Metadata of the chapter that will be visualized in
SpringerLink

Book Title

Systems, Software and Services Process Improvement

Series Title

Chapter Title An Agile-Based Framework for Addressing Defects in Medical Device Software Development
Copyright Year 2024
Copyright HolderName The Author(s), under exclusive license to Springer Nature Switzerland AG
Corresponding Author Family Name Nyirenda

Particle

Given Name Misheck

Prefix

Suffix

Role

Division Regulated Software Research Centre

Organization Dundalk Institute of Technology

Address Dundalk, Ireland

Email misheck.nyirenda@dkit.ie

ORCID http://orcid.org/0000-0003-1320-2755
Author Family Name McHugh

Particle

Given Name Martin

Prefix

Suffix

Role

Division Regulated Software Research Centre

Organization Dundalk Institute of Technology

Address Dundalk, Ireland

Email martin.mchugh@dkit.ie

ORCID http://orcid.org/0000-0003-4275-3302
Author Family Name Loughran

Particle

Given Name Réisin

Prefix

Suffix

Role

Division Regulated Software Research Centre

Organization Dundalk Institute of Technology

Address Dundalk, Ireland

Email roisin.loughran@dkit.ie

ORCID http://orcid.org/0000-0002-0974-7106
Author Family Name McCaffery

Particle

Given Name Fergal

Prefix

Suffix

Role

Division Regulated Software Research Centre
Organization Dundalk Institute of Technology
Address Dundalk, Ireland

Email fergal.mccaffery@dkit.ie

ORCID http://orcid.org/0000-0002-0839-8362

Abstract

Defects in Medical Device Software (MDS) have the potential to cause harm to both patients and
caregivers. Research has revealed that defect prevention is often neglected or inadequately implemented in
many software development projects. In MDS development, the focus is on defect identification in later
stages, typically during coding and testing stages. A recent survey revealed that although MDS
development organisations plan to be proactive in defect management by preventing them in early
development stages, in practice, they emphasise defect identification in later stages. This approach
potentially leads to costly rework and increased risk of defects slipping into the final software release.
When using the V-Model, a commonly adopted methodology for safety-critical software development,
defect prevention occurs in the early stages on the left side, while defect identification occurs in the later
stages on the right side. Studies have revealed that many defects that occur in software can be traced back
to the early stages of the development lifecycle. Agile practices provide the potential to prevent defects in
the early development stages and identify those that may slip into the later stages. This paper presents an
Agile-based Defect Addressing Framework (AbDAF) that is designed to assist MDS development
organisations to address defects during the development lifecycle. This framework uses agile practices to
address defects by preventing them early on and identifying those that may arise in later stages of
development.

Keywords
(separated by '-')

Agile Practices - Software Defects - Medical Device Software - Defect Prevention - Defect Identification -
Software Quality - Software Safety

Author Proof

q

Check for
updates

An Agile-Based Framework for Addressing
Defects in Medical Device Software Development

Misheck Nyirenda(g) , Martin McHugh@®, Réisin Loughran®,
and Fergal McCaffery

Regulated Software Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
{misheck.nyirenda,martin.mchugh, roisin.loughran,
fergal .mccaffery}@dkit.ie

Abstract. Defects in Medical Device Software (MDS) have the potential to cause
harm to both patients and caregivers. Research has revealed that defect prevention
is often neglected or inadequately implemented in many software development
projects. In MDS development, the focus is on defect identification in later stages,
typically during coding and testing stages. A recent survey revealed that although
MDS development organisations plan to be proactive in defect management by
preventing them in early development stages, in practice, they emphasise defect
identification in later stages. This approach potentially leads to costly rework and
increased risk of defects slipping into the final software release. When using the
V-Model, a commonly adopted methodology for safety-critical software develop-
ment, defect prevention occurs in the early stages on the left side, while defect
identification occurs in the later stages on the right side. Studies have revealed that
many defects that occur in software can be traced back to the early stages of the
development lifecycle. Agile practices provide the potential to prevent defects in
the early development stages and identify those that may slip into the later stages.
This paper presents an Agile-based Defect Addressing Framework (AbDAF) that
is designed to assist MDS development organisations to address defects during
the development lifecycle. This framework uses agile practices to address defects
by preventing them early on and identifying those that may arise in later stages of
development.

Keywords: Agile Practices - Software Defects - Medical Device Software -
Defect Prevention - Defect Identification - Software Quality - Software Safety

1 Introduction

Medical Device Software (MDS) is increasingly playing an important role in our lives.
However, defects in MDS can potentially cause harm to patients and caregivers [1].
Such incidents may ultimately result in significant financial losses and damage to the
reputation of MDS manufacturers [2, 3]. Consequently, it is crucial to ensure safety
throughout the development lifecycle of MDS. Implementing a proactive approach of
defect prevention in the early stages of MDS development lifecycle can reduce the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Yilmaz et al. (Eds.): EuroSPI 2024, CCIS 2180, pp. 1-15, 2024.
https://doi.org/10.1007/978-3-031-71142-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71142-8_20&domain=pdf
http://orcid.org/0000-0003-1320-2755
http://orcid.org/0000-0003-4275-3302
http://orcid.org/0000-0002-0974-7106
http://orcid.org/0000-0002-0839-8362
https://doi.org/10.1007/978-3-031-71142-8_20

Author Proof

2 M. Nyirenda et al.

risk of defects in MDS. This ensures that defects are caught early on, preventing their
occurrence in later stages where they can lead to expensive rework [4, 5]. Moreover,
defect prevention in early stages lowers the risk of defects slipping into the final release
of the software where they are costly to find and fix [6].

Despite the widely advocated benefit of producing high-quality software through
defect prevention in the early stages of software development lifecycle [7], many software
development projects often neglect or inadequately implement this important step [8].
Our recent survey reveals a significant emphasis on defect identification in the later stages
of MDS development, specifically during coding, testing, release, and maintenance [9].

Considering the increasing complexity of MDS to support a growing number of
functionalities, prioritising defect identification while neglecting defect prevention, may
increase the risk of defects slipping through to the final release of the software [10]. This
arises due to the increased likelihood of developers missing the critical variables associ-
ated with the medical environment [11]. The growing complexity of MDS poses signifi-
cant challenges in ensuring its safety. Therefore, it is essential for MDS organisations to
implement a balanced approach of defect prevention and identification throughout the
development lifecycle, or to prioritise and practice defect prevention during the early
development stages.

In light of the potential harm that defects in MDS can cause to both patients and
caregivers and the associated economic losses, the saying that “prevention is better than
cure” should be applied throughout the development lifecycle of MDS. More impor-
tantly, prioritising defect prevention during the early development stages is vital. This
is especially cognizant of the fact that the longer a defect lingers in the development
lifecycle, the more costly it becomes to find and fix in later stages [12].

Agile practices provide the potential to prevent defects in the early stages of the
development lifecycle and identify those that might slip through to the later stages
[10]. This paper presents an Agile-based Defect Addressing Framework (AbDAF) that
is designed to assist MDS development organisations to address defects during the
development lifecycle. AbDAF uses agile practices identified through a literature review
[10] and a survey of MDS organisations in Ireland. The focus is on addressing defects
in MDS by preventing them early on and identifying those that may arise in later stages
of development. The rest of the paper is organized as follows. Section 2 provides some
background to the research. Section 3 presents the survey and results. Section 4 presents
an Agile-based Defect Addressing Framework. Section 5 provides a conclusion to the
paper and outlines next steps in our research.

2 Impact of Defects in Medical Device Software

MBDS has enhanced the capabilities of medical devices, enabling advanced functions like
tracking patients’ vital signs, alerting physicians to the risk of adverse drug events, and
regulating medication dosage for patients [13]. MDS has also caused medical devices
failures, leading to injuries and deaths of patients, and numerous recalls of these devices
[1, 10]. For instance, in the US, from January 2018 to June 2022, 10.6% of 189 Class
I medical devices recalls were due to software defects [14]. From 2015 to 2021, 2,605
ventilators and 277,450 infusion pumps were recalled in the US due to software defects,

Author Proof

An Agile-Based Framework for Addressing Defects in Medical Device 3

causing serious injuries and deaths [15, 16]. From January 2023 to December 2023, 56
medical devices were recalled due to software defects [17]. Twelve of the 56 were Class
I'recall (could cause serious injury or death) and the rest were Class Il recall (might cause
serious injury or temporary illness). These issues underscore the severity of defects in
MDS development. It is vital to implement techniques that can assist to address defects
early in the development lifecycle of MDS to avoid such consequences.

The objective of our research is to assist MDS development organisations to address
defects by using agile practices. In a previous study we reported on the identification of
25 agile practices through a literature review, and a further review and analysis of each
of the 25 agile practices [10]. Our aim was to identify agile practices that can assist in
addressing defects when developing MDS. The study recommended 17 agile practices
for addressing defects in MDS development as follows: Pair Programming (PP), Test-
Driven Development (TDD), Continuous Integration (CI), Unit Testing, Refactoring,
Integration Testing, Onsite Customer, Code Review, User Acceptance Testing (UAT),
Code Ownership, Coding Standards, Small Releases, User Story, Simple Design, Use
Case, Behaviour-Driven Development (BDD), and Model Storming. Additionally, the
study revealed that agile practices are generally adopted in a plan driven methodology to
accommodate changing requirements and to reduce development time. The study also
revealed that the V-Model is a common choice for MDS development due to its capability
to produce key deliverables needed for regulatory approval. Furthermore, the research
found only one study that reported using an agile practice to specifically address defects
during MDS development [18]. This study utilized onsite customer or user involvement
through methods like user co-design and participatory design and reported significant
reduction in defects.

To gain firsthand information and insight into which agile practices are currently used
and how they are applied for addressing defects in MDS development, we conducted
a survey of developers in MDS organisations in Ireland. The survey and results are
presented in Sect. 3.

2.1 Defect Prevention and Identification

In this research, the term “address defects” or “addressing defects” is used to refer to
either defect prevention, defect identification or both. Defect prevention is the process
of improving software quality and productivity by averting the introduction of defects
into the software product [19, 20]. This process usually happens in the early stages
of the software development lifecycle, including requirements gathering and analysis,
system design, architectural design, module design, and implementation [7, 21]. While
defect prevention is crucial in software development, it is often overlooked or improperly
executed using ineffective methods [8]. Defect identification is the process of detecting
defects in software modules with the goal of enhancing the quality of a software system
[22]. This process occurs in the later stages of the software development lifecycle,
including implementation, testing, release, and maintenance [7, 21]. These processes
are illustrated in Fig. 1 in the form of the V-Model which is regarded as the popular
choice for developing safety-critical software like MDS, because of its capability to
produce deliverables that are essential for regulatory approval [23-25].

Author Proof

4 M. Nyirenda et al.

Software Requirements Analysis | | Software Maintenance |
-
| Software;yst‘em Design | | Software Mun |
| software Arcr;}tenure Design | | Software qutan Testing |
T |
So:ware Unit |mp|m5;n |
D Defect Prevention I:l Defect Identification

Fig. 1. Defect Prevention and Defect Identification

3 Survey of Medical Device Software Organisations in Ireland

3.1 Survey Process

The Irish Medical Devices Association (2022-2025) reveals that there are over 450
MedTech organisations in Ireland [26]. However, they do not provide a detailed list of
these organisations. In contrast, the 2016-2020 strategy categorises several MedTech
organisations including 62 that develop MDS [27]. We used the 20162020 strategy
document as a starting point in identifying MDS organisations that were contacted for
the survey. We also invited MDS organisations with existing working relationships with
the Regulated Software Research Centre to participate in the survey. Subsequently, an
information leaflet, a consent form, and a link to the survey were sent through email to 65
developers from different MDS development organisations. As per the European Union’s
definition of Small and Medium-sized Enterprises (SMEs) [28], we received responses
from 15 different organisations that included 12 SMEs and 3 large organisations.

3.2 Survey Results and Discussion

The survey revealed varied experience in MDS development among the organisations
ranging from 1 year to over 20 years. The survey also revealed that 60% of organisations,
including 7 SMEs and 2 large organisations, use exclusively an agile methodology
for MDS development. A small number, 7%, of SMEs use exclusively the V-Model,
while another 7% of SMESs use both the V-Model and Waterfall. Lastly, 27% of the
organisations, comprising 3 SMEs and 1 large organisation, use a hybrid methodology
which combines traditional and agile approaches.

Of the 60% that use exclusively an agile methodology, 43% SMEs have used it for
about 5 years and the remainder for about 15 years. One of the 2 large organisations has
used an agile methodology for less than 5 years while the other for less than 15 years. The
7% SME:s that use exclusively the V-Model, have used it for about 15 years. The other
7% SME:s that use both the V-Model and Waterfall have used these for about 20 years.
Of the 27% that use a hybrid methodology, 33% SMEs have used it for over 20 years

Author Proof

An Agile-Based Framework for Addressing Defects in Medical Device 5

and the remainder for less than 5 years. The remaining large organisation from the 27%
has used the hybrid approach for about 20 years.

The reasons for organisations using their methodology were accommodating chang-
ing requirements (80%), addressing defects during development (67%), reducing time
to market (60%), and both reducing development costs and meeting regulatory require-
ments (47%) each. However, two-thirds of the large organisations and a quarter of
SME:s did not indicate addressing defects as one of the key aspects in their methodology
implementation.

This survey also revealed that most organisations address defects during Testing
(93%), Coding (87%), Release (80%), and Maintenance (73%). The data analysis also
revealed that 87% of the organisations use the agile practices shown in Table 1 for
addressing defects, with Code Review, Unit Testing, Integration Testing, and Coding
Standards as the commonly used. Additionally, 85% of the organisations that use agile
practices for addressing defects implement them specifically during coding and testing
stages as shown in Table 2.

Table 1. Agile practices usage for defects in MDS development

Agile practice Use for defects
Code Review 85%
Unit Testing 77%
Integration Testing 77%
Coding Standards 69%
User Story 62%
User Acceptance Testing 54%
Refactoring 54%
Continuous Integration 54%
Test-Driven Development 46%
Small Releases 38%
Pair Programming 38%
Use Case 31%
Code Ownership 23%
Onsite Customer 23%
Behaviour-Driven Development 15%

When asked to provide comments about using agile practices to address defects,
two respondents from SMEs that use agile practices for addressing defects provided
contrasting perspectives regarding agile adoption in MDS development. One expressed
concern that agile might lack the aspect of feedback from clients, especially those that
the organisation has trusted relationship with. The respondent stated as follows,

Author Proof

6 M. Nyirenda et al.

Agile misses aspects of feedback from key customers where you have trusted
relationships to test new features/Alpha versions, etc. and give feedback.

The other respondent suggested that misconceptions that agile practices are not
suitable for MDS development might be hindering their adoption and use for addressing
defects, stating:

I believe that a lack of understanding and alignment on what is meant by agile,
particularly outside development teams, leads to a perception that agile is not a
good fit for medical device software development. My view is that there are some
core principles of agile practices that promote good software development and
reduce the number of defects and help ensure the software is delivering on the
user needs.

These contrasting views may potentially explain the slow adoption of agile and the
limited use of agile practices particularly for addressing defects in MDS development,
as indicated in the existing literature [10]. The view about the lack of understanding
for those not part of the development teams may suggest that MDS development teams
are eager to adopt agile practices but that they may be hindered by the lack of support
from senior management [29]. This could be because of management’s fear of risking
regulatory approval already obtained [30]. This situation may suggest that any strategy
regarding agile implementation in MDS development should involve all key stakeholders
including management.

Table 2. Stages where agile practices are used for addressing defects in MDS development

Software development stage Agile practices usage
Requirements 38%
System Design 38%
Architectural Design 38%
Module Design 46%
Coding 85%
Testing 85%
Release 38%
Maintenance 46%

Contrary to the literature suggesting the Waterfall and V-Model as the commonly
used for MDS development, the survey results above reveal 60% of the organisations
use exclusively an agile methodology. This indicates a significant increase from the
previous survey that reported 25% of organisations were using agile methodologies
for MDS development [30]. The shift towards agile practices can be attributed to the
extensive research over the years that identified and addressed the challenges of using
agile practices for MDS development [30].

Author Proof

An Agile-Based Framework for Addressing Defects in Medical Device 7

The survey results also reveal that when addressing defects in MDS development,
emphasis is on defect identification. As shown in Table 2, most organisations carry out
this process typically during the coding and testing stages of the development lifecycle.
This is also corroborated by a high number of organisations that indicated addressing
defects during Testing (93%), Coding (87%), Release (80%), and Maintenance (73%).
This finding aligns with what is suggested in the literature that in many software devel-
opment projects, defects prevention is often overlooked or inadequately implemented
using inefficient methods [8]. Prioritising defect identification while neglecting defect
prevention can lead to costly consequences [20].

Although there is similarity in the agile practices identified from the literature review
[10] and those from the survey (Table 1), an observable difference exists in the agile
practices commonly used for addressing defects. The literature review study found that
PP, TDD, Code Review, Unit Testing, and Refactoring are the commonly used practices
for addressing defects in the non-MDS domain. However, the survey reveals that Code
Review, Unit Testing, Integration Testing, and Coding Standards are the commonly used
practices in MDS development. This affirms the focus on defect identification in MDS
development as these practices are typically applied after actual coding is complete -
when all the mistakes have been made and resources wasted. However, Coding Standards
is an exception as it is applied during actual coding. While these practices are effective
in identifying defects, in MDS development, solely relying on defect identification can
lead to costly rework and a higher risk of the final MDS failure.

4 An Agile Defect-Based Framework

As discussed in earlier sections, neglecting defect prevention in MDS development can
lead to costly rework and even software failure. It is important in MDS development
to adopt a holistic approach that prioritises defect prevention and is complemented by
defect identification. Agile practices can assist to address defects in MDS development.
The insights gathered from both the literature review study and the survey were instru-
mental in devising a solution for addressing defects in MDS development. The research
led to the development of an Agile-based Defect Addressing Framework (AbDAF) that
is presented in this paper. AbDAF is designed to assist MDS development organisa-
tions to prevent defects and identify those that may slip through to the later stages of
the development lifecycle. Figure 2 shows the AbDAF. The framework aligns with the
IEC62304 — Medical Device Software — Software life-cycle processes [31] and devel-
opment methodologies from the survey results above and literature review findings. As
shown in Fig. 2, agile practices applied in the early development stages are used for
preventing defects, while those applied in the later development stages are used for
identifying defects. The framework emphasises involvement of the customer or proxy
in the early development stages to prevent requirements defects and design defects early
on [32]. This reduces unnecessary costs that would be incurred when these defects arise
in later stages.

Agile practices shown in blue in Fig. 2 are designed to complement each other. These
practices can be used together or individually in a stage in which they are included. This
provides MDS developers the flexibility to choose a single practice or a combination of

Author Proof

8 M. Nyirenda et al.

practices from a particular stage and use to address defects at that stage. For example,
during the requirements gathering stage, appropriate agile practices may be selected
as required. Additionally, where a number of agile practices, or all, are selected to be
implemented in a particular stage, the direction of implementation is recommended as a
best practice to enhance defect prevention or identification. For example, at the software
requirements analysis stage, it is recommended to start with Model Storming and BDD
followed by PP and TDD, and finally Onsite Customer/Proxy.

As shown in Fig. 2, AbDAF recommends a continuous and iterative process at each
stage and provides the flexibility to correct a defect from any previous stage. This ensures
that defects detected at subsequent stages, which require fixing at any prior stages, are
addressed before proceeding to the next stage. For instance, if a defect is detected during
the software detailed design stage and requires correction at the software architectural
design stage, it will be corrected at the software architectural design stage before pro-
ceeding to the implementation stage. Similarly, a defect detected during software unit
implementation stage requiring significant modifications at the requirements analysis
stage, it will be corrected at the requirements analysis stage before progressing to the
software unit testing stage.

At the early stages of many software development projects, clients are often not clear
about their system requirements [33]. Research has shown that many defects in software
development can be traced back to the early stages, especially during the requirements
elicitation, requirements analysis, and design stages [34]. Therefore, applying agile prac-
tices that foster interaction between clients, programmers, system architects, and testers
during the early stages can assist to prevent defects such as requirements defects [35].
Defects that originate from the early stages like requirements analysis stage, can have
a devastating impact throughout the development lifecycle of MDS. These defects sig-
nificantly contribute to system failures, particularly when they arise in later stages [36].
The following sections discuss the implementation of agile practices in the framework.

4.1 Requirements Gathering Stage

At this stage, AbDAF recommends the application of a combination of either Onsite
Customer and User Story or Onsite Customer and Use Case. At this stage, requirements
should be collected and presented in form of user stories or use cases that are clear
and easy to comprehend. These should be written or developed in close collaboration
with customers who can clarify any misinterpretations and oversights early, preventing
requirements defects in the succeeding stage. Therefore, active communication is a key
element at this stage and should be nurtured throughout the requirements gathering
process for MDS. This ensures that the user stories or use cases represent what the
customer wants about the system. Well-written or developed user stories or use cases
can minimise the likelihood of defects in the later stages of MDS development. Ensuring
thorough review and refinement of a user story or use case at this stage is essential for
preventing requirements defects that can lead to costly consequences in later stages.

Author Proof

An Agile-Based Framework for Addressing Defects in Medical Device 9

4.2 Software Requirements Analysis Stage

The primary goal of using agile practices at this stage is to prevent various types of
requirements defects such as ambiguities and omissions [37, 38]. This ensures that
such defects do not arise in later development stages where they become costly to find
and fix [39]. Traditionally, TDD and PP are applied during the coding activity. While
these practices are useful for identifying defects during this activity, applying them in
the early stages of MDS development can be more beneficial in preventing defects.
Moreover, restricting their use to the coding activity may lead to a significant amount
of time and other resources being spent on defects that would otherwise be addressed
during the early stages. AbDAF recommends application of a combination of Model
Storming and BDD followed by a combination of TDD, PP, and Onsite Customer at
this stage. This approach ensures that requirements defects are caught and prevented
early. The key element that makes this approach practical at this stage is open and
frequent communication among clients, programmers, system architects, and testers.
The conversations among stakeholders involved in the Model Storming and BDD process
and the demonstration of real examples, ensures that requirements defects are caught and
prevented early. Similarly, the conversations that occur when pair programmers alternate
writing and reviewing test cases for requirements and demonstrating functionalities
to customers and receiving feedback, ensures that potential requirements defects are
prevented early on at this stage. These practices should be applied iteratively for each
user story or use case.

4.3 Software Architectural Design Stage

Animportant output of this stage is the software architecture that shapes the overall vision
of the software product [40]. A well-designed software architecture is the foundation
to a successful software product as it serves as a blueprint for developers. It enables
software engineers to understand the structure of a software system, its components,
and the interrelations among these components [41]. As discussed earlier, any defect
originating from this stage if not detected and resolved at this stage, can propagate to the
subsequent stages and lead to adverse consequences and ultimately final software product
failure. At this stage, AbDAF recommends applying Model Storming in combination
with Onsite Customer followed by a combination of Simple Design and Onsite Customer
to prevent architectural design defects in MDS. This approach operates on the principle of
having architects develop and demonstrate architectural design models to customers and
obtain feedback. When an understanding is reached between architects and customers,
the software architecture is developed and refined to achieve a simple design to allow
easy comprehension and actual coding by the programmers during the coding activity.
This ultimately allows speedy and timely delivery of the software product to customers
as less time is spent on defects during coding [42]. Additionally, AbDAF recommends
that Integration Testing should be an integral part of the entire architectural design
process to resolve potential integration defects early. Involving integration testers at this
stage helps them to gain a clearer understanding of the software components and their
interactions and developing integration test cases early for verifying the components
during the software integration stage. Therefore, the important element of integration

Author Proof

10 M. Nyirenda et al.

testing at this stage is that potential integration defects are caught and prevented early as
integration testers can detect these defects in the interrelations among the components.

4.4 Software Detailed Design Stage

The key output at this stage is a well-defined software detailed design that specifies
the logical structure of the components and their functionalities, showing interfaces to
interact with other modules. Defects stemming from this stage can lead to adverse con-
sequences if they occur during the later stages. To ensure that defects are prevented early
at this stage, AbDAF recommends applying a combination of Model Storming, Onsite
Customer, and Integration Testing followed by a combination of Simple Design, Onsite
Customer, and Integration Testing. Involving customers at this stage allows their input
on the models to be incorporated early enough, thereby influencing the design of the final
MDS product. Similar to the preceding stage, Integration Testing should be an integral
part of this stage to catch potential integration defects early. This structured application
of these agile practices can prevent design and integration defects from propagating to
later stages of MDS development and ensure that a simple design is achieved. A simple
design helps programmers to easily comprehend module functionality and write efficient
code.

4.5 Software Unit Implementation Stage

The desirable output at this stage is defect-free and efficient code that accurately accom-
plishes the functionality stated in the requirement. To achieve this, a clear understanding
of the requirements is essential at this stage. This is primarily aided by the thorough defect
prevention processes carried out in the preceding stages. Nonetheless, defect prevention
can also be carried out at the outset of this stage and during the actual coding. AbDAF
recommends applying a combination of Model Storming, PP, TDD, Onsite Customer,
Coding Standards, and Code Ownership to prevent defects at this stage. Once code for
a functionality is written, defect identification begins, starting with a combined applica-
tion of PP, Unit Testing, Small Release, Onsite Customer, and Refactoring. This is then
followed by application of Code Review, loping back to the first activity when code has
not met the set review standard. Code that has met the review standard is added to the
codebase through Continuous Integration process in which the build and test activities
can further identify defects. This systematic application of agile practices at this stage
ensures that defects are prevented in the first place, and those that escape this activity
are identified and fixed before proceeding to the next stage.

4.6 Software Unit Testing Stage

At this stage, AbDAF recommends the application of Unit Testing, Onsite Customer,
PP, and Refactoring. Onsite Customer should follow Unit Testing to verify desired func-
tionality. Defects identified through Unit Testing and Onsite Customer are assessed by
the pair programmers. Minor defects are resolved at this stage through refactoring while
larger defects requiring fixing at any specific preceding stage are referred and corrected

Author Proof

An Agile-Based Framework for Addressing Defects in Medical Device 11

there. For minor defects, these agile practices should be iteratively applied to ensure
changes made during refactoring do not introduce any defect. Thus, implementation of
Refactoring and PP followed by Unit Testing at this stage not only resolves the identified
minor defects but also avoids introducing new ones. This systematic implementation of
these agile practices at this stage reduces the risk of defects escaping into the subsequent
stages.

4.7 Software Integration and Testing Stage

Considering that at this stage individual modules or subsystems are combined and work
together as a single system, defects that escape this stage can cause the final MDS to
fail. At this stage, AbDAF recommends using a combination of Integration Testing, Pair
Programming, Refactoring, and Unit Testing followed by Onsite Customer and UAT to
review and verify the integrated system. This approach ensures that defective modules or
subsystems are identified, refactored and retested. The retested modules are reintegrated
through Continuous Integration where the build and test activities can further identify
defects. Demonstrating the integrated system to customers ensures that defects arising
due to deviations from desired reliability and functionality are identified and corrected.
This systematic approach increases the likelihood of identifying potential defects as
defective modules can be refactored and retested at this stage. This minimises the risk
of defects escaping to the subsequent stage.

4.8 Software System Testing Stage

At this stage, AbDAF recommends using User Acceptance Testing, Pair Programming,
Onsite Customer, Refactoring, and Unit Testing. Any defect identified by customers
through acceptance testing are evaluated by the pair programmers and testers. Defects
considered minor enough are fixed immediately at this stage by performing minor refac-
toring and unit testing. Defects requiring to be fixed at the preceding stage are referred
back to that stage, while those requiring to be fixed at much earlier stages are referred
and resolved at those stages. Applying Refactoring and PP followed by Unit Testing
not only resolves the identified minor defects but also avoids introducing new ones. A
structured implementation of these practices at this stage ensures that defects that could
potentially escape to the release of the MDS are caught and resolved.

4.9 Acceptance Testing Stage

At this stage, AbDAF recommends applying User Acceptance Testing, Onsite Customer,
and Pair Programming. Defects identified through User Acceptance Testing and Onsite
Customer are evaluated by pair programmers. Minor defects are referred to the preceding
stage and are fixed there. Defects considered to be major are referred and fixed at the
specific prior stage. The systematic implementation of these practices at this stage ensures
that issues, including functional and interface defects are caught and fixed before the
final release and implementation of MDS. Defects that escape to the final release of
MDS can lead to devastating consequences.

Author Proof

12 M. Nyirenda et al.

Validatior A
Requirements i:lf:e*:?ance
Gathering e :‘g
%S*
— N
Jser Story, 7/ ; Verificatio SW
Onsite Customer/ SW System
Requirements T .‘I' N
Analysis es:), UAT, pP
Use Case. Onsite o mns oY N Onsite Customer/
o X Proxy
~ Verification SW N
Ax lswt al Integration &) PP,)
Archutectural Integration Unit Testing,
TEET RO aDesngu Testing Refactoring
+ , Onsite o) H— \
Customer/Proxy ’,/ /' =« Verification— \ = UAT.
- ' _ Onsite Customer/Prox
Model Storming. / / o S\x " SW Unit \\ S Y
Onsite Customer/Proxy ctatle Testing o :
Integration Testi Design Integration Testing,
ntegration Testing - o PP, Refactoring, CI.
Simple Design, ,/ / ™~ Unit Testing
Onsite Customer/Proxy SW Unit - -
Integration Testing / Implementation o PP, Um.t Icstmg
w1) Refactoring. Onsite
Model Storming. o yav Y S - Customer/Proxy
Onsite Customer/Proxy By A T —
Legend Integration Testing =9 — M)
¥ Defect Prevention Simple Design, PP, TDD-_ PP. Unit Testing.
¥ Defect Identification Onsite Customer/Proxy Model Storming, Small Release.
. . . . ati i Onsite Customer/Proxy, X §
> Direction of implementation Integration Testing Coding Standards Onsite Customer/Proxy.
Agile practices shown in blue are designed to (‘odc‘()\\‘nership Refactoring
complement each other.

Fig. 2. Agile-based Defect Addressing Framework

5 Conclusion and Future Work

Ensuring the safety of MDS should be an essential consideration throughout the develop-
ment lifecycle due to the potential risks that MDS defects can cause to both patients and
caregivers. However, our survey reveals that MDS development organisations in Ireland
emphasise on defect identification in later stages of the development lifecycle. This app-
roach can lead to costly rework and even the ultimate failure of final software which can
result in catastrophic consequences. Adopting a holistic approach that prioritises defect
prevention and is complemented by defect identification is essential in MDS develop-
ment. Agile practices provide the potential to prevent defects in the early development
stages and identify those that may slip into the later stages. This paper has presented
AbDAF which has been designed to assist MDS development organisations to address
defects during development. AbDAF uses agile practices to address defects by prevent-
ing them early on and identifying those that may arise in later stages of development.
Agile practices used in the framework were identified through a literature review study
and a survey reported in this paper. By implementing this framework, MDS development
organisations can reduce the risk of defects and avert reputation damage and financial
loss. As part of our future work, we will experiment AbDAF in an MDS development
organisation to evaluate its efficacy. The feedback received from the evaluation will be
used to improve the framework.

Author Proof

An Agile-Based Framework for Addressing Defects in Medical Device 13

Acknowledgments. This research is funded through the HEA Landscape and Technological
University Transformation Fund, co-funded by Dundalk Institute of Technology.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

10.

12.

13.

14.

. Leveson, N.G.: The therac-25: 30 years later. Computer 50, 8-11 (2017). https://doi.org/10.

1109/MC.2017.4041349

Hovorushchenko, T., Popov, P.: Method of developing the defect-free medical software by
establishing the presence of residual defects. In: 4th International Conference on Informatics &
Data-Driven Medicine (2021)

Krasner, H.: The cost of poor software quality in the US: a 2020 report (2020)

Ahmed Khalid, T., Yeoh, E.-T.: Enhancing software development cost control by forecasting
the cost of rework: preliminary study. IJEECS 21, 524 (2021). https://doi.org/10.11591/ije
ecs.v21.il.pp524-537

Kotagi, V., Yadav, S.K.: Defect analysis in requirements testing stage of software development
life cycle (2023). https://papers.ssrn.com/abstract=4520332. https://doi.org/10.2139/ssrn.452
0332

Li, H, Liu, Y., Qi, X., Yu, X., Guo, S.: Structuring meaningful bug-fixing patches to fix
software defect. IET Software 17, 566-581 (2023). https://doi.org/10.1049/sfw2.12140

. Chakravarty, K., Singh, J.: Optimizing defect removal efficiency by defect prediction using

machine learning. In: 2022 OITS International Conference on Information Technology
(OCIT), pp. 205-210. IEEE, Bhubaneswar, India (2022). https://doi.org/10.1109/0CIT56
763.2022.00047

Jamal, N., Zulgarnain, M., Boota, M.W., Khan, S., Akber, S.M.A.: Role of defect prevention
techniques vs defect detection to improve software quality: critical analysis summary of defect
preventive approaches, vol. 2 (2015)

Nyirenda, M., McHugh, M., Loughran, R., McCaffery, F.: Using agile practices to address
defects in medical device software development: a survey of medical device software organ-
isations in Ireland. In: 8th International Conference on Computer, Software and Modeling.
(Accepted for publication), Paris (2024)

Nyirenda, M., Loughran, R., McHugh, M., Nugent, C., McCaffery, E.: Identifying agile prac-
tices to reduce defects in medical device software development. In: Yilmaz, M., Clarke, P.,
Riel, A., Messnarz, R. (eds.) Systems, Software and Services Process Improvement. pp. 61-75.
Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-42310-9_5

. Critical Software: Role of Software in Medical Device Failures | WhitePaper (2024). https://cri

ticalsoftware.com/en/resource/software-in-medical-device-failures. Accessed 5 March 2024
Felix, E.A., Lee, S.P.: Predicting the number of defects in a new software version. PLoS ONE
15, 0229131 (2020). https://doi.org/10.1371/journal.pone.0229131

Ronquillo, J.G., Zuckerman, D.M.: Software-related recalls of health information technology
and other medical devices: implications for FDA regulation of digital health: recalls: impli-
cations for FDA regulation of digital health. Milbank Q. 95, 535-553 (2017). https://doi.org/
10.1111/1468-0009.12278

Mooghali, M., Ross, J.S., Kadakia, K.T., Dhruva, S.S.: Characterization of US food and drug
administration class I recalls from 2018 to 2022 for moderate- and high-risk medical devices:
across-sectional study. MDER. 16, 111-122 (2023). https://doi.org/10.2147/MDER.S412802

https://doi.org/10.1109/MC.2017.4041349
https://doi.org/10.11591/ijeecs.v21.i1.pp524-537
https://papers.ssrn.com/abstract%3D4520332
https://doi.org/10.2139/ssrn.4520332
https://doi.org/10.1049/sfw2.12140
https://doi.org/10.1109/OCIT56763.2022.00047
https://doi.org/10.1007/978-3-031-42310-9_5
https://criticalsoftware.com/en/resource/software-in-medical-device-failures
https://doi.org/10.1371/journal.pone.0229131
https://doi.org/10.1111/1468-0009.12278
https://doi.org/10.2147/MDER.S412802

Author Proof

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

M. Nyirenda et al.

FDA: Baxter recalls SIGMA Spectrum Infusion Pumps with Master Drug Library (Version
8) and Spectrum IQ Infusion Systems with Dose 1Q Safety Software (Version 9) due to the
risk of not alarming for repeated upstream occlusion events. FDA (2022)

FDA: Vyaire Medical Recalls bellavista 1000 and 1000e Series Ventilators Due to Issues with
Software Configurations. FDA (2022)

FDA: Medical Device Recalls form January 2023 to July 2023. https://www.accessdata.
fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?start_search=1&event_id=&productdescription
txt=&productcode=&IVDProducts=&rootCauseText=&recallstatus=¢erclassificationt
ypetext=&recallnumber=&postdatefrom=01%2F01%2F2023 &postdateto=07 %2F25%2F2
023 &productshortreasontxt=software&firmlegalnam=&PMA_510K_Num=&pnumber=&
knumber=&sortcolumn=cca. Accessed 26 July 2023

Tang, T., Lim, M.E., Mansfield, E., McLachlan, A., Quan, S.D.: Clinician user involvement
in the real world: designing an electronic tool to improve interprofessional communication
and collaboration in a hospital setting. Int. J. Med. Inform. 110, 90-97 (2018). https://doi.
org/10.1016/j.ijmedinf.2017.11.011

Memon, M.A., Baloch, M.-U.-R.M., Memon, M., Musavi, S.H.A.: Defects prediction and
prevention approaches for quality software development. Int. J. Adv. Comput. Sci. Appl. 9
(2018). https://doi.org/10.14569/1JACSA.2018.090857

Huang, F., Liu, B.: Software defect prevention based on human error theories. Chin. J.
Aeronaut. 30, 1054-1070 (2017). https://doi.org/10.1016/j.cja.2017.03.005

Ergasheva, S., Kruglov, A.: Software development life cycle early stages and quality metrics:
a systematic literature review. J. Phys. Conf. Ser. 1694, 012007 (2020). https://doi.org/10.
1088/1742-6596/1694/1/012007

Mahmoud, A.N., Santos, V.: Statistical analysis for revealing defects in software projects:
systematic literature review. IJACSA 12 (2021). https://doi.org/10.14569/1JACSA.2021.012
1128

Hauschild, A.-C., Martin, R., Holst, S.C., Wienbeck, J., Heider, D.: Guideline for software
life cycle in health informatics. iScience 25, 105534 (2022). https://doi.org/10.1016/j.isci.
2022.105534

Liu, B., Zhang, H., Zhu, S.: An incremental V-model process for automotive development.
In: 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), pp. 225-232. IEEE,
Hamilton, New Zealand (2016). https://doi.org/10.1109/APSEC.2016.040

McHugh, M., McCaffery, E., Coady, G.: An agile implementation within a medical device soft-
ware organisation. In: Mitasiunas, A., Rout, T., O’Connor, R.V., Dorling, A. (eds.) Software
Process Improvement and Capability Determination. pp. 190-201. Springer International
Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-13036-1_17

Ibec: Medtech Strategy 2025 — IBEC. https://www.ibec.ie/connect-and-learn/industries/life-
sciences-and-healthcare/medtech-strategy-2025. Accessed 27 Nov 2023

Ibec: Irish Medtech 2020 Strategy The Global Hub (2016). https://www.ibec.ie/-/media/
documents/connect-and-learn/industries/life-sciences-and-healthcare/irish-medtech-associ
ation/irish-medtech-2020-strategy-the-global-hub.pdf

EU: The new SME definition: User guide and model declaration (2022). https://www.eusmec
entre.org.cn/wp-content/uploads/2022/12/SME-Definition.pdf

Campanelli, A.S., Bassi, D., Parreiras, F.S.: Agile transformation success factors: a practi-
tioner’s survey. In: Dubois, E. and Pohl, K. (eds.) Advanced Information Systems Engineering,
pp- 364-379. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-
3-319-59536-8_23

McHugh, M., McCaffery, F., Casey, V.: Barriers to adopting agile practices when developing
medical device software. In: Mas, A., Mesquida, A., Rout, T., O’Connor, R.V., Dorling, A.
(eds.) Software Process Improvement and Capability Determination, pp. 141-147. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30439-2_13

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm%3Fstart_search%3D1%26event_id%3D%26productdescriptiontxt%3D%26productcode%3D%26IVDProducts%3D%26rootCauseText%3D%26recallstatus%3D%26centerclassificationtypetext%3D%26recallnumber%3D%26postdatefrom%3D01%2F01%2F2023%26postdateto%3D07%2F25%2F2023%26productshortreasontxt%3Dsoftware%26firmlegalnam%3D%26PMA_510K_Num%3D%26pnumber%3D%26knumber%3D%26sortcolumn%3Dcca
https://doi.org/10.1016/j.ijmedinf.2017.11.011
https://doi.org/10.14569/IJACSA.2018.090857
https://doi.org/10.1016/j.cja.2017.03.005
https://doi.org/10.1088/1742-6596/1694/1/012007
https://doi.org/10.14569/IJACSA.2021.0121128
https://doi.org/10.1016/j.isci.2022.105534
https://doi.org/10.1109/APSEC.2016.040
https://doi.org/10.1007/978-3-319-13036-1_17
https://www.ibec.ie/connect-and-learn/industries/life-sciences-and-healthcare/medtech-strategy-2025
https://www.ibec.ie/-/media/documents/connect-and-learn/industries/life-sciences-and-healthcare/irish-medtech-association/irish-medtech-2020-strategy-the-global-hub.pdf
https://www.eusmecentre.org.cn/wp-content/uploads/2022/12/SME-Definition.pdf
https://doi.org/10.1007/978-3-319-59536-8_23
https://doi.org/10.1007/978-3-642-30439-2_13

Author Proof

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

An Agile-Based Framework for Addressing Defects in Medical Device 15

AAMI/IEC: BS EN 62304-2006+A1:2015 Medical Device Software - Software life-cycle
processes, (2015)

Alvertis, 1., et al.: User involvement in software development processes. Procedia Comput.
Sci. 97, 73-83 (2016). https://doi.org/10.1016/j.procs.2016.08.282

Haleem, M., Farooqui, M.F., Faisal, M.: Tackling Requirements uncertainty in software
projects: a cognitive approach. Int. J. Cogn. Comput. Eng. 2, 180-190 (2021). https://doi.
org/10.1016/j.ijcce.2021.10.003

Suma, V., Nair, T.R.: Effectiveness of defect prevention in I.T. for product development (2010).
https://doi.org/10.48550/arXiv.1001.3725

Michael, K.A., Boniface, K.A.: Inadequate requirements engineering process: a key factor
for poor software development in developing nations: a case study, vol. 8 (2014)
Kamalrudin, M., Ow, L.L., Sidek, S.: Requirements defects techniques in requirements
analysis: a review, vol. 10 (2018)

Alshazly, A.A., Elfatatry, A.M., Abougabal, M.S.: Detecting defects in software requirements
specification. Alex. Eng. J. 53, 513-527 (2014). https://doi.org/10.1016/j.aej.2014.06.001
Margarido, I.L., Faria, J.P,, Vidal, M., Vieira, M.: Classification of defect types in require-
ments specifications: literature review, proposal and assessment. In: Information Systems and
Technologies (CISTI) (2011)

Basak, S., Shazzad Hosain, M.: Software testing process model from requirement analysis to
maintenance. IJICA 107, 14-22 (2014). https://doi.org/10.5120/18795-0147

Dasanayake, S., Aaramaa, S., Markkula, J., Oivo, M.: Impact of requirements volatility on
software architecture: how do software teams keep up with ever-changing requirements? J
Software Evolu Process. 31, €2160 (2019). https://doi.org/10.1002/smr.2160

Kouroshfar, E., Mirakhorli, M., Bagheri, H., Xiao, L., Malek, S., Cai, Y.: A study on the role
of software architecture in the evolution and quality of software. In: 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, pp. 246-257. IEEE, Florence, Italy
(2015). https://doi.org/10.1109/MSR.2015.30

Wan, Z., Zhang, Y., Xia, X., Jiang, Y., Lo, D.: Software architecture in practice: challenges
and opportunities. In: Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1457-1469.
ACM, San Francisco CA USA (2023). https://doi.org/10.1145/3611643.3616367

https://doi.org/10.1016/j.procs.2016.08.282
https://doi.org/10.1016/j.ijcce.2021.10.003
https://doi.org/10.48550/arXiv.1001.3725
https://doi.org/10.1016/j.aej.2014.06.001
https://doi.org/10.5120/18795-0147
https://doi.org/10.1002/smr.2160
https://doi.org/10.1109/MSR.2015.30
https://doi.org/10.1145/3611643.3616367

Author Proof

Author Queries

IChapter 20 I
IQuery Refs. | Details Required Author’s response
AQl1 This is to inform you that corresponding author has been identified
as per the information available in the Copyright form.

	An€Agile-Based Framework for€Addressing Defects in€Medical Device Software Development
	1 Introduction
	2 Impact of€Defects in€Medical Device Software
	2.1 Defect Prevention and€Identification

	3 Survey of€Medical Device Software Organisations in€Ireland
	3.1 Survey Process
	3.2 Survey Results and€Discussion

	4 An€Agile Defect-Based Framework
	4.1 Requirements Gathering Stage
	4.2 Software Requirements Analysis Stage
	4.3 Software Architectural Design Stage
	4.4 Software Detailed Design Stage
	4.5 Software Unit Implementation Stage
	4.6 Software Unit Testing Stage
	4.7 Software Integration and€Testing Stage
	4.8 Software System Testing Stage
	4.9 Acceptance Testing Stage

	5 Conclusion and€Future Work
	References

