 
LPA (1.5 – 3 
METs) 
MVPA ≥  
(3 METs) 
(min/day)  
Steps (n) 
 

 
Mean (SD) 

 NF PF F P value 

Total 
sedentary 
time 

460.1 (113.0) 450.7 (104.4) 455.3 (118.7) 0.49 

Total MVPA 54.5 (33.3) 52.8 (32.5) 40.5 (32.7) <0.001 

*Bouted 
MVPA 

22.5 (24.1) 21.2 (25.1) 12.6 (20.5) <0.001 

Steps 5872.2 (2699.7) 5695.1 
(2792.8) 

4451.7 (3057) <0.001 

 
*Bouted MVPA defined as ≥ 10 consecutive min, with an allowance for up to 2 min out of 10 to 
drop below the MVPA intensity threshold 
 
Cut-off value to discriminate between F and NF were: 

MVPA (min/day) 43.25 

Bouted MVPA 9.13 

Steps (n)1 3841 
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Kikuchi et al., 
2020 

N = 511 
community 
dwelling 
adults aged > 
65 years. 
 
J-CHS ; 13 F 
234 PF 
264 NF 
 
Home 
 
 
 

The present 
study aimed to 
examine 
associations of 
intensity-
specific physical 
activity and 
bout-specific 
sedentary time 
with frailty 
status. 
 
Participants 
were asked to 
wear a device 
for 7 
consecutive 
days 

Active style Pro 
HJA-750C worn 
at the hip 

Bouts of ST 
(min/day) 
Intensity of PA 
(METs) (ST ≤ 1.5 
METs, 
LPA 1.5 – 3 
METs, 
MVPA ≥  
(Mins)3 METs)  
 

MVPA and prolonged SB differed significantly between frailty levels 
 
                           Mean (SD)                          p value 

Parameter NF PF F NF v 
PF 

PF v F NF v F 

Short-
Bout of SB 

273.1 
(65.4) 

261.2 
(61.7) 

231.0 
(59.0) 

0.287 0.0002 0.0001 

Prolonged 
Bout of SB 

167.3 
(115.5) 

186.0 
(110.0) 

289.9 
(158.7) 

0.0003 <0.0001 <0.0001 

LPA 406.2 
(97.4) 

374.1 
(101) 

298.6 
(157.9) 

0.574 0.119 0.182 

MVPA 58.6 
(40.1) 

47.4 
(38.8) 

14.9 
(21.1) 

0.0003 <0.0001 <0.0001 
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Apsega  
(2020)  
 

N = 133 
community 
dwelling 
adults aged > 
60 years. 
86 female 
46 male 
 
FFP; 
37 F 
66 PF 
30 NF 
 
Not Specified 
 
 
 

To examine the 
ability of 
wearable 
sensor-based 
assessments of 
gait to 
discriminate 
between frailty 
levels and to 
determine the 
cut-offs of the 
most sensitive 
gait parameters 
that separated 
the frailty 
levels. 
 
Participants 
performed a 3-
m TUG test 

Shimmer 
sensors worn at 
bilateral thighs, 
shins and 
dorsum of feet. 

Stance phase 
time (s) 
Swing phase 
time (s) 
Gait speed 
(cm/s) 
Stride time, on 
right and left leg 
accordingly (s) 
Double support 
time (ms) 
Cadence 
(steps/min). 

Parameters for discriminating three frailty levels: 
 
                                            

                                              PF vs. NF                                                      Frail vs. NF 

                               OR        95% CI            p Value                    OR             95% CI            p Value 

 

TUG time              2.36      1.68–3.31     <0.0012                  0 .67          1.89–3.78        <0.001 

Dynamic gait  

Index score           0.80      0.70–0.92       0.001                    0.71          0.60–0.83        <0.001            

Gait speed            0.93      0.90–0.95       <0.001                  0.92          0.89–0.95        <0.001 

Stride time            1.006    1.003–1.009   <0.001                  1.006        1.003–1.009     <0.001 

Swing phase         1.007    1.001–1.013    0.028                   1.008        1.001–1.015       0.024 

Stance phase       1.009     1.005–1.013   <0.001                 1.008        1.004–1.012     <0.001 

Double support   1.02      1.01–1.03       <0.001                  1.01          1.01–1.02           0.002 

Cadence                 0.87      0.83–0.92       <0.001                  0.83          0.78–0.89         <0.00 

 
 
                                     

Cut-off values of the most sensitive gait parameters that separated the frailty levels: 

 F Vs PF or NF PF or F Vs NF 

TUG Time 11.6 9.27 

DGI 15.0 19.0 

GS 0.60 0.82 

Stride 1.27 1.19 

Stance 0.80 0.68 

Swing 0.48 0.48 

DS 0.16 0.14 

Cadence 99.54 101.22 
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Appendix 3.5 AXIS Critical Appraisal Tool  

Yes / No / Don’t Know 

Introduction  

1 Were the aims/objectives of the study clear?  

Methods  

2 Was the study design appropriate for the stated aim(s)?  

3 Was the sample size justified?  

4 Was the target/reference population clearly defined? (Is it clear who the research was about?)  

5 Was the sample frame taken from an appropriate population base so that it closely represented the 

target/reference population under investigation?  

6 Was the selection process likely to select subjects/participants that were representative of the 

target/reference population under investigation?  

7 Were measures undertaken to address and categorise non-responders?  

8 Were the criterion measure and outcome variables measured appropriate to the aims of the study?  

9 Were the *risk factor and outcome variables measured correctly using instruments/ measurements 

that had been trialled, piloted or published previously?  

10 Is it clear what was used to determined statistical significance and/or precision estimates? (e.g., p 

values, CIs)  

11 Were the methods (including statistical methods) sufficiently described to enable them to be 

repeated?  

Results  

12 Were the basic data adequately described?  

13* Does the response rate raises concerns about non-response bias?  

14 If appropriate, was information about non-responders described?  

15 Were the results internally consistent?  

16 Were the results for the analyses described in the methods, presented?  

Discussion  

17 Were the authors’ discussions and conclusions justified by the results?  

18 Were the limitations of the study discussed? Other  

19 Were there any funding sources or conflicts of interest that may affect the authors’ interpretation of 

the results?  

20 Was ethical approval or consent of participants attained? 

*Negative / unfavourable answer results in ‘Y’ .’. Yes = 0; No = 1 
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Appendix 4.1 Laboratory-Based Study Ethics Approval 
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Appendix 4.2 Laboratory-Based Study Recruitment Advertisement 

 

WE ARE LOOKING 
FOR VOLUNTEERS

Calling all staff and students:
Are you aged 18 - 65, able to walk independently and 

willing to take part in our
research?

We are carrying out a laboratory-based research study to 
test the reliability and accuracy of body-worn sensors in 

measuring physical activity.
Please contact me to express your interest and for any 

further information

grainne.vavasour@dkit.ie
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Appendix 4.3 Laboratory-Based Study Participant Information Leaflet 

Participant Information Leaflet 

Study title:  

Comparing parameters of mobility obtained from body-worn sensors with clinical measurements 

Researcher Name: Grainne Vavasour  

Telephone number of Researcher:  087 2164685 

Research Supervisor Name: Dr Oonagh Giggins 

You are being invited to take part in a research study to be carried out at Dundalk Institute 

of Technology (DkIT).  

Before you decide whether or not you wish to take part, you should read the information 

provided below carefully and, if you wish, discuss it with your family, friends or GP  

Take time to ask questions – don’t feel rushed and don’t feel under pressure to make a 

quick decision. 

WE ARE LOOKING 
FOR VOLUNTEERS

Calling all members:
Are you over 65 years of age, able to walk independently 

and willing to take part in our
research?

We in Dundalk Institute of Technology are carrying out a 
laboratory-based research study to test the reliability and 

accuracy of body-worn sensors in measuring physical 
activity.

Please contact me to express your interest and for any 
further information

grainne.vavasour@dkit.ie
087 2164685
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You should clearly understand the risks and benefits of taking part in this study so that you 

can make a decision that is right for you. This process is known as ‘Informed Consent’.  

You don’t have to take part in this study and a decision not to take part will not affect you in 

any way. 

You can change your mind about taking part in the study any time you like.  Even if the study 

has started, you can still opt out.  You don't have to give us a reason.  If you do opt out, rest 

assured it won't affect you in any way.  

Why is this study being done? 

This study is taking place to find out if measurements of mobility and physical activity 

obtained from body-worn sensors placed in different locations on the body are comparable 

in terms of accuracy to those obtained from clinical observation and from a validated 

inertial sensor and software system (Kinesis QTUG). 

Who is organising and funding this study? 

This study is part of a PhD thesis undertaken at DkIT, part funded by the HEA (Higher 

Education Authority)  

Why am I being asked to take part? 

You are being asked to take part in this study either because you are  

18 - 65 years of age OR > 65 years of age  

Healthy 

Independently mobile 

Physically capable of performing a series of mobility and physical activity tests 

Have no cognitive or neurological deficits 

Have no history in the past 12 months of orthopaedic trauma or surgery 

How will the study be carried out? 

Twenty healthy adult volunteers will be recruited and asked to perform a series of simple 

tests in an exercise laboratory setting in the PJ Carroll building, DkIT. 

What will happen to me if I agree to take part? 

You will be asked to provide baseline participant profile information including demographic 

details, past medial history and current medications.  

You will be asked to complete a Covid-19-specific questionnaire, have your temperature 

checked and your name and phone number recorded on a Contact Log. This Log will be 

stored securely by the researcher on campus at DkIT for 1 month from the date of your visit 

to fulfil a legal requirement of the Health and Safety Authority.  
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You will then be asked to wear a number of different sensors on the body for example on 

the legs, arms and trunk while performing a standard ‘timed up and go’ (TUG) test.   

A TUG test measures in seconds, the time taken to stand up from a standard chair seat 

height 46cm (18in), walk a distance of 3m (10 feet), turn, walk back to the chair and sit 

down. 

Resting pulse, pulse oximetry, height, weight and leg length will also be measured. A 

pulsometer worn on the middle finger will be used to measure pulse rate and oxygen 

saturation.  

 

 

  

The TUG test will be carried out under different conditions 

at normal pace 

at normal pace while counting backwards from 100 

at normal pace while carrying a glass of water 

A further walking test will be performed at a predetermined slower than normal pace (<0.8m/s) on a 

treadmill for three minutes. 

The testing will be carried out by a chartered physiotherapist. Non-identifiable video of each mobility 

test will be recorded for the purpose of retrospective manual counting of steps taken during each 

test. It will take 45 - 60 minutes. All communication and data obtained from the measurements will 

be confidential, recorded and discussed anonymously for the purpose of the study only.  
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What are the benefits? 

There are no direct benefits to you. However, the data obtained from your participation in this study 

will assist with a subsequent study on wearable sensors and detection of frailty in older adults. 

What are the risks? 

There is minimal risk involved, no more than that experienced with activities of daily living.  

As with any form of exercise, there is a minimal risk of injury associated with the 

performance of the exercises within the study e.g. a muscle strain, slip or trip. However, the 

exercises involved in the study are very simple i.e. walking 3 metres over ground and 

walking on a treadmill for 3 minutes. The study will be supervised by a chartered 

physiotherapist. The surface you will be walking on will be clean and dry, well lit and free 

from any obstacles or hazards. 

The study will however take some of your time, approximately 45 – 60 minutes. 

If you consider any of the physical activity to be too challenging for you then you should not 

take part in the study. 

What if something goes wrong when I’m taking part in this study? 

In the unlikely event of any emergency during the study, medical assistance will be called. If 

there are any incidental findings i.e. if we observe anything we think requires medical 

attention we will discuss with you and advise you to seek the appropriate medical advice 

e.g. your GP.   

Will it cost me anything to take part? 

There are no financial implications for participants.  

Is the study confidential? 

All information and results provided as a result of this study will be kept securely and 

confidentially at DkIT for the duration of the study and for a period of 7 years thereafter, in 

keeping with GDPR (General Data Protection Regulations, 2018) except Covid-19-specific 

information which will be destroyed after 1 month as per DkIT and Health and Safety 

Authority guidelines. 

Your name and contact details will be stored separately from the information you provide.  

At the start of the study, each participant will be given a ‘participant ID’, which will be 

stored securely and confidentially on a password-protected electronic file. Only the research 

team will have access to the file that matches your details with your id. 

Communication will be confidential, between you and the researcher. 

Results of the tests will be kept confidentially and used for the purposes of this study only. 

This includes writing a report for a doctoral thesis, details of which may be sent for 

publication in a scientific journal. You will not be identifiable in any reports, documentation 

or publication. 
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You are free to discuss the study with friends and family as you wish and on completion of the study 

you can be provided with your own results upon request. 

 

Where can I get further information? 

If you have any further questions about the study or you need any further information now or at any 

time in the future, please contact:  

 

Grainne Vavasour grainne.vavasour@dkit.ie  Phone: 087 2164685

mailto:grainne.vavasour@dkit.ie
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Appendix 4.4 Laboratory-Based Study Consent Form 

Validation study Participant Consent Form 

Study title:  

Comparing parameters of mobility obtained from body-worn inertial 

sensors with clinical measurements 

I have read and understood the Information Leaflet about this research 

project.  The information has been fully explained to me and I have been able 

to ask questions, all of which have been answered to my satisfaction. 

Yes □ No □ 

I understand that I don’t have to take part in this study and that I can opt out at 

any time.  I understand that I don’t have to give a reason for opting out and I 

understand that opting out won’t affect me in any way 

Yes □ No □ 

I have been assured that information about me will be kept private and 

confidential.  

Yes □ No □ 

I have been given a copy of the Information Leaflet and this completed consent 

form for my records. 

Yes □ No □ 

I have been advised on the need to fill out a Covid-19-specific self-declaration 

form prior to participation in the study 

Yes □ No □ 

I give my permission for non-identifiable video recording of my participation 

in each mobility test for the purpose of retrospective manual counting of steps 

taken 

Yes □ No □ 

Storage and future use of information: 

I give my permission for information collected about me to be stored or 

electronically processed for the purpose of research and to be used in related 

studies or other studies in the future but only if the research is approved by a 

Research Ethics Committee. 

Yes □ No □ 

I understand details of my name and phone number will be recorded on a 

Contact Log and stored securely for 1 month from the date of my visit to the 

research centre for purposes of contact tracing in the event of a case of Covid-

19, as a legal requirement, and will thereafter be destroyed 

Yes □ No □ 

Participant Name  

(Block Capitals) 

 

Participant Signature 

 

Date 

To be completed by the Researcher:  

I, the undersigned, have taken the time to fully explain to the above participant the nature and 

purpose of this study in a way that they could understand. I have explained the risks involved as 

well as the possible benefits. I have invited them to ask questions on any aspect of the study that 

concerned them 

Researcher Name  

(Block Capitals) 

Qualifications: 

Signature 

 

Date 

 

| 
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Appendix 4.5 COVID-19 Protocol and Questionnaire 

Procedure for ensuring health and safety of participants and investigators in validation study: 

Pre-study 

The day prior to the validation study, participants will be screened over the phone for risk factors 

relating to Covid-19. See accompanying Visitor Covid-19 Questionnaire (Appendix A). Those 

deemed appropriate for inclusion will be invited to attend the study centre at a designated appointment 

time. To reduce face-to-face contact time demographic and subjective details will be obtained from 

each participant over the phone. 

Day of Study 

At a time no earlier than 5 minutes before allocated appointment, the participant will be met at a 

reception area at the entrance to the study centre by the principal investigator who will be wearing a 

surgical mask. The participant will be supervised with appropriate hand sanitising and given the 

Visitor Covid-19 Questionnaire to read in full, complete and sign. Following further hand sanitisation 

a surgical facemask will be provided with instruction on correct donning / doffing.  

Both participant and investigator will proceed into the test / lab area maintaining social distance as 

required by NPHET guidelines. 

The participant’s temperature will be measured using a non-contact temperature probe 

(Manufacturer’s details). If the temperature is above 37.5 degrees Celsius the Covid-19 Suspected 

Case Procedure will be implemented (Appendix B). If the body-temperature is below 37.5 C, the 

study will proceed: 

Disposable, single-use personal protective facemask, apron and gloves will be worn by the 

investigator for obtaining each participant’s measurements of weight, height and leg-length using 

wipe-able measurement tools (Manufacturers details of weighing scales, height and leg-length 

measurement-tools).  

The participant will be instrumented with an inertial sensor at bilateral ankles, hip, L33, bilateral 

wrists (to include dominant and non-dominant upper limb) and sternum (Shimmer, Dublin, Ireland; 

Kinesis QTUG, Kinesis Health Technologies, Dublin, Ireland) using single-use elasticated material 

and/or tape. 

An exercise will be performed by the participant under the direction of the investigator.  

On completion of the exercise, when appropriate, sensors will be removed and cleaned according to 

manufacturer’s guidelines: 

 Wash hands properly before removing or handling the sensors  

 Ensure a face mask and gloves are used in situations where it is difficult to practice social 

distancing or when handling the sensors after being worn 

 Clean the outside of the sensor first and then use a common disinfectant to wipe down the 

sensor and clip surface and leads (if applicable). 

 

The participant will be advised on and supervised with hand hygiene, escorted to the exit where 

instructions will be given on safe removal and disposal of facemask and further hand sanitising. 

Sensors will be cleaned with a hypochlorite solution and left to air-dry. All surfaces will be cleaned 

and disinfected with 70% alcohol wipes.  90-minutes will be maintained between appointment times 

to facilitate social distancing, cleaning of equipment and surfaces and aeration of study-space.
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Visitor / Contractor COVID-19 Questionnaire 

Name: 

Company: 

Mobile No: 

Visiting: 

Date: 

 

To ensure the Safety & Health of all people interacting with Dundalk Institute of Technology, visitors 

and contractors must complete this declaration form prior to entering any of the buildings on our 

campus and related sites. If you indicate to us that you have symptoms of COVID-19 OR you have 

been abroad in the last 14 days with exception to Northern Ireland you should not be on campus. 

Where this is the case, you are prohibited from entering this Campus/site and advised to seek 

professional medical help/assistance. 

Please note The Visitor/Contractor COVID-19 Questionnaire will be kept for one month after the date 

of visit to meet the track and trace requirements, thereafter it will be securely shredded.  It will be kept 

by the principal researcher in a secure location and only accessed by the relevant Head or 

Administrator. It may be shared with the COVID-19 Response Team or Government agency e.g. HSE 

in case of a suspected case of COVID-19 being discovered.  

It is a legal obligation of the Institute to track visitors to the Campus and in the vital interests of our 

community and general public. 

1. Have you visited any country outside Ireland excluding Northern Ireland Yes/No 

2. Are you suffering any flu like symptoms/symptoms of Coronavirus COVID19 Yes/No 

3. Are you experiencing any difficulty in breathing, shortness of breath? Yes/No 

4. Are you experiencing any fever like/temperature symptoms? Yes/No 

5. Have you consulted a Doctor or other medical practitioner in last 14 days? Yes/No 

6. Are you feeling well health-wise? Yes/No 

7. Are you a close contact of a person who is a confirmed or suspected case of COVID-19 in the past 

14 days (i.e. less than 2 m for more than 15 minutes Accumulative in one day)? Yes/No 

Note: When on campus/site, please adhere to our on-site standard processes/procedures regarding 

infection control, i.e. hand washing/hand sanitising and general coughing/sneezing etiquette. 

Signature of Visitor: Date: ____________ 

(Please circle your answers above)
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COVID-19 Suspect Cases Procedure 

What to do if participant becomes unwell and believe they have been exposed to COVID-19. 

The prompt identification and isolation of potentially infectious individuals is a crucial step in 

protecting the participant and researcher. The following outlines the steps to deal with a suspected 

case that may arise during the course of the validation study. 

Identify a designated isolation area in advance. This designated area and the route to the designated 

area should be accessible and as far as is reasonable and practicable should be accessible by people 

with disabilities. Ensure the designated area has the ability to isolate the person behind a closed door. 

Where a closed door is not possible, move to an area away from other persons. Provide as is 

reasonably practicable: 

Ventilation i.e. via a window 

Tissues, hand sanitiser, disinfectant and or wipes 

PPE; gloves and mask  

Clinical waste bags. 

Designated isolation area: Living Lab area of the research lab in NetwellCASALA, PJ Carroll 

Building, DkIT. 

If the participant has travelled alone in their own vehicle to the research centre, they should return to 

their car and return home, isolate and contact their GP for further advice.  The unwell individual 

should be provided with a mask, to be worn at all times and continue to wear it until they arrive home. 

If an individual cannot go home immediately:  

Isolate the  individual  and accompany to  the  designated  isolation  area, keeping at least 2 metres 

away from the symptomatic person and also making sure that others maintain a distance of at least 2 

metres from the symptomatic person at all times. The individual should avoid touching people, 

surfaces and objects while in isolation. 

Assess  whether  the  unwell  individual  can be  directed  to  go  home  and  call their doctor and 

continue self-isolation at home.  If the individual does not have access to their own transport or are 

not fit to travel alone, arrange transport home with family or friend. Public transport of any kind 

should not be used. 

Advice should be given to the person presenting with symptoms to cover their mouth and nose with 

the disposable tissue provided when they cough or sneeze and dispose of the tissue in the waste bag 

provided.   

Facilitate the person with a means of making contact if they do not have access to their own mobile 

phone e.g. necessary supports for the individual to contact their doctor/HSE via telephone. 

Arrange for appropriate cleaning of the isolation area and work areas involved 

Carry  out  an  assessment  of  the  incident  which  will  form  part  of  determining  follow-up actions 

and recovery. 

 Provide advice and assistance if contacted by the HSE.   

Make  note  of  the  names  and contact details  (address,  mobile  number)  of  all  people  working in 

the  same  area  as the unwell person, or who may have come into close contact with the unwell 

person.
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Appendix 4.6 Case Report Form 

Case Report Form  

Title of Study: Comparing parameters of mobility obtained from body-worn 

sensors with clinical measurements 

Principal Investigator: Grainne Vavasour 

Supervisor: Dr. Oonagh Giggins 

Site: NetwellCASALA Research Centre, PJ Carroll Building, DkIT, Dundalk, 

Co. Louth 

Date of Study           (YYYY_MM_DD) 

Participant ID        _ _ ValSt_  (YY_MM_DD) 

Gender                    M  F  

DOB (DDMMYY)     

Medical History: 

_________________________________________________________ 

 

 

Current Medication: 

______________________________________________________ 
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Covid-19 Questionnaire Completed     Y  N  

Consent Form Signed      Y  N  

Temperature (degrees Celsius)          . C 

Weight (Kg)               . kg 

Height (Cm)                                       . cm 

Leg Length (Cm) (Umbilicus to proximal medial malleolus 

        RIGHT   . cm 

       LEFT    . cm 

Pulse (BPM)    bpm 

Oxygen Saturation (Sa02) (%)         % 

Sensor Calibrated       Y  N  

Shimmer Sensor Applied: 

5cm above lateral malleolus     Y  N  

2cm lateral to ASIS      Y  N  

L3 3         Y  N  

2cm proximal to ulnar styloid:    RIGHT Y  N  

                          LEFT  Y  N  

Sternum; Upper 1/3      Y  N  

Kinesis QTUG Sensor Applied (5cm above lateral malleolus, Anterior to Kinesis sensor) 

RIGHT  Y  N  

       LEFT  Y  N  

Use of walking aid       Y  N  

Chair Height (cm)          cm 

TUG Test: 

Video         Y  N  

No. of Steps taken        

Time taken (Minutes/Seconds.)     / .  
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On Completion: 

Pulse         bpm 

Sa02         %  

TUG-COGNITIVE Test:  

Video         Y  N  

No. of Steps taken        

Time taken (Minutes/Seconds)     / .  

On Completion: 

Pulse         bpm 

Sa02         % 

TUG-MANUAL Test:  

Video         Y  N  

No. of Steps taken        

Time taken (Minutes/Seconds)     / .  

On Completion: 

Pulse         bpm 

Sa02         % 

TREADMILL 3-m TEST: 

Video         Y  N  

Pace (<0.8metre/second) (2.88km/h)    . km/hr  

Pulse         bpm 

Sa02         %
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Appendix 4.7 Data Dictionary 

Data Dictionary for Laboratory-Based Study Comparing Step-count and Parameters of Gait from 

Wearable Sensors and Direct Observation during a Treadmill walk test and TUG tests under 

Different Conditions 

Abbreviation Full name of 

variable 

Definition of 

variable 

Sources Coding  

dd_mm_yyValSt_0## Participant 

ID 

dd_mm_yy = Date 

of initial assessment 

followed by 

assigned number 

Assigned  

m f Male / female Gender of 

participant 

CRF M = 1 

FM = 2 

 age Participant’s age in 

years 

CRF  

 Weight Participant’s in 

kilograms 

CRF  

 Height Participant’s height 

in centimetres 

CRF  

RtLL Right Leg 

Length 

Length of 

participant’s right 

leg in cms 

CRF  

LtLL Left Leg 

length  

Length of 

participant’s left leg 

in cms 

CRF  

 Age cohort Age group of 

participant 

Assigned Under 65 

= 2 

Over 65 = 

11  

Countedsteps1stTUG Counted 

steps from 1st 

TUG test 

Number of steps 

counted during 1st 

TUG test 

Under 65 

years of age 

cohort: 

Direct 

observation. 

Over 65 

years of age: 

Retrospective 

video 

observation 

 

SensorSteps1stTUG  Number of steps 

extracted from 

sensor during 1st 

TUG test 

  

Difference1stTUG  Difference between 

manually counted 

and sensor steps 

during 1st TUG test 

  

CountedStepsTUGCOG  Number of steps 

counted during 

TUG Cognitive test 

Under 65 

year of age 

cohort: 

Direct 

observation. 

Over 65 

years of age: 
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Retrospective 

video 

observation 

SensorStepsTUGCOG  Number of steps 

extracted from 

sensor during TUG 

Cognitive test 

  

DifferenceTugCog  Difference between 

manually counted 

and sensor steps 

during TUG 

Cognitive test  

  

CountedStepsTUGMAN  Number of steps 

counted during 

TUG Manual test 

Under 65 

years of age 

cohort: 

Direct 

observation. 

Over 65 

years of age: 

Retrospective 

video 

observation 

 

SensorStepsTUGMAN  Number of steps 

extracted from 

sensor during TUG 

Manual test 

  

DifferenceTugMan  Difference between 

manually counted 

and sensor steps 

during TUG Manual 

test 

  

CountedTreadmill  Number of steps 

counted during 

treadmill walk test 

  

AnkleShimmerTM  Number of steps 

extracted from ankle 

sensor during 

treadmill walk test 

  

WaistShimmerTM  Number of steps 

extracted from waist 

sensor during 

treadmill walk test 
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Appendix 4.8 Data Management Plan 

1.0 Data Collection, Documentation & Storage 

All information and results provided as a result of this study will be kept securely and confidentially 

at DkIT for the duration of the study and a period of 7 years after, in keeping with GDPR (General 

Data Protection Regulations, 2018) with the exception of Covid-19-related documents. 

1.1 Covid-19-Related Data 

Paper-based Covid-19 Visitor Questionnaire and Contact Log documents will be stored securely in a 

locked filing cabinet in the principal researcher’s office for a period of one month from the date of the 

participant’s attendance at DkIT research centre. 

Thereafter Covid-19 data will be shredded securely with a crosscut shredder. This is to comply with 

DkIT Return to Work Safely Protocol (DkIT COVID-19 Return to Work Operating Plan - OneDrive). 

1.2 Paper-Based Data 

All paper-based copies of information obtained throughout the study (with the exception of Covid-19-

related documents) will be scanned onto the researcher’s PC and stored safely in a password-protected 

electronic file. Passwords required will be shared with the researcher’s supervisor in the event that the 

researcher is incapacitated .The original paper copies will be kept in a locked filing cabinet in the 

principal researcher’s office in NetwellCASALA centre on campus with access restricted to 

researcher and supervisor. 

1.3 Pseudonymisation  

All data collected will be pseudonymised, stored securely on a password-protected electronic file on 

the researcher’s PC and used for the purposes of this study only.  

At the start of the study each participant will be given a ‘participant ID’ using the naming convention 

‘YY_MM_DD_ValStdy_00#. A digital master sheet containing participant details and participant ID 

will be generated. This master-sheet will be stored securely in a password-protected electronic file on 

the researcher’s PC and used for administration purposes only. Only the participant ID will appear on 

study documentation from then onwards.  

The master sheet will be destroyed on completion of the PhD study; therefore only anonymised copy 

of data will be archived. 

Only the researcher and primary supervisor will have access to the file that matches each person to 

their participant ID.  

1.4 Case Report Form (CRF)  
A paper-based Case Report Form (CRF) (labelled ‘Case Report Form [CRF] [Appendix 6]’ in SOP) 

will be generated for each participant to record details of the Study Title, Principal Investigator, 

Research Centre, Date of Study (using naming convention ISO 8601 YYYY_MM_DD) and 

Participant identification number (Naming convention YY_MM_DDValStdy_00#).  YY_MM_DD 

will refer to Date of Study and 00# to individual identification numbers 1-20.  

1.4.1 Demographics & Medical History 

Data on each participant’s demographic, past medical history and current medication will be obtained 

by the principal investigator via phone conversations prior to participant’s arrival to the research 

centre at DkIT. This data will be recorded in the CRF. 

1.4.2 Clinical Data 

Traditional clinical data measurements from the mobility tests obtained from manual timing in real 

time and retrospectively from video-recordings will be recorded in the CRF.  

1.4.3 Sensor-Based Data 

Sensor-data recorded from the QTUG and each shimmer device will be transferred via Bluetooth or 

USB-C connection to the researcher’s password-protected PC after each participant’s measurement 

session, labelled and stored using the participants ID code.  
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Validated algorithms will be used to extract metrics of mobility and physical activity from the raw 

sensor data. 

1.5 Consent Forms 

Participant-signed consent forms will be obtained, duplicated and a copy returned to each participant 

on the day of the mobility test. Retained copies will be stored securely in a locked container held by 

the researcher until processed on campus as above. 

2.0 Data Collation 

When data collection is complete, required data will be recorded in an excel spreadsheet. This will be 

recorded by the principal researcher using a double data entry and comparing spreadsheets for 

discrepancies. The reseracher’s supervisor will verify a random sample. 

The CRF will be scanned and stored securely in a password-protected electronic file in ‘Digitised 

Hard Copies’ folder as per section 4.0. The original paper copies will be kept in a locked filing 

cabinet in the principal researcher’s office in NetwellCASALA centre on campus with access 

restricted to researcher and supervisor as per section 1.2. 

3.0 Data Analysis 

A comparative analysis will be performed between the sensor metrics to establish the correlation, if 

any, between the validated QTUG Kinesis, clinical measurements and the body-worn sensors. This 

will be carried out by two supervisors. 

3.1 Data Sharing 

Raw data from sensors will be shared with supervisors and subject to a Data Transfer Agreement, 

with UCD in the form of pseudonymised excel spreadsheets. 

4.0 Storage & Back-up 

A root folder will be created in C:\Users\vavasoug\Validation Study Documents on the researchers 

PC, which will nest folders for each aspect of Data Collection named accordingly i.e. ‘Video-

Recording’, ‘Shimmer Sensor Data’, ‘QTUG Data’, ‘Digitised Hard Copies’. Each participant’s data 

will be stored in separate files within these folders, identifiable by individual participant ID. 

All data will automatically upload to OneDrive as a backup.  

5.0 Archiving and Destroying the Data 

All data will be retained for the duration of the study and for seven years thereafter except the master 

sheet, which will be destroyed on completion of the PhD studies, in alignment with GDPR 2018.  

All paper files will then be shredded securely with a crosscut shredder. 

Electronic data will be destroyed by an appropriate IT staff member as per DkIT policy. 

The Research Centre Manager and research supervisor will ensure all data has been destroyed. 

18 May 2021 COVID-19 questionnaires shredded on campus in company of Suzanne Smith 
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Appendix 4.9 Data Protection Impact Assessment Approval 

 

 

Appendix 5.1 Home-Based Study Recruitment Advertisement 
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Appendix 5.2 Home-Based Study Participant Information Leaflet 

Participant Information Leaflet 

Study title:  

Wearable Sensor-Based Assessment of Frailty 

Researcher Name: Grainne Vavasour  

Telephone number of Researcher:  087 2164685 

Research Supervisor Name: Dr Oonagh Giggins 

You are being invited to take part in a research study to be carried out on behalf of the 

School of Health and Science, NetwellCASALA, Dundalk Institute of Technology (DkIT).  

Before you decide whether or not you wish to take part, you should read the information 

provided below carefully and, if you wish, discuss it with your family, friends or GP  

Take time to ask questions – don’t feel rushed and don’t feel under pressure to make a 

quick decision. 

You should clearly understand the risks and benefits of taking part in this study so that you 

can make a decision that is right for you. This process is known as ‘Informed Consent’.  

You don’t have to take part in this study and a decision not to take part will not affect you in 

any way. 

You can change your mind about taking part in the study any time you like.  Even if the study 

has started, you can still opt out.  You don't have to give us a reason.  If you do opt out, rest 

assured it won't affect you in any way.  

Why is this study being done? 

This study is taking place to find out if measurements of mobility and physical activity 

obtained from body-worn sensors placed at different locations on the body can be used to 

identify levels of frailty. 

Who is organising and funding this study? 

This study is part of a PhD thesis undertaken at DkIT, part funded by the HEA (Higher 

Education Authority)  

Why am I being asked to take part? 

You are being asked to take part in this study either because you are  

> 65 years of age  

Healthy 

Independently mobile 

Physically capable of performing a series of mobility and physical activity tests 
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Have no cognitive or neurological deficits 

Have no history in the past 6 months of orthopaedic lower limb trauma or surgery that will limit your 

ability to perform the activity tests 

How will the study be carried out? 

Between 50 – 60 older adults will visited in their homes by the primary researcher. 

What will happen to me if I agree to take part? 

You will be asked to provide baseline participant profile information including demographic 

details, past medial history and current medications.  

You will have your temperature checked and your name and phone number recorded on a 

Contact Log. This Log will be stored securely by the researcher on campus at DkIT for 1 

month from the date of your assessment to fulfil a legal requirement of the Health and 

Safety Authority. You will then be asked to complete a Covid-19-specific questionnaire. 

You will be asked to take part in a one-to-one training and education session on the 

application and use of a wearable sensor. You will be asked to complete two short 

questionnaires regarding your activity level and functional ability.  

Your height and weight will be measured. A pulsometer worn on the middle finger will be 

used to measure pulse rate and oxygen level before the activities.  

You will then be asked to wear a number of small sensors on the body for example on the 

legs, wrist and waist while performing some physical activity tests; Balance, walking and a 

standard ‘timed up and go’ (TUG) test.   
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A TUG test measures in seconds, the time taken to stand up from a standard chair seat 

height 46cm (18in), walk a distance of 3m (10 feet), turn, walk back to the chair and sit 

down. 

The balance test require you to stand for 10-seconds with feet together, feet semi-tandem 

(the side of one heel touching the big toe of the opposite foot) and tandem (the tip of your 

big toe touching the back of the heel of your opposite foot). 

The stand up / sit down task requires you to stand up and sit down five times.  

The walk test requires you to walk 4m at your own pace. 

The testing will be carried out by a chartered physiotherapist. The first part of the research will take 

60 – 90 minutes. All communication and data obtained from the measurements will be confidential, 

recorded and discussed anonymously for the purpose of the study only.  

 

On completion of the activities you will be asked to continue to wear the sensor on your wrist during 

waking hours for 48-hours, removing for bathing or showering. You will be required to fit the ankle 

sensors independently if able and carry out the TUG test on two separate occasions, 24 hours apart 
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over the subsequent 48 hours. You will have a step-by-step guide and information booklet to assist 

you with this. 

The researcher will collect the sensors on the third day. On this visit you will be asked to complete a 

System Users Scale 10-point questionnaire and possibly take part in a non-identifiable audio-

recorded interview to explore your experience using wearable sensors. 

What are the benefits? 

There are no direct benefits to you. However, the data obtained from your participation in this study 

will provide information that may be useful in developing tools for identifying those at risk of frailty. 

What are the risks? 

There is minimal risk involved, no more than that experienced with activities of daily living.  

As with any form of exercise, there is a minimal risk of injury associated with the 

performance of the exercises within the study e.g. a muscle strain, slip or trip. However the 

exercises involved in the study are very simple i.e. walking 3 metres, standing with feet 

together in three different positions and standing up / sitting down five times. The first part 

of the study will be supervised by a chartered physiotherapist and performed in your own 

home. 

The study will however take some of your time, approximately 60 – 90 minutes initially, 

followed by the unsupervised testing as described above over the next 48-hours and 

approximately 15 minutes when the researcher collects the sensors after the 48-hour period. 

If you consider any of the physical activity to be too challenging for you or you are not 

comfortable with any aspect then you should not take part in the study. 

What if something goes wrong when I’m taking part in this study? 

In the unlikely event of any emergency during the study, medical assistance will be called. If 

there are any incidental findings i.e. if we observe anything we think requires medical 

attention we will discuss with you and advise you to seek the appropriate medical advice 

e.g. your GP.   

Will it cost me anything to take part? 

There are no financial implications for participants.  

Is the study confidential? 

All information and results provided as a result of this study will be kept securely and 

confidentially at DkIT for the duration of the study and for a period of 7 years thereafter, in 

keeping with GDPR (General Data Protection Regulations, 2018) except Covid-19-specific 

information which will be destroyed after 1 month as per DkIT and Health and Safety 

Authority guidelines. 

Your name and contact details will be stored separately from the information you provide.  
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At the start of the study each participant will be given a ‘participant ID’, which will be stored 

securely and confidentially on a password-protected electronic file. Only the research team 

will have access to the file that matches your details with your id. 

Communication will be confidential, between you and the researcher. 

Results of the tests will be kept confidentially and used for the purposes of this study only. 

This includes writing a report for a doctoral thesis, details of which may be sent for 

publication in a scientific journal. Data may be shared with colleagues in another university 

for analysis using special processes. You will not be identifiable in any reports, 

documentation or publication. 

You are free to discuss the study with friends and family as you wish and on completion of the study 

you can be provided with your own results upon request. 

Where can I get further information? 

If you have any further questions about the study or you need any further information now or at any 

time in the future, please contact:  

Grainne Vavasour                Phone: 087 2164685          email: grainne.vavasour@dkit.ie   

mailto:grainne.vavasour@dkit.ie
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Appendix 5.3 Home-Based Study Institutional Ethics Approval 
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Appendix 5.4 Home-Based Study HSE Ethics Approval 
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Appendix 5.5 Home-Based Study Participant Consent Form 

 

Home-Based study Participant Consent Form 

 

Study title:  

Wearable Sensor-Based Assessment of Frailty 

 

I have read and understood the Information Leaflet about this research 

project.  The information has been fully explained to me and I have been able 

to ask questions, all of which have been answered to my satisfaction. 

Yes  No  

I understand that I don’t have to take part in this study and that I can opt out at 

any time.  I understand that I don’t have to give a reason for opting out and I 

understand that opting out won’t affect me in any way. 

Yes  No  

I have been assured that information about me will be kept private and 

confidential.  

Yes  No  

I have been given a copy of the Information Leaflet and this completed consent 

form for my records. 

Yes  No  

I have been advised on the need to fill out a Covid-19-specific self-declaration 

form prior to participation in the study 

Yes  No  

I give my permission for non-identifiable video recording of my participation in 

each mobility test for the purpose of retrospective review. 

Yes  No  

I give my permission for non-identifiable audio recording of a post-intervention 

interview to explore my experience using wearable sensors 

Yes  No  

Storage and future use of information: I give my permission for information 

collected about me to be stored or electronically processed for the purpose of 

research and to be used in related studies or other studies in the future but only 

if the research is approved by a Research Ethics Committee. I understand data 

may be processed off-site, in another university because of special processing 

systems. 

Yes  No  

I understand details of my name and phone number will be recorded on a 

Contact Log and stored securely for 1 month from the date of my involvement 

in this study for purposes of contact tracing in the event of a case of Covid-19, 

as a legal requirement, and will thereafter be destroyed. 

Yes  No  

  

 |   |  

---------------------------------------------------------------------------------------------------------------- 

Participant Name (Block Capitals) | Participant Signature | Date 
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To be completed by the Researcher:  

I, the undersigned, have taken the time to fully explain to the above participant the nature and 

purpose of this study in a way that they could understand. I have explained the risks involved as well 

as the possible benefits. I have invited them to ask questions on any aspect of the study that concerned 

them. |  | 

 

 

 

Name (Block Capitals)   Qualifications  Signature | Date
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Appendix 5.6 Home-Based Study COVID-19 Protocol 

Procedure for ensuring health and safety of participants and investigators in validation study: 

Pre-study 

The day prior to the validation study, participants will be screened over the phone for risk factors 

relating to Covid-19. See accompanying Visitor Covid-19 Questionnaire (Appendix A). Those 

deemed appropriate for inclusion will be invited to mutually agree a suitable appointment time.  

Day of Study 

At a time no earlier than 5 minutes before allocated appointment, the researcher will present at the 

participant’s home wearing a surgical facemask. The participant and researcher will perform hand-

hygiene using appropriate hand sanitising agent. The participant’s temperature will be measured using 

a non-contact temperature probe (Manufacturer’s details). If the temperature is above 37.5 degrees 

Celsius the participant will be advised to self-isolate and seek medical advice. The study will be 

postponed and the researcher will leave the participant’s home following appropriate hand hygiene. If 

the body-temperature is below 37.5 C, the study will proceed. 

The participant will be given the Visitor Covid-19 Questionnaire to read in full, complete and sign 

followed by further hand sanitisation. Social distance will be maintained as required by NPHET 

guidelines. 

Disposable, single-use personal protective facemask, apron and gloves will be worn by the researcher 

for obtaining each participant’s measurements of weight, height and leg-length using wipe-able 

measurement tools (Manufacturers details of weighing scales, height and leg-length measurement-

tools).  

The participant will be instrumented with an inertial sensor at bilateral ankles, waist, chest and 

bilateral wrists (to include dominant and non-dominant upper limb) (Shimmer, Dublin, Ireland; 

Kinesis QTUG, Kinesis Health Technologies, Dublin, Ireland) using single-use elasticated material 

and/or tape. 

A battery of tests and questionnaires will be performed by the participant under the direction of the 

researcher.  

On completion of the exercise, when appropriate, sensors will be removed and cleaned according to 

manufacturer’s guidelines: 

Wash hands properly before removing or handling the sensors  

Ensure a face mask  and gloves are used in situations where it is difficult to practice social distancing 

or when handling the sensors after being worn 

Clean the outside of the sensor first and then use a common disinfectant to wipe down the sensor and 

clip surface and leads (if applicable). 

The participant will be advised on and supervised with hand hygiene. Sensors will be cleaned with a 

hypochlorite solution and stored in manufacturer’s case. All surfaces will be cleaned and disinfected 

with 70% alcohol wipes.  The researcher will leave the home 

Visitor / Contractor COVID-19 Questionnaire 

COVID-19 Questionnaire 

Name: 

Phone No: 
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Date: 

To ensure the Safety & Health of all people interacting with Dundalk Institute of Technology, 

participants must complete this declaration form prior to taking part in a study. If you indicate to us 

that you have symptoms of COVID-19 OR you have been abroad in the last 14 days we are prohibited 

from entering your home and you are advised to seek professional medical advice. 

Please note the COVID-19 Questionnaire will be kept for one month after the date of visit to meet the 

track and trace requirements, thereafter it will be securely shredded.  It will be kept by the principal 

researcher in a secure location and only accessed by the relevant Head or Administrator. It may be 

shared with the COVID-19 Response Team or Government agency e.g. HSE in case of a suspected 

case of COVID-19 being discovered.  

It is a legal obligation of the Institute to track contacts and in the vital interests of our community and 

general public. 

PLEASE CIRCLE YOUR ANSWERS 

1. Have you visited any country outside Ireland excluding Northern Ireland  

Yes / No 

2. Are you suffering any flu like symptoms/symptoms of Coronavirus (COVID-19)  

Yes / No 

3. Are you experiencing any difficulty in breathing, shortness of breath?  

Yes / No 

4. Are you experiencing any fever like/temperature symptoms?  

Yes / No 

5. Have you consulted a Doctor or other medical practitioner in last 14 days?  

Yes / No (If yes, please give brief details: _________________________________ 

6. Are you feeling well health-wise?  

Yes / No 

7. Are you a close contact of a person who is a confirmed or suspected case of COVID-19 in the past 

14 days (i.e. less than 2 m for more than 15 minutes Accumulative in one day)?  

Yes / No 

Signature of Participant: ________________________________________ 

 

Name (BLOCK CAPITALS) ____________________________________ 

 

Date: _______________________________
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Appendix 5.7 Fried’s Frailty Phenotype Frailty Assessment tool (FFP) 

Participant ID ______________________________________ 

Date _____________________________________________ 

Administered by ____________________________________ 

Criteria Options Weight score 

Unintentional weight 
loss (>4.5kg / 10lbs in 
previous year) 

No 
Yes 
BMI < 18.5kg/m2 

0 
1 
1 

 

Physical Energy / 
Endurance: 
Q1. Do you feel full of 
energy? 
Q2. During the last 4 
weeks, how often 
have you rested in 
bed during the day? 
 
 

 
 
Yes / No 
 
Every day / Every 
Week / Once / Never 

0 = ‘Yes’ & ‘Every day/week’ 
 
0 = ‘No’ & ‘Once/Never’ 
 
1 = ‘No’ & ‘Every day / week’ 
 

 

Low physical activity: 
Frequency of mild / 
mod/ high energetic 
PA 

≥3 times per week 
1-2 times per week 
1-3 times per month 
Hardly ever 
Never  

1 = Hardly ever / Never for high 
AND for mod energetic PA 

 

Weakness: 
Handgrip strength in 
kg. dominant hand, 
average of 3 measures 

Lowest 20% (by sex, 
BMI) 

Men  
BMI Grip Strength  
≤24 ≤29 
24.1 – 26 ≤ 30 
– 28 ≤30 
>28 ≤32 
Women 
≤23 ≤17 
23.1 – 26 ≤17 
26.1 – 29 ≤18 
>29 ≤21 

 

 

Slow walking speed: 
Time to complete 
“timed up and go 
test” (TUG)  

Frailty cut point: TUG 
time ≥19 seconds 

0 = ≤ 18.9 seconds 
1 = ≥19 seconds 

 

   TOTAL 
SCORE 

Frail: ≥3 criteria present 

Pre-Frail:1 or 2 criteria present 

Robust: 0 criteria present  

https://www.cgakit.com/fr-1-frailty-phenotype
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Appendix 5.8 Frail Elderly Functional Assessment Questionnaire (FEFAQ) 

Participant ID # ___________________ Date: __________________  

1. Are you able to walk? __ a. Yes, without help __ b. Yes, with a cane or walker c. Yes, with 

the help of another person __d. Not at all  

2. Can you transfer out of bed? a. Yes, alone without a transfer board or other assistive device 

__ b. Yes, with the help of a transfer board or other device __ c. Yes, with the help of one or 

more than one person __ d. Yes, with the help of both another person and some assistive 

device e. Not at all  

3. Are you able to turn over on your side in bed? __ a. Yes, without help __ b. Yes, with 

assistive device(s) __ c. Yes, with some help from another person d. No, must be turned  

4. Are you able to wash dishes? __a. Yes __b. No  

5. Are you able to prepare your own hot dinner? __a. Yes __ b. No, but am able to heat up 

already prepared meals __ c. No, but am able to make a peanut butter and jelly sandwich __ 

d. Not at all  

6. Are you able to manage money (paying bills, keep check- book, etc.)? __a. Yes __ b. 

Partially, but not major bills and balancing a check- book __ c. Sign checks but unable to 

handle even minor trans- actions __d. No  

7. Are you able to use the telephone? __ a. Yes, including dialling and answering the phone 

__ b. Yes, but unable to dial __ c. Yes, but am not able to dial or pick up receiver __d. No  

8. Are you able to eat by mouth, including feeding yourself? __ a. Yes, without help __ b. 

Yes, with assistive device(s) __ c. No, but can eat if fed d. No, but can give own tube feeding 

__ e. No, must be tube fed  

9. Are you able to dress yourself in pants, shirt or blouse, slip on shoes, and socks if clothes 

are placed out? __ a. Yes, without help of either a person or assistive device __ b. Yes, with 

assistive device(s) __ c. Partially, but some help is required from another / person __ d. No, 

completely dependent on another person  

APPENDIX 1: FEFA QUESTIONNAIRE (Cont'd)  

10. Are you able to dress yourself in a robe and slippers if both are placed out? __ a. Yes, 

without help of either a person or assistive device __ b. Yes, with assistive device(s) __c. 

Partially, but some help is required from another person __d. No, completely dependent on 

another person  

11. Are you able to bathe in a tub or shower yourself? __ a. Yes, without help __ b. Yes, with 

assistive device(s), e.g., tub chair or grab bar __ c. Partially, but some help is required from 

another person __ d. Partially, but some help is required from another person and assistive 

device(s) __ e. No, completely dependent on another person  

12. If the answer to #11 was 'e' (completely dependent on another person), are you able to 

sponge bathe yourself? __ a. Yes, without help __ b. Partially, but some help is required from 

another person __ c. No, completely dependent on another person __ d. Not applicable (#11 

was a, b, c, or d)  
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13. Are you able to use the toilet, including getting to the bathroom? __ a. Yes, without help 

__ b. Yes, with assistive device(s) __ c. Yes, with some help from another person __ d. Yes, 

with help from another person and assistive device(s) __ e. No, unable to use toilet in the 

bathroom  

If you answered #13 as 'a' (yes, without help) skip to #15.  

14. If you answered #13 above as 'e' (unable to use toilet in the bathroom) are you able to use 

a bedside commode? __ a. Yes, without help __ b. Yes, with assistive device(s) __ c. Yes, 

with some help from another person d. Yes, with help from another person and assistive 

device(s) __ e. No, unable to use bedside commode __ f. Not applicable (#13 was a, b, c, or 

d)  

If you answered #14 as 'a' (yes, without help) skip to #16  

15. If you answered #14 above as 'e', unable to use bedside commode, are you able to use a 

bedpan/urinal? __ a. Yes, without help __ b. Yes, with help __ c. No, am unable to recognize 

bladder fullness or bowel movement d. No, have an ostomy (who cares for the site and 

empties the bag?)  

__ e. Not applicable (#13 or #14 was a, b, c, or d)  

16. Are you able to sit up? __ a. Yes, without help __ b. Yes, with assistive device(s) __ c. 

Yes, but some help is required from another person __d. No  

17. Are you able to grasp a cup or a cloth with your hands? __a.Yes, either hand __b.Yes, but 

only with one hand __c. No  

18. Are you able to reach out past your nose? __a. Yes, with arm fully extended at shoulder 

level __b. Yes, but cannot fully extend at shoulder level __c. No 

19. Are you usually able to take your own medications every day? __a. Yes, without help 

__b. Yes, if medication doses are set out by another person __c. No, must have medication 

administered by another person __ d. No, do not take medication on a daily basis  

FEFA Questionnaire Scoring Instructions  

1. a) 0; b) l; c) 2; d) 3  

2. a) 0-d) 3  

3. a) 0-d) 3  

4. a) 0-b) 1  

5. a) 0-d) 3  

6. a) 0-d) 3  

7. a) 0-d) 3  

8. a) 0-e) 4  

9. a) 0-d) 3  

10. a) 0-d) 3  
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11. a) 0-e)4  

12. a) 0-c) 2; d) 0  

13. a) 0-d) 3; e) 0  

14. a) 0-e) 4; f) 0  

15. a) 0-d) 3; e) 0; if answer is d and patient cares for and empties ostomy without help score 

as 0  

16. a) 0-d) 3  

17. a) 0-c) 2  

18. a) 0-c) 2  

19. a) 0-c) 2; d) 0  

Total 0 to 55 (low scores infer better function).  

Reference: 

Gloth, F.M., Scheve, A.A., Shah, S., Ashton, R. and McKinney, R. (1999). The frail elderly 

functional assessment questionnaire: Its responsiveness and validity in alternative settings. 

Archives of Physical Medicine and Rehabilitation, 80(12), pp.1572–1576.
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Appendix 5.9 Short Physical Performance Battery of tests (SPPB) 

All of the tests should be performed in the same order as they are presented in this protocol. 

Instructions to the participants are shown in bold italic and should be given exactly as they are written 

in this script. 

 

1.  BALANCE TESTS The participant must be able to stand unassisted without the use of a cane or 

walker. You may help the participant to get up. 

Now let’s begin the evaluation.  

I would now like you to try to move your body in different movements. I will first describe and show 

each movement to you. Then I’d like you to try to do it. If you cannot do a particular movement, or if 

you feel it would be unsafe to try to do it, tell me and we’ll move on to the next one.  

Let me emphasize that I do not want you to try to do any exercise that you feel might be unsafe. 

 

Do you have any questions before we begin? 

 

A. Side-by-Side Stand  

1. Now I will show you the first movement. 

2. (Demonstrate) I want you to try to stand with your feet together, side-by-side, for about 10 seconds. 

3. You may use your arms, bend your knees, or move your body to maintain your balance, but try not 

to move your feet. Try to hold this position until I tell you to stop. 

4. Stand next to the participant to help him/her into the side-by-side position. 

5. Supply just enough support to the participant’s arm to prevent loss of balance. 

6. When the participant has his/her feet together, ask “Are you ready?” 

7. Then let go and begin timing as you say, “Ready, begin.” 

8. Stop the stopwatch and say “Stop” after 10 seconds or when the participant steps out of position or 

grabs your arm. 

9. If participant is unable to hold the position for 10 seconds, record result and go to the gait speed 

test. 

 

 

B. Semi-Tandem Stand  

1. Now I will show you the second movement. 

2. (Demonstrate) Now I want you to try to stand with the side of the heel of one foot touching the big 

toe of the other foot for about 10 seconds.  You may put either foot in front, whichever is more 

comfortable for you. 
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3. You may use your arms, bend your knees, or move your body to maintain your balance, but try not 

to move your feet. Try to hold this position until I tell you to stop. 

4. Stand next to the participant to help him/her into the semi-tandem position 

5. Supply just enough support to the participant’s arm to prevent loss of balance. 

6. When the participant has his/her feet together, ask “Are you ready?” 

7. Then let go and begin timing as you say “Ready, begin.” 

8.  Stop the stopwatch and say “Stop” after 10 seconds or when the participant steps out of position or 

grabs your arm. 

9. If participant is unable to hold the position for 10 seconds, record result and go to the gait speed 

test. 

 

C. Tandem Stand  

1. Now I will show you the third movement. 

2. (Demonstrate) Now I want you to try to stand with the heel of one foot in front of and touching the 

toes of the other foot for about 10 seconds. You may put either foot in front, whichever is more 

comfortable for you. 

3. You may use your arms, bend your knees, or move your body to maintain your balance, but try not 

to move your feet. Try to hold this position until I tell you to stop. 

4. Stand next to the participant to help him/her into the tandem position. 

5.  Supply just enough support to the participant’s arm to prevent loss of balance. 

6.  When the participant has his/her feet together, ask “Are you ready?” 

7.  Then let go and begin timing as you say, “Ready, begin.” 

8. Stop the stopwatch and say “Stop” after 10 seconds or when the participant steps out of position or 

grabs your arm. 

 

SCORING: 

 

A. Side-by-side-stand  

Held for 10 sec ❒ 1 point  

Not held for 10 sec ❒ 0 points  

Tried but unable ❒ 1 point 

Not attempted ❒ 0 points  

 

If participant did not attempt test or failed, circle why: 
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1 Participant could not hold position unassisted  

2 Not attempted, you (researcher) felt unsafe  

3 Not attempted, participant felt unsafe  

4 Participant unable to understand Number of seconds held if instructions  

5 less than 10 sec: ___sec  

6 Participant refused  

7 Other (specify)  

If 0 points, end Balance Tests 

 

B. Semi-Tandem Stand  

Held for 10 sec ❒ 1 point  

Not held for 10 sec ❒ 0 points  

Not attempted ❒ 0 points (circle reason)  

 

If participant did not attempt test or failed, circle why: 

1 Participant could not hold position unassisted  

2 Not attempted, you (researcher) felt unsafe  

3 Not attempted, participant felt unsafe  

4 Participant unable to understand Number of seconds held if instructions  

5 less than 10 sec: ___sec  

6 Participant refused  

7 Other (specify)  

 

Number of seconds held if less than 10 sec: ___ sec   

If 0 points, end Balance Tests 

 

C. Tandem Stand  

Held for 10 sec ❒ 2 points  

Held for 3 to 9.99 sec ❒ 1 point  

Held for < than 3 sec ❒ 0 points  

Not attempted ❒ 0 points (circle reason) 
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If participant did not attempt test or failed, circle why: 

1 Participant could not hold position unassisted  

2 Not attempted, you (researcher) felt unsafe  

3 Not attempted, participant felt unsafe  

4 Participant unable to understand Number of seconds held if instructions  

5 less than 10 sec: ___ sec  

6 Participant refused  

7 Other (specify)  

 

Number of seconds held if less than 10 sec: ___ sec   

 

D.  Total Balance Tests score (sum points) 

Comments: 

 

Gait Speed Test  

Now I am going to observe how you normally walk. If you use a cane or other walking aid and you 

feel you need it to walk a short distance, then you may use it. 

 

A. First Gait Speed Test  

1. This is our walking course. I want you to walk to the other end of the course at your usual speed, 

just as if you were walking down the street to go to the store. 

2. Demonstrate the walk for the participant. 

3. Walk all the way past the other end of the tape before you stop. I will walk with you. Do you feel 

this would be safe? 

4. Have the participant stand with both feet touching the starting line. 

5. When I want you to start, I will say: “Ready, begin.” When the participant acknowledges this 

instruction say: “Ready, begin.” 

6. Press the start/stop button to start the stopwatch as the participant begins walking. 

7. Walk behind and to the side of the participant. 

8. Stop timing when one of the participant’s feet is completely across the end line. 

 

B. Second Gait Speed Test  
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1. Now I want you to repeat the walk. Remember to walk at your usual pace, and go all the way past 

the other end of the course. 

2. Have the participant stand with both feet touching the starting line. 

3. When I want you to start, I will say: “Ready, begin.” When the participant acknowledges this 

instruction say: “Ready, begin.” 

4. Press the start/stop button to start the stopwatch as the participant begins walking. 

5. Walk behind and to the side of the participant. 

6. Stop timing when one of the participant’s feet is completely across the end line. 

Study ID Date Tester Initials 

 

GAIT SPEED TEST SCORING: 

Length of walk test course:   Four meters ❒ Three meters ❒ 

 

A. Time for First Gait Speed Test (sec)  

1.  Time for 3 or 4 meters. ___sec  

 

2. If participant did not attempt test or failed, circle why:  

 

Tried but unable 1 

 Participant could not walk unassisted 2  

Not attempted, you felt unsafe 3  

Not attempted, participant felt unsafe 4  

Participant unable to understand instructions 5  

Other (Specify) 6  

Participant refused  

 

3.  Aids for first walk……………None ❒ Cane ❒ Other ❒ 

Comments: 

Complete score sheet and go to chair stand test 

 

B. Time for Second Gait Speed Test (sec)  

1. Time for 3 or 4 meters. ___sec  

2.  If participant did not attempt test or failed, circle why:  
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Tried but unable 1  

Participant could not walk unassisted 2  

Not attempted, you felt unsafe 3  

Not attempted, participant felt unsafe 4  

Participant unable to understand instructions5  

Other (Specify) 6 Participant refused 7 

 

3.   Aids for second walk………… None ❒ Cane ❒ Other ❒ 

 

What is the time for the faster of the two walks?  

Record the shorter of the two times. ___sec  

[If only 1 walk done, record that time].___ sec 

 

If the participant was unable to do the walk: ❒ 0 points 

For 4-Meter Walk: For 3-Meter Walk 

If time is more than 8.70 sec: ❒ 1 point  

If time is 6.21 to 8.70 sec: ❒ 2 points  

If time is 4.82 to 6.20 sec: ❒ 3 points  

If time is less than 4.82 sec: ❒ 4 points  
 

If time is more than  6.52 sec: ❒ 1 point  

If time is 4.66 to 6.52 sec: ❒ 2 points  

If time is 3.62 to 4.65 sec: ❒ 3 points  

If time is less than 3.62 sec: ❒ 4 points 
 

 

3. CHAIR STAND TEST  

Single Chair Stand  

1. Let’s do the last movement test. Do you think it would be safe for you to try to stand up from a 

chair without using your arms? 

2. The next test measures the strength in your legs. 

3. (Demonstrate and explain the procedure.) First, fold your arms across your chest and sit so that 

your feet are on the floor; then stand up keeping your arms folded across your chest. 

4. Please stand up keeping your arms folded across your chest. (Record result). 

5. If participant cannot rise without using arms, say “Okay, try to stand up using your arms.” This is 

the end of their test. Record result and go to the scoring page. 

 

Repeated Chair Stands  

1. Do you think it would be safe for you to try to stand up from a chair five times without using your 

arms? 
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2. (Demonstrate and explain the procedure):  Please stand up straight as QUICKLY as you can five 

times, without stopping in between. After standing up each time, sit down and then stand up again. 

Keep your arms folded across your chest.  I’ll be timing you with a stopwatch. 

3. When the participant is properly seated, say: “Ready? Stand” and begin timing. 

4. Count out loud as the participant arises each time, up to five times. 

5. Stop if participant becomes tired or short of breath during repeated chair stands. 

6. Stop the stopwatch when he/she has straightened up completely for the fifth time. 

7. Also stop:  

• If participant uses his/her arms  

• After 1 minute, if participant has not completed rises  

• At your discretion, if concerned for participant’s safety 

8. If the participant stops and appears to be fatigued before completing the five stands, confirm this by 

asking “Can you continue?” 

9. If participant says “Yes,” continue timing. If participant says “No,” stop and reset the stopwatch. 

 

SCORING  

Single Chair Stand Test  

A. Safe to stand without help   YES ❒  NO ❒ 

B. Results: 

 

Participant stood without using arms   ❒ → Go to Repeated Chair Stand Test 

Participant used arms to stand   ❒ → End test; score as 0 points 

Test not completed     ❒ → End test; score as 0 points 

 

C. If participant did not attempt test or failed, circle why:  

Tried but unable 1  

Participant could not stand unassisted 2  

Not attempted, you felt unsafe 3  

Not attempted, participant felt unsafe 4  

Participant unable to understand instructions 5  

Other (Specify) 6  

Participant refused 7 
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Repeated Chair Stand Test 

A. Safe to stand five times   YES ❒  NO ❒ 

 

B. If five stands done successfully, record time in seconds. 

Time to complete five stands ___. sec 

 

C. If participant did not attempt test or failed, circle why:  

Tried but unable 1  

Participant could not stand unassisted 2  

Not attempted, you felt unsafe 3  

Not attempted, participant felt unsafe 4  

Participant unable to understand instructions 5  

Other (Specify) 6  

Participant refused 7 

 

Scoring the Repeated Chair Test  

Participant unable to complete 5 chair stands or completes stands in >60 sec: ❒ 0 points 

If chair stand time is 16.70 sec or more: ❒ 1 points  

If chair stand time is 13.70 to 16.69 sec: ❒ 2 points  

If chair stand time is 11.20 to 13.69 sec: ❒ 3 points  

If chair stand time is 11.19 sec or less: ❒ 4 points 

 

Scoring for Complete Short Physical Performance Battery 

Test Scores Total Balance Test score   _____ points  

Gait Speed Test score   _____ points  

Chair Stand Test score    _____ points 

Total Score _____ points (sum of points above) 
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Appendix 5.10 Case Report Form 

Case Report Form  

Title of Study: Wearable Sensor-Based Assessment of Frailty 

Principal Investigator: Grainne Vavasour 

Supervisor: Dr. Oonagh Giggins 

Site: NetwellCASALA Research Centre, PJ Carroll Building, DkIT, Dundalk, Co. 

Louth 

Date of Study             (DD_MM_YYYY) 

Participant ID         _ _ HBS   

(DD _MM_ YY)(HomeBasedStudy) participant number 

Gender                M  F  

DOB (DD MM YY)      

Temperature (degrees Celsius)  . C 

Covid-19 Questionnaire Completed  Y  N  

Consent Form Signed          Y  N  

 

Medical History: 

_________________________________________________________ 

 

 

Current Medication: 

______________________________________________________ 
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Weight (Kg)              kg 

Height (Cm)                                    cm 

Pulse (BPM)        bpm 

Oxygen Saturation (Sa02) (%)      % 

Grip strength (Average of n1,2,3)      Kg 

Grip Strength 1 (Kg)  

Grip Strength 2  
Grip Strength 3  

FFP Completed. Score  /5     Y  N .    

FEFAQ Completed. Score   /55     Y  N .      

           

Shimmer Sensor Configured.      Y  N .    

Time of ‘Tape&Shake’           .  

Shimmer Sensor Applied: 

Above LSp 5,  

(immediately proximal to and in line with iliac crest)   Y  N  

2cm proximal to ulnar styloid:         Right    Y  N  

(Shimmer logo facing out, port caudal)  Left    Y  N   

 

Floor surface Type: Carpet / Wood / Tile / Lino     

 

SPPB Start Time          .        

              

SPPB Score  /12          

 

QTUG and Activity Tracker Training     Y  N  

Kinesis QTUG Sensor Applied:   RIGHT  Y  N  

Bilateral Lower Limb    

(midway between ankle and knee, over calf muscle)  LEFT  Y  N        

Use of walking aid       Y  N  

Chair Height (cm)          cm 

TUG Test: Start time        .  

Time taken (Seconds)        .  

Time Shimmer3 sensors switched off (removed)       .  
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Wrist Activity Tracker Non-Dominant Wrist  Y  N  

Information Booklet Provided     Y  N  

 

@48 hours later: 

Activity Tracker Collected     Y  N  

Kinesis QTUG Collected      Y  N  

Unsupervised QTUG I (Assistance?)    Y  N   (Y  N ) 

Unsupervised QTUG II (Assistance?)    Y  N   (Y  N ) 

SUS         Y  N  

Interview        Y  N  
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Appendix 5.11 Participant Information Booklet 

Participant Instruction Leaflet  

for QTUG test 

A QTUG test is a quantified ‘Timed Up and Go’ test. It measures in seconds, the time 

taken to stand up from a standard chair, walk a distance of 3m (10 feet), turn, walk back 

to the chair and sit down.  

You will be guided through this test with me the researcher and asked to repeat it on 

your own, unsupervised  on the next two days if possible. 

 

Contact Details for researcher: 
Grainne Vavasour 
Phone 087 2164685 
Email grainne.vavasour@dkit.ie 
 

 
Participant Details 

ID 

Age 

Height 

Weight 

 

To be completed by participant  

 Completed?  
(Y/N) Date/time 

Assistance Required?  
(Y / N) 
 

Unsupervised test no.1   
Unsupervised test no.2   

This booklet is to support and guide you through the walking test I would like you to 

perform on your own on the two days after my visit to you (one test on each day). It is 

the same test as you performed with me on the first visit involving the chair and the leg 

sensors.  

The booklet is divided into four sections 

Tablet, Sensors and Charging equipment layout 

How to carry out the test 

How to attach the sensors 
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Tips / Trouble shooting  

Section 1. Tablet Layout 

 

 

Tablet Charger 
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Sensor Layout 

 

 

Sensor Charging-Dock Layout 

 

Section 2. To Carry Out The Test: 

Step 1: 

First, setup the area needed for the test the same way it was during the 1st test with the 

researcher using the three pieces of tape we left positioned on your floor. Place the front  
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legs of the chair behind the tape marked ‘Chair’ and when sitting your feet will rest 

behind the tape marked ‘Feet’. The turn point is identified by the tape marked ‘Turn’. 

 

 

Step 2: Turn on the Sensors: 

 

 

 

 

Plug in the Charging Dock 

Place the Blue sensor on the Left hand side and the Red sensor on the Right hand side 

Check that the sensors are charged. The LED on the Charging Dock indicates if the 

sensors are charged (see image below). Orange = NOT charged. Green = charged.  

Check that the sensors are ready for use. The LED on the sensor indicates that the 

sensors are ready for use. Orange = NOT ready.  Green = ready 

If the sensors are charged and ready for use, but the LED on the sensor is not green, 

press the ‘Reset’ button on the charging dock and hold for 5 seconds (see image 

below). When you release the reset button the Activity LED on each sensor will turn 

orange. Wait a few moments until they turn green. This sensor LED indicates the 

sensors are ready for use (It Does Not Mean The Sensors Are Charged). In the unlikley 

event the charging dock LED is orange, see Tip #4 below. 

Remove the Sensors from the Charging Dock. The light on the sensors will remain 

green 

 

 

 

The sensors must be turned on before the tablet. 

If the tablet is turned on first the test will not work. 
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Sensors ‘READY’ indicator      Reset Button 

 

Sensors ‘CHARGED’ indicator 

 

Step 3: Turn on the Tablet and Open the QTUG App 

 

a)
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Select the QTUG icon. This is the QTUG App   

 

c)  Enter ‘ID’ as provided on the first  
page of this participant information  
leaflet and press ‘DONE’ 
 

 

d)  Enter Age, Gender, Height and 
Weight (provided on the first page of 
this participant information leaflet) 
and press ‘SUBMIT’ 
  

 

 

 

 

 

 

Step 4: Attach the sensors 

To attach the sensors, wrap the straps securely around your legs at the fattest 

part of your calf, between knee and ankle under clothes if possible but over 

trousers / tights is fine if more convenient.  

The image below shows how the sensors should be placed on the legs. Place the 

sensors in the elastic strap with: 

Do Not Press ‘START’ yet 

Place the tablet down while you attach the Sensors 
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Socket facing down 

Kinesis logo facing out 

Red sensor on the Right leg 

Blue sensor on the Left leg 

 

Step 5 – The Test 

 

 

 

In the seated position, press the ‘START’ button on the QTUG app on the 

tablet. Leave the tablet on the table or chair beside you. Immediately stand up, 

walk as quickly and safely to the designated turning point, walk around the 

turning point marked on the floor and return to a seated position on the chair 

you stood up from before you press ‘STOP’. Immediately on sitting press the 

‘STOP’ button.  

 

You are now ready to begin the test:  

Have the Tablet on a table or chair beside you 
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Wait a few moments while the test is validated. If the message on the tablet 

reads ‘Test is valid’ press the ‘ACCEPT’ button, then press ‘EXIT’ and then 

press the Home button.  

   
Power off the Tablet by pressing the power button and selecting ‘Power off’ 

  

Replace the sensors back into the charging dock. Press and hold the reset button 

on the charging dock for 3 seconds to switch off the sensors. You can now 

unplug the charging dock. 

 

 

 

 

 

Section 4. TIPS / Troubleshooting 

The sensors must be turned on before the tablet. If the tablet is turned on first 

the test will not work as the sensors will not be recognised. 

 

Below are some tips on what to try if you have any technical difficulties 

with the equipment. 

Please repeat this procedure again after 24-hours if convenient to do so. 

Thank you 
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#1. Issue - Sensor light not on 

Fix - Place sensors in charging dock. Press reset button on charging dock for 5 

seconds. The sensor LED will turn orange and when the sensor is ready its LED 

will turn green. 

 

#2. Issue - Is sensor charged? 

To check this, place the sensor on the charging dock. If the LED on the 

charging dock is green, the sensor is charged. If the LED on the charging dock 

is orange, the sensor needs to be charged. 

(When the sensors are docked the light on the charging dock will be either 

orange or green. When the sensors are undocked there will be no light on the 

charging dock) 

 

#3. Issue – Light on the charging dock is orange  

Fix - In the unlikely event that the light on the charging dock is Orange, turn off 

the sensors by pressing and holding the Reset button on the charging dock for 5 

seconds. The LED on the sensor will turn off. Leave to charge for 6 hours. Turn 

off the tablet also.  

After 6 hours start again at step 1 ‘To carry out the test’  

#4. Issue: How to charge sensor 

Fix: Ensure the charging dock is plugged in. Place the sensors in the charging 

dock. Turn off sensors while charging by holding the Reset button on the 

charging dock for 5 seconds. The LED on the sensor will be off (no colour). 

Turn off the tablet also. 

#5. Issue: Sensors won’t connect or message saying ‘Please power on both 

sensors and retry’ 

Fix: Do not clear this message. Place the sensors in the Sensor Dock and press 

the Reset button Once on the Sensor Dock, wait a minute until the LED on the 

sensors turn green. Reposition the sensors on your legs as before and press 

Retest. 

 

#6. Issue: Sensors are still not recognised; message reads ‘Please power on 

both sensors and retry’  
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Press Home button to return to home screen,  

Select Settings   

Select Bluetooth  

Tap the green button once  until it turns grey (Off) 

Tap again once and it will turn to green 

Press the home button, Select QTUG and repeat the procedure. 

 

 

 

 

 

 

 

Contact me on 087 2164685 if you need support and I can either come visit 

you or talk you through the procedure over the phone. 

Thank you, 

Grainne 
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Appendix 5.12 Smartwatch Evaluation Framework 

Activity Tracker Device Score (Connelly et al. 2021) 

Rating Scale: 

1: Very Difficult/Very Poor; 2: Difficult/Poor; 3: Neither Easy or Difficult/Poor or Good;  

4: Easy/Good; 5: Very Easy/Very Good 

Yes/No (Y/N): 1:Y; 0:N 

# Evaluation Criteria Ratings 

  Notes Apple Fitbit 
Inspire 
2 

Garmin 
Vivioactive 
45 

Samsung 
Galaxy 
Active 

Withings 
Scan 
watch 

1 Ease of setting up  
How easy or difficult was it to get 
started with the device? Includes 
items such as pairing with mobile 
device, account setup, and 
finding the app from the app 
store. 

 5 4 2 4 4 

2 Ease of use for device controls  
How easy or difficult is it to 
control the device (buttons, 
touchscreens)? Includes the 
comfort of using the controls, 
ease of accessing different 
screens using control buttons, 
and ease of navigating on the 
wearable device. 

 5 2 2 4 4 

3 Wearable display viewability  
How easy or difficult is it to read 
the screen? Includes the comfort 
of using the controls, ease of 
accessing different screens using 
control buttons, and ease of 
navigating on the wearable 
device. 

 4 2 2 5 4 

4 Wearable display 
interpretability  
How is the cognitive load of 
interpreting the wearable 
display? Includes ease of access 
of different functions and data 
on the wearable device, as well 
as the granularity of the data 
displayed. 

 4 3 4 5 4 

5 Ease of use for mobile app  
How is the cognitive load of 
accessing and interpreting the 
data on the paired mobile app? 
Includes ease of accessing the 
different data on the paired 
mobile app, as well as the 
granularity of the data displayed. 

 4 5 3 4 5 
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6 How is wearing the device for 
extended amounts of time?  
Factors considered include size 
of the device, size of display, 
comfort while wearing the 
device. 

 4 4 4 4 3 

7 Device water resistance  
1: Not waterproof or resistant 3: 
Water resistant/splash proof 5: 
Waterproof/submersible (could 
swim with it on) 

 5 5 5 5 5 

8 Wearable device battery  
1: ≤2 days;  
2: 2 days – 1 week; 
3: 1 week – 1 month; 
4: 1 month – 6 months; 
5: ≥ 6 months 

 1 3 2 1 3 

9 Device effect on mobile battery  
Was there a noticeable drain on 
your smartphone’s battery life? 
can be hard to detect but some 
devices are very obviously a 
drain. 

 2 4 4 2 5 

10 Syncing performance  
How easy is syncing the device? 
Includes how consistent auto 
syncing is, ease of manually 
syncing and max duration of not 
syncing. 

 5 5 5 5 5 

11 Device aesthetics  
How does the device look? 
Includes overall look and feel of 
device. 

 4 4 3 4 3 

12 Device customization  
What customization options are 
available? Includes belt 
clips/straps and colour options 
and different band materials. 

NR      

13 Parameter measures  
Does the device measure the 
most common parameters and 
are they relatively accurate? 
Include Steps, Sleep, Elevation, 
Intensity, Activity Recognition, 
Heart rate, Oxygen Level and 
Calories. 

 Y/N 
1 

Y/N 
1 

Y/N 
1 

Y/N 
1 

Y/N 
1 

14 Motivational features  
Does the device or app include 
any motivational features? 
Includes app badges and 
motivational notifications. 

NR      

15 Notifications  
Does the device support 
smartphone notifications? 

NR      

16 Clock   Y/N Y/N Y/N Y/N Y/N 
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Does the device have a clock 
display? 

1 1 1 1 1 

17 Availability of personal data 
inputs/reminders  
Does the device or app have 
personal data inputs or 
reminders users can set? 
Includes weight input and food 
intake tracking. 

NR      

18 Connectivity to other apps  
Does the device support 
connectivity to other 3rd party 
apps? 

NR      

TOTAL 
SCORE 

  45 43 38 45 47 

Abbreviations: Not tested as deemed not relevant (NR). 
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Appendix 5.13 System Usability Score (SUS) 

Participant ID:    Date: ______________________ 

For each of the following statements, please mark circle the number that best describes your reactions to the Kinesis 

QTUG  

Rating Scale: 1: Strongly Disagree; 5: Strongly Agree 

 

1. I think that I would like to use Kinesis QTUG frequently.   1 2 3 4 5 

2. I found Kinesis QTUG unnecessarily complex.   1 2 3 4 5 

3. I thought Kinesis QTUG was easy to use.   1 2 3 4 5  

4. I think that I would need the support of a technical person to be able to use Kinesis QTUG.   1 2 3 4 5  

5. I found the various functions in Kinesis QTUG were well integrated.   1 2 3 4 5  

6. I thought there was too much inconsistency in Kinesis QTUG.   1 2 3 4 5  

7. I would imagine that most people would learn to use Kinesis QTUG very quickly.   1 2 3 4 5  

8. I found Kinesis QTUG very cumbersome (awkward) to use.   1 2 3 4 5  

9. I felt very confident using Kinesis QTUG.   1 2 3 4 5  

10. I needed to learn a lot of things before I could get going with Kinesis QTUG.   1 2 3 4 5 

Scoring: 

For each of the odd numbered questions, subtract 1 from the score. 

For each of the even numbered questions, subtract their value from 5. 

Take these new values which you have found, and add up the total score. Then multiply this by 2.5. 

The result of all these tricky calculations is that you now have your score out of 100. This is NOT a percentage, but it 

is a clear way of seeing your score. 
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Appendix 5.14 Home-Based Study Interview Questions and Protocol 

Interview protocol 

Researcher: “Thank you for agreeing to an interview regarding the use of the sensor system and the watch you have 

used over the past 48-hours, and for allowing me to audio record the interview. Your experience, thoughts and 

opinions will help us understand how older adults engage with technology and help with further research involving 

older adults and the use of technology. You will not be in any way identifiable in any write-up of the information 

obtained from this interview. 

I will tell you when I am turning on the audio recorder. You can decline to answer any question or ask to stop the 

recording at any time, by either saying so or indicating with a hand gesture”.  

Set up voice recorder on college phone, which has no SIM card in situ. 

“We will begin. May I switch on the recorder now”? 

Researcher records: Participant id _________ on date________ at time_____________ 

Previous experience with technology 

Can you tell me if you use any technology usually, before taking part in this study? 

Prompt: Mobile phone? Smartphone / tablet device/ PC / computer / laptop? 

What do you use this for?  

Prompt: Phone-calls / text messages /Google / games / health tracker / other? 

How often do you use them? 

Prompt: weekly /daily? 

Have you ever used an activity tracker? Do you monitor your steps for example? 

Experience with Technology during study 

How did you find using the sensor system for this study? 

Prompt: What were the challenges? 

Were the instructions given to you on how to operate the sensor system useful? 

Did the instruction booklet provided assist you in using the system and performing the walk test? 

Did you feel confident in how to use the system after the training / education session? 

Could you remember how to use the system or did you rely on the instruction booklet? 

Could you perform the test successfully each time? 

Did you need assistance? 

Do you think the information on the system would be useful or beneficial? In what way might it be useful? 

Do you think you would be interested in using this system regularly? 

Do you think you would be interested in using this system regularly if you knew there was a HCP monitoring the 

results? 

How do you think you would use this information? What do you think would be the benefits? 

 

ScanwatchHow did you find wearing the watch? Did you use any of the functions available eg the heart rate / oxygen 

level / ECG functions? 
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If yes, did you find it interesting?   

Do you think it is something that you would use in the future?  

If you didn’t use any of the functions, what was the reason? 

Do you feel any more confident with using technology as a result of your participation in this study? 

 

Did the use of the technology influence your activity? 

Did taking part in this study, using the sensor system or the wrist-watch change how you thought about your level of 

activity? 

Were you more aware of your level of activity as result of taking part in this study? 

Do you think using a piece of technology would influence your level of activity in the future? 

Do you think you would invest in an activity tracker in the future or would you investigate the functions on your 

phone? 

Conclusion 

Have you any suggestions in relation to the study?  

What have you like most about taking part in the study?  

What have you liked least? 

Thank you for your time and for the information you have shared 

Switch off audio recorder
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Appendix 5.15 Data Dictionary 

Data Dictionary for Home-Based Study  

Abbreviation Full name of 

variable 

Definition of 

variable 

Sources Coding  

DD_MM_YY(HBS)_0## Participant ID DD_MM_YY = 

Date of initial 

assessment 

followed by 

assigned 

number 

Assigned  

HBS Home Based 

Study 

Name of study CRF  

M F Male / female Gender of 

participant 

CRF M = 1 

FM = 2 

DOB Date of Birth Participant’s 

date of birth 

CRF  

 Weight Participant’s in 

kilograms 

CRF  

 Height Participant’s 

height in 

centimetres 

CRF  

FFP Fried’s 

Frailty 

Phenotype 

Frailty Status 

Assessment 

CRF  

FEFAQ Frail Elderly 

Functional 

Assessment 

Questionnaire 

Score achieved CRF  

LSp5 5th Lumbar 

vertebrae 

Site of shimmer 

sensor 

placement 

  

SPPB Short 

Physical 

Performance 

Battery of 

tests 

Score achieved   

QTUG Quantified 

Timed Up 

and Go test 

Frailty Risk 

Score 

  

SUS System 

Usability 

Score 

Score achieved   

N_steps Number of 

steps 

Number of 

steps recorded 

during 48 hours 

of study 

ScanWatch  

N_bouts Number of 

bouts of 

activity 

Number of 

bouts of activity 

recorded during 

48 hours of 

study  
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MAX SEDt Maximum 

Sedentary 

Time 

Time spent in 

longest duration 

of inactivity 

  

MIN SEDt Minimum 

Sedentary 

Time 

Time spent in 

shortest 

duration of 

inactivity 

  

#_48hrsData_8_8 Participant 

identification 

number _ 

8am_8pm for 

duration of 

data 

collection 

File name for 

each 

participant’s 

file of 

ScanWatch data 

extracted for 

analysis 

  

SW ScanWatch Smartwatch 

used in study 

for data 

collection 
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Appendix 5.16 Data Management Plan 

1.0 Data Collection, Documentation & Storage 

All information and results provided as a result of this study will be temporarily kept securely and 

confidentially on the researcher’s password-protected PC at the researcher’s home office due to work 

from home restrictions and subsequently at DkIT for a period of 7 years after completion in keeping 

with GDPR (General Data Protection Regulations, 2018) with the exception of COVID-19-related 

documents.  

 

1.1 Covid-19-Related Data 

Paper-based Covid-19 Visitor Questionnaire and Contact Log documents will be kept for a period of 

one month to comply with DkIT Return to Work Safely Protocol (DkIT COVID-19 Return to Work 

Operating Plan - OneDrive). 

This data will be temporarily stored securely in the principal researcher’s home office due to work 

from home restrictions and periodically transferred to a locked filing cabinet in the researcher’s office 

on campus, with access restricted to the researcher and principal supervisor. 

Thereafter COVID-19 data will be shredded securely with a cross-cut shredder at NetwellCASALA, 

DkIT. 

 

1.2 Paper-Based Data 

All paper-based copies of information obtained throughout the study (with the exception of Covid-19-

related documents) will be stored securely in the researcher’s home office until scanned onto the 

researcher’s PC and stored safely in a password-protected electronic file. Passwords required will be 

shared with the researcher’s supervisor in the event that the researcher is incapacitated .The original 

paper copies will then be kept in a locked filing cabinet in the principal researcher’s office in 

NetwellCASALA centre on campus with access restricted to researcher and supervisor. 

 

1.3 Pseudonymisation  

All data collected will be pseudonymised, stored securely on a password-protected electronic file on 

the researcher’s PC and used for the purposes of this study only.  

At the start of the study each participant will be given a ‘participant ID’ using the naming convention 

‘DD_MM_YY_HBS_## (Day_Month_Year_HomeBasedStudy_Participant-specific number). A 

digital master sheet containing participant details and participant ID will be generated. This master-

sheet will be stored securely in a password-protected electronic file on the researcher’s PC and used 

for administration purposes only. Only the participant ID will appear on study documentation from 

then onwards.  

The master sheet will be destroyed on completion of the PhD study, therefore only anonymised copy 

of data will be archived. 

Only the researcher and primary supervisor will have access to the file that matches each person to 

their participant ID.  

 

1.4 Case Report Form (CRF)  
A paper-based Case Report Form (CRF) (labelled ‘Case Report Form [CRF]) will be generated for 

each participant to record details of the Study Title, Principal Investigator, Research Centre, Date of 

Study (using naming convention DD_MM_YYYY) and Participant identification number (Naming 

convention DD_MM_YY_HBS##).  

 

1.4.1 Demographics & Medical History 

Data on each participant’s demographic, past medical history and current medication will be obtained 

by the principal investigator on the day of participant’s home-visit. This data will be recorded in the 

CRF. 

 

1.4.2 Clinical Data 

Clinical data measurements from the questionnaires and mobility tests obtained will be recorded on 
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the appropriate document in real time. The scores will be calculated and recorded on the CRF by the 

principal researcher at a later date.  

 

1.4.3 Sensor-Based Data 

Sensor-data recorded from each Shimmer device will be transferred via Bluetooth or USB-C 

connection to the researcher’s password-protected PC after each participant’s measurement session, 

labelled and stored using the participant’s ID code.  

Validated algorithms will be used to extract metrics of mobility and physical activity from the raw 

sensor data. 

Sensor-data recorded from the Kinesis QTUG is automatically stored on the Galaxy Tablet via 

Bluetooth and labelled using the participant’s ID code. On completion of the repeated tests after 48-

hours, this data will be transferred from the tablet to the researcher’s password-protected PC, labelled 

and stored using the participant’s ID code. All data will be then removed from the tablet. 

 

1.5 Consent Forms 

Participant-signed consent forms will be obtained, duplicated and a copy returned to each participant 

by email or post (Participant’s preference). Retained copies will be stored securely in a locked 

container held by the researcher until processed on campus as above. 

    

2.0 Data Collation 

When data collection is complete, required data will be recorded in an excel spreadsheet. This will be 

recorded by the principal researcher using a double data entry (one researcher inputting data into two 

separate spreadsheets) and comparing spreadsheets for discrepancies. The reseracher’s supervisor will 

verify a random sample. The CRF will be scanned and stored securely in a password-protected 

electronic file in ‘Digitised Hard Copies_HomeBasedStudy’ folder as per section 4.0. The original 

paper copies will be temporarily stored securely in the researcher’s home office until transferred to 

NetwellCASALA where they will be kept in a locked filing cabinet in the principal researcher’s 

office, with access restricted to researcher and supervisor as per section 1.2. 

 

3.0 Data Analysis 

A comparative analysis will be performed between the sensor metrics to establish the correlation 

between data from each sensor with frailty phenotypes as measured using Fried’s Frailty Phenotype 

Assessment Tool. 

3.1 Data Sharing 

Pseudonymised data will be shared with supervisors for analysis via a DkIT OneDrive account with 

access restricted to supervisors for data-analysis. An external supervisor will receive pseudonymised 

sensor-derived data via a password-protected OneDrive link. Password required to access data files 

will be communicated over the phone. 

 

4.0 Storage & Back-up 

A root folder will be created in C:\Users\vavasoug\HomeBased Study Documents on the researchers 

PC, which will nest folders for each aspect of Data Collection named accordingly i.e. ‘Shimmer 

Sensor Data’, ‘QTUG Data’, ‘Digitised Hard Copies’. Each participant’s data will be stored in 

separate files within these folders, identifiable by individual participant ID. 

All data will automatically upload to OneDrive as a backup. 

  

5.0 Archiving and Destroying the Data 

All data will be retained for the duration of the study and for seven years thereafter except the master 

sheet which will be destroyed on completion of the PhD studies, in alignment with GDPR 2018.  

All paper files will then be shredded securely with a cross-cut shredder. Electronic data will be destroyed 

by an appropriate IT staff member as per DkIT policy. The Research Centre Manager and research 

supervisor will ensure all data has been destroyed.
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Appendix 5.17 Data Protection Impact Assessment Approval 
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