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Abstract—As Artificial Intelligence systems are being deployed
in multiple domains, ensuring they exhibit fair and just behaviour
is a critical challenge. Multi-objective optimization offers a
robust framework for addressing this challenge by simultaneously
optimizing conflicting objectives, such as fairness and accuracy.
In this work, we leverage causal graphs to model dependencies
and identify potential sources of bias. We evolve directed acyclic
graphs that represent causal structures, optimizing them for
fairness and accuracy using evolutionary computational methods.
Our approach employs multi-objective optimization to explore
trade-offs between these objectives, enabling the discovery of
solutions that balance ethical considerations with performance.
Experimental results demonstrate that the multi-objective frame-
work effectively improves fairness while maintaining competitive
accuracy alongside building causal graphs. This approach pro-
vides a scalable and interpretable solution for mitigating bias in
machine learning models, paving the way for more responsible
and transparent AI applications.

Index Terms—Artificial Intelligence, Machine Learning, Fair-
ness, Bias, Causal Models, Grammatical Evolution, Causal
Bayesian Networks

I. INTRODUCTION

Unwanted bias refers to the unconscious assumptions that
affect our decisions, actions, and interactions [1]. In statistics,
bias denotes systematic errors in data collection or analysis
that distort results and misrepresent the true characteristics of
the population [2]. These biases stem from societal, behavioral,
and cognitive factors such as culture, personal experiences,
stereotyping, confirmation bias, authority bias, and overesti-
mation bias. They can also arise from involuntary factors,
including anchoring, recall bias, recency bias, the halo effect,
and attribution bias [3]. While not all biases are harmful,
unwanted biases can perpetuate discriminatory behaviours or
actions, resulting in unfair treatment and manifesting cycles
of inequality and injustice [4].

Artificial Intelligence (AI) systems were built to aid
decision-making [5], but unwanted bias can perpetuate social
inequalities and discrimination. Mitigation strategies are es-
sential to ensure fair, transparent and unbiased systems. Since
an AI system’s decisions are dependent on training data [6],
biases may emerge in critical systems such as facial recogni-
tion system [7], decision support systems in criminal justice
systems, healthcare, and financial systems [8]. It is essential
to recognize and address these unwanted biases to prevent
unintended consequences and promote a more equitable and

just society. Protected attributes such as race, gender, or age
are legally protected against discrimination [8]. Groups that
are at a disadvantage are called unprivileged, while those that
benefit are referred to as privileged. Unprivileged groups often
face potential disadvantage compared to privileged groups in
contexts like hiring, and financial lending [6]. Causal theory
is a fundamental framework for analysing dependencies and
understanding causal relationships in complex systems [9].

The goal of our approach is to learn Causal Bayesian
Networks (CBNs) from causal structures and identify the most
effective causal graph that optimises fairness and accuracy.
The rest of the paper is organized as follows. The related work
is discussed in Section II, followed by methodology in Section
III. We present our results in Section IV which are discussed
in Section V. Finally, we offer some conclusions and propose
the future directions in Section VI.

II. RELATED WORK

In this section, we review existing work on causal methods
and Evolutionary Computation (EC) techniques used in Ma-
chine Learning (ML), specifically focusing, causal approaches,
and Multi-objective Optimisation (MOO).

A. Bias Mitigation

Bias mitigation in ML is a critical area of research, with var-
ious approaches proposed to address the issue. These methods
can be broadly categorized into pre-processing, in-processing,
and post-processing techniques [10]. Pre-processing tech-
niques aim to modify the training data to reduce bias before
model training. In-processing techniques focus on adjusting
the learning algorithm itself to ensure fairness during the
training process. Post-processing techniques adjust the model’s
predictions after training to achieve fairness. Our approach
uses in-process bias mitigation to achieve our goals.

B. Causal Methods

A causal model enables predictions, causal inference, and
reasoning about interventions and counterfactual scenarios
[9]. It is formally represented as a Directed Acyclic Graph
(DAG), where nodes correspond to variables (Xi), and edges
direct causal relationships from parent nodes (Pi), with noise
variables as external influences [11]. CBNs are probabilistic
graphical models representing the dependency structure of



the variables and edges represent their joint distribution. The
dataset can be used to learn and induce a CBN, let us call
it B, that encodes a distribution PB(A1, ..., An, c), from a
given training set. Thereby given a set of attributes a1, ..., an,
the classifier based on B returns the label c that maximises
the posterior probability PB(c|a1, ..., an) [12]. The difference
between CBNs and Bayesian Networks (BNs) is that CBNs
are used to model causal relationships between variables, while
BNs are used to model statistical dependencies between vari-
ables [9]. Learning the dependency structure of a DAG is NP-
hard [13]. Therefore, we need optimisation methods, such as
the Non-combinatorial Optimisation via Trace Exponential and
Augmented lagRangian for Structure Learning (NOTEARS)
algorithm [14], Peter and Clarke (PC) algorithm, score-based
methods, and constraint-based methods to learn the structure of
a CBN from data [15]. We use the Python CausalNex Library
[16] to create causal structures and CBNs for prediction and
interpreting causal relationships.

C. Evolutionary Computation Methods

Grammatical Evolution (GE) algorithm is an EC method
that searches the solution space, specified by a grammar,
using evolutionary operators based on natural selection [17].
The process starts with an initial population of candidate
solutions, encoded as genotypes using integer-based encoding
for efficiency [18]. Each genotype is mapped to a phenotype
using a grammar, evaluated by a fitness function, and selected
by methods like roulette wheel or tournament [19].

A number of previous studies have used EC techniques
to create BNs. The Grammar-Guided Evolutionary Bayesian
Networks approach uses GE and Evolutionary Algorithm (EA)
to automate BN creation. A Context Free Grammar (CFG)
ensures syntactically correct structures, while genetic operators
iteratively evolve these networks. This method efficiently finds
optimal or near-optimal configurations representing the data
[20]. The grammar structure is not able to create a wide range
of graphs, on account that they focus on the order of variables.
Moreover, their focus was not on addressing fairness. A hybrid
Evolution-Guided Bayesian Optimization (EGBO) algorithm
introduces selection pressure to decrease sampling wastage,
which not only determines the Pareto Front efficiently but
also achieves better coverage of the Pareto Front while limiting
sampling in the infeasible space [21]. The algorithm combines
evolutionary strategies with Bayesian optimization to enhance
the search process. The mutation process is primarily used
to evolve BNs, allowing for diversity and exploration of the
solution space. This improves the accuracy and reliability of
learned BNs by ensuring that a wide range of potential solu-
tions is considered [22]. However, this method does not focus
on fairness and accuracy considerations, which are critical for
developing unbiased and equitable AI systems. Our research
aims to address this gap by integrating fairness metrics into
the evolutionary process, ensuring that the resulting models
are both accurate and fair.

D. Multi-Objective Optimisation

A number of previous studies have used EC techniques to
address fairness and bias using multi-objective optimisation
methods. A multi-objective approach to fairness in ML ad-
dresses both disparate treatment and disparate impact [23].
This framework for learning classifiers without disparate mis-
treatment aims to minimize the overall harm experienced by
different groups while maintaining high predictive accuracy.
The approach involves incorporating fairness constraints into
the learning process. This approach leads to decision bound-
aries that minimize disparate treatment and impact, thereby
reducing the overall harm to disadvantaged groups [24].

Another comprehensive study of multi-objective fairness in
ML focuses on optimizing multiple fairness objectives simul-
taneously. This study introduces a general framework for in-
corporating fairness constraints into the optimisation process,
allowing practitioners to balance fairness with other objectives
such as accuracy and efficiency. It provides theoretical insights
and practical algorithms for addressing multi-objective fairness
in various ML tasks [25]. The authors define the problem of
fair regression in terms of a constrained optimisation problem
with statistical parity and bounded group loss as constraints.
The results are focused on regression and therefore not suitable
for classification tasks.

Fairness Oriented Multiobjective Optimisation (FOMO) is
a concept that advocates that an ML model’s fairness im-
provement is a task that requires multi-objective optimisation,
often with conflicting criteria [26]. The authors emphasize the
use of multi-objective fairness trade-offs instead of transform-
ing error-fairness trade-off into a single-objective problem.
FOMO defines the fair ML task as one of solving weights
classification problem with multiple objectives. Evolutionary
Multi-Objective Optimization (EMO) is proposed so that the
problem remains tractable [26]. The authors have implemented
the system using Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [27].

Our focus on learning causal models with fairness and
accuracy is different from these approaches. We are creating
a set of causal graphs and exploring the solution space using
EC. We propose the use of CFG to encode the causal graphs.

III. METHODOLOGY

This section describes the details of our proposed method.

TABLE I: PonyGE2 Parameters

Parameter Value

CROSSOVER PROBABILITY: 0.75
GENERATIONS 50
GENERATION SIZE 95
MUTATION flip per codon
MUTATION EVENTS 1
POPULATION SIZE 100

A. Experimental Setup

The experiment was carried out using the PonyGE2 library
[28]. The parameters set for the experiment are in Table



TABLE II: German Credit Dataset class distribution

Creditability Sex Train Test Total

Bad Male 398 101 499
Bad Female 162 39 201
Good Male 146 45 191
Good Female 93 16 109

Total 799 201 1000

I. These parameters include the population size, number of
generations, mutation events, genome length, codon size, and
other important factors. A mutation event of 1 flip per codon
was set. The dataset used for the experiments was the German
Credit dataset [29]. Since it is a relatively small dataset, the
number of generations and individuals were reduced accord-
ingly. The class distribution with respect to sex, for both
train and test dataset is shown in Table II. The dataset is not
balanced with respect to the class. It contains more instances
of males than females and more instances of bad credit than
good credit. The overall evolutionary process is detailed in
Algorithm 1.

Algorithm 1 Grammatical Evolution algorithm for bias miti-
gation.

1: Create the population of individual solutions using posi-
tion independent grow

2: while termination condition not met do
3: for g ∈ population do
4: Map the genotype g to create an edge list using

the grammar
5: Use the edge list to create a DAG
6: Use the DAG to learn CBN from training dataset
7: make predictions for the test dataset from the CBN
8: Evaluate the fitness of each individual
9: end for

10: Select individuals based on fitness
11: Apply crossover and mutation to create offspring
12: Replace the least fit individuals in the population with

best fit offspring
13: end while
14: Output best individual

B. Grammar

We utilize the CausalNex library, which is well-suited for
constructing CBNs. The GE algorithm employs a grammar to
convert a genotype, represented as a sequence of integers, into
a phenotype, which is the actual solution. During the mapping
phase, each genotype in the population is transformed into a
phenotype based on a predefined grammar. This grammar is
designed to fit the representation of the possible solutions. In
this experiment grammar is defined to facilitate the generation
of valid causal graphs to analyse the German credit dataset
[29]. The following Backus-Naur Form (BNF) grammar has
been used in these experiments.

1) edgelist ::= edges

2) edges ::= edge | ⟨edge, edges⟩
3) edge ::= (feature, feature) | (feature, class)
4) feature ::= un feature | p feature
5) un feature ::= Account Balance | Purpose | . . .
6) p feature ::= Sex | Age
7) class ::= Creditability
The input for the CausalNex function to create a CBN

is an edge list of the graph. The grammar is designed to
output a causal graph’s edge list, which is crucial for this
process. Production 1 of the grammar specifies the creation
of edges. These edges are the connections between different
nodes (features or class) in the causal graph. Production 2
allows for the definition of edges that can be either single
edges or recursively defined sets of edges. This flexibility
supports the creation of complex graph structures. Production
3 defines that edges can connect a feature to another feature
or from a feature to the class. Production 4 specifies that
features can be categorized as either unprotected or protected.
Unprotected features are listed in production 5 (only two are
shown here for brevity), while protected features are listed
in production 6. Terminal production 7 explicitly defines the
class feature, in this case, “Creditability”. This is the target
variable in the dataset.

C. Fitness Functions

Fitness functions play a crucial role in directing the EC
towards a specified goal. In this context, the edge list repre-
senting each graph is used to construct a CBN. Subsequently,
classification is performed using the training dataset and the
CBN derived from the causal graph. The model’s predictions
are then used to test the fitness of every individual of the
population.

1) Fairness: Let Y be the ground truth or real class labels,
Ŷ be model’s predictions, A = 0 is unprivileged and A = 1
the privileged values for sensitive or protected attributes. The
True Positive Rate (TPR) and False Positive Rate (FPR) are
defined as follows. The TPR is defined as the ratio of the True
Positives (TPs) to the total number of actual positives, TPs and
False Negatives (FNs). The FPR is defined as the ratio of the
False Positives (FPs) to the total number of actual negatives,
FPs and True Negatives (TNs).

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(1)

Equalized Odds is a fairness metric, where the classifier is
considered fair if it provides equal TPR and FPR across dif-
ferent demographics or protected groups [30]. The following
equation states the principle more specifically.

P (Ŷ = 1|Y = y,A = 0) = P (Ŷ = 1|Y = y,A = 1), y ∈ 0, 1
(2)

where y is the actual class label, A is the protected attribute,
and Ŷ is the predicted class label. For y = 1, the equation
shows that the TPR is equal across both demographics and
for y = 0, the equation indicates that the FPR is also equal.
This means that the classifier achieves fairness by having equal



TPR and FPR for both privileged and unprivileged groups.
In other words, the thresholds where both TPR and FPR
are calculated are the same across groups, indicating that
the classifier is not biased with respect to these performance
metrics. In certain scenarios, the outcomes of Y = 1 is
considered as the “advantageous” such as in cases of loan
repayment, college admission, or receiving a promotion. A
relaxation of the equalized odds defined in equation 2 is to only
require the non-discrimination within the advantaged outcome
group Y = 1 [30]. The equal opportunity is a relaxed form of
equalized odds where the condition is that only the TPR for
both demographics is the same.

P (Ŷ = 1|Y = 1, A = 0) = P (Ŷ = 1|Y = 1, A = 1) (3)

To prioritize fairness the fitness function in equation 4 is
used to evaluate the fitness and select the best individual.
This is the Equal Opportunity Difference (EOD) and can be
calculated from predictions.

min {|TPR(Sex = Female)− TPR(Sex = Male)|} (4)

EOD is used as the fairness metric in this experiment to
evaluate fairness. We will focus on other fairness metrics as
part of future work.

2) Accuracy: Accuracy used as fitness function, is a mea-
sure of a model’s performance, defined as proportion of correct
predictions out of the total predictions and can be calculated
using equation 5.

Accuracy =
TN + TP

TP + TN + FP + FN
(5)

D. Multi-Objective Optimisation

A preliminary version of this work considered these fitness
functions independently [31]. We develop the previous work
here using multi-objective experiment was conducted using
the NSGA-II algorithm [27] implemented in PonyGE2 [28].
The fitness functions used in the MOO are the accuracy and
fairness.

accuracy score =
1

1 + accuracy
(6)

A Pareto front represents a set of non-dominated solutions,
where no solution in the set is better than another across all
objectives, and each is better than the remaining solutions in
the initial population. The Pareto front is found using EOD and
the accuracy score defined in equation 6. This allows for the
simultaneous minimization of both objectives: EOD and the
accuracy score. The best solution among those in the Pareto
front was selected using the Hypervolume (HV) metric [32].
The HV of a set of non-dominated points S in two dimensions,
with respect to a reference point r = (rx, ry), is computed as:

HV (S, r) =

n∑
i=1

(rx − xi) · (ry − yi)

where (xi, yi) are the coordinates of the Pareto-optimal solu-
tions, and rx, ry are the coordinates of the reference point.

IV. RESULTS

The following results are based on 30 GE experiment runs.
We report the best solution, which is the best across all
the runs, and average performance (mean across runs). The
experiment was conducted using the NSGA-II algorithm [27]
implemented in PonyGE2 [28]. The experiment’s 30 runs
resulted in 498 first fronts. The Pareto Front for fairness vs
1/(1 +accuracy) for all the solutions generated by the runs is
shown in Fig. 2. The average and best test values for both the
objectives is shown in Table III. The causal graphs of the best
individuals using the Pareto Front, are shown in Fig. 1. The
test EOD is 0.004167 and test accuracy is 0.687 for the three
causal graphs. The average graph height of the Pareto front

TABLE III: Summary of Test Fairness and Test Accuracy
Metrics

Mean Best

Fairness 0.101064 0.004167
Accuracy 0.669207 0.711443

Fig. 1: DAG Best Solutions (EOD : 0.004167, accuracy 0.687).

Fig. 2: Pareto fronts test accuracy score vs test fairness

DAGs was 1.80, indicating that the graphs are non-trivial and



Fig. 3: Average Graph Heights for the Pareto Fronts

capable of capturing complex dependencies among features.
The average graph height is illustrated in Fig. 3.

V. DISCUSSION

The MOO experiment showed promising results, since both
fitness functions were optimised resulting in Pareto fronts.The
graph in Fig. 4 illustrates the values of EOD across different
values of predicted positive males, range 0 to 45 shown in x-
axis and predicted positive females range 0 to 16 represented
by coloured lines. The EOD is computed using equation 4.
Apart from the extremal cases where EOD is zero at (0,0),
(45 males, 16 females). The minima marked on the graph and
is 0.000139 at (14 males, 5 females), (31 males, 11 females).
These fairness values were achieved in training. However, the
EOD on test dataset as indicated in the Table III and marked
on graph is 0.004167, also shown in Fig. 4. The three best
DAG based solutions, all achieving the same test fairness
and test accuracy are shown in Fig. 1. The flexibility of EC
techniques, where multiple solutions can be found that are
equally optimal, is important for causal inference, as it allows
for the identification of causal relationships between variables.
The first two graphs have the same features as nodes; however,
the difference lies in how the duration of credit (in months)
affects other features. In the first graph, it influences both age
and creditability, whereas in the second graph, it affects only
creditability. The third graph has the first graph as a sub-
graph and two more features are added, type of apartment
affects Age, and current credits at this bank affects duration
in current address. Causal interventions are needed to confirm
if they are causal features, which we will look at next in
future work. However, here we believe that these are good
candidates for causal features. Given this information, we may
be able to interpret the causality of features and make informed
decisions about the model depending on the domain. Apart
from providing the best solutions, our approach also provides
other options such as shown in Fig. 5. The DAG has a test
fairness of 0.02639 and test accuracy of 0.7015. This is a good
example of the trade-off between fairness and accuracy. The
DAG is not optimal but provides a better accuracy than the

Fig. 4: Equal Opportunity Difference for different values of
TPR for test dataset.

Fig. 5: DAG with Test Fairness 0.02639 and test accuracy
0.7015

best solutions. This is important for practitioners, as it allows
them to choose the best solution based on their requirements.
An analysis of the number of features included in the first

front BN, as shown in Table IV, reveals that purpose, duration
of credit, age, payment status of credit, account balance, and
duration at current address are among the most frequently
occurring features. This suggests a strong correlation between
these features and the target variable

TABLE IV: Direct Connections to Creditability

Feature Connections

Purpose 17
Duration of Credit(months) 16
Age 5
Payment Status Credit 4
Account Balance 4
Duration in Current Address 3
Sex 2
Telephone 1
No of Credits Bank 2



VI. CONCLUSIONS

The goal of this research was to answer two primary
questions. The first was whether EC techniques, such as GE,
can be used to build BNs from datasets while optimizing
for both fairness and accuracy. The second question was
whether DAGs could be used to explain the dependency of
the target variable on input features. The results in Section
IV indicate that the first objective was achieved and further
improved through MOO. The second goal was also met, as
the constructed DAGs not only enhance the explainability
of ML predictions but also enable causal inference such as
identifying potential confounders, estimating causal effects
and also supporting counterfactual analysis. Future directions
of our research include exploration of additional fairness
metrics to provide more comprehensive evaluation of fairness.
We also plan to extend our experiments to a broader range of
datasets. Causal inference techniques could further enhance
the performance and interpretability of the CBNs.
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