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 A B S T R A C T

This paper introduces an Intrinsic Curiosity Module (ICM) based Reinforcement Learning (RL) framework for 
swarm Unmanned Aerial Vehicles (UAVs) target tracking, leveraging the actor–critic architecture to control 
the roll, pitch, yaw, and throttle motions of UAVs. A key challenge in RL-based UAV coordination is the 
delayed reward problem, which hinders effective learning in dynamic environments. Existing UAV testbeds rely 
primarily on extrinsic rewards and lack mechanisms for adaptive exploration and efficient UAV coordination. 
To address these limitations, we propose a testbed that integrates an ICM with the Asynchronous Advantage 
Actor-Critic (A3C) algorithm for tracking UAVs. It incorporates the Self-Reflective Curiosity-Weighted (SRCW) 
hyperparameter tuning mechanism for the ICM, which adaptively modifies hyperparameters based on the 
ongoing RL agent’s performance. In this testbed, the target UAV is guided by the Advantage Actor-Critic 
(A2C) model, while a swarm of two tracking UAVs is controlled by using the A3C-ICM approach. The proposed 
framework facilitates real-time autonomous coordination among UAVs within a simulated environment. This 
system is developed using the FlightGear flight simulator and the JSBSim Flight Dynamics Model (FDM), which 
enables dynamic simulations and continuous interaction between UAVs. Experimental results demonstrate that 
the tracking UAVs can effectively coordinate and maintain precise paths even under complex conditions.
1. Introduction

This paper introduces a testbed that is specifically designed for 
real-time Unmanned Aerial Vehicle (UAV) coordination and control. 
Two distinct Reinforcement Learning (RL) algorithms are employed to 
control the target and tracking aircraft, integrated with the JSBSim 
Flight Dynamics Model (FDM). The target UAV is governed by the 
Advantage Actor-Critic (A2C) model, while the swarm of tracking 
UAVs is controlled through the Asynchronous Advantage Actor-Critic 
(A3C)-Intrinsic Curiosity Module (ICM) model. The use of the A3C 
model is particularly suited for handling multiple tracking agents due 
to its asynchronous nature. The target aircraft follows a dynamically 
generated trajectory by an Neural Network (NN) model trained using 
the A2C algorithm. Meanwhile, the swarm of tracking UAVs is trained 
to follow this trajectory in real time. The application of the ICM is 
particularly beneficial for swarm UAV coordination, where agents must 
operate autonomously and react to environmental changes in real time. 
By incorporating the ICM into the A3C architecture, our tracking UAVs 
improved exploration efficiency and learning consistency. Moreover, 
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the ICM-enhanced approach facilitates robust policy learning, improv-
ing both tracking accuracy and system stability. The testbed employed 
the Self-Reflective Curiosity-Weighted (SRCW) hyperparameter tuning 
mechanism for the ICM, which dynamically adjusts learning param-
eters based on agent performance, optimizing the trade-off between 
exploration and exploitation. This framework significantly enhances 
the real-time learning capabilities of swarm UAVs in uncertain and 
complex states, making it a powerful advancement in autonomous 
aerial systems research.

The contributions of this research study are:

1. Demonstrates robust swarm UAV behavior for dynamic target 
tracking, with synchronized flight and adaptability to complex 
and evasive trajectories in real-time simulations. The testbed is 
scalable, allowing multiple UAVs to operate and learn simulta-
neously.

2. Addresses the delayed reward problem in RL by incorporating 
an ICM along with SRCW hyperparameter tuning for the ICM, 
which promotes exploration and more efficient policy learning.
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2. Literature review

UAV testbeds serve as vital platforms for simulating, developing, 
and validating the behavior of autonomous aerial systems under con-
trolled and repeatable conditions. They integrate physical simulation 
engines, control logic, and communication protocols to replicate real-
world missions such as navigation, cooperative tracking, and swarm 
coordination. Such testbeds are critical for evaluating advanced learn-
ing techniques such as RL, enabling the safe and efficient development 
of scalable autonomous UAV systems.

Yasar, Bridges, Mallapragada, and Horn (2006) developed a
simulation-based testbed aimed at facilitating coordination between 
unmanned aerial and ground vehicles using a Command, Control, Com-
munications, Computers, Intelligence, Surveillance, and Reconnais-
sance (C4ISR) framework. The testbed integrates a detailed rotorcraft 
model of the UH-60 A Black Hawk helicopter alongside ground-based 
Segway robots that function as Unmanned Ground Vehicless (UGVs). 
By incorporating discrete-event supervisory control and mathematical 
modeling techniques, the system supports autonomous functions such 
as surveillance, exploration, and target tracking. Their experiments 
demonstrate that distributed control algorithms can effectively support 
cooperative missions involving both UAVs and UGVs, validated through 
simulation and hardware-in-the-loop testing.

Michael, Mellinger, Lindsey, and Kumar (2010) proposed a micro-
UAV testbed for surveillance and reconnaissance missions. These micro 
UAVs are small-scale aerial vehicles suited for low-altitude operations. 
A testbed incorporates a software framework based on a finite-state ma-
chine that models a hybrid system architecture. This design facilitates 
the execution of experiments involving single or multiple quadrotors, 
with each operational mode incorporating closed-loop control mecha-
nisms. The platform enables the simulation and assessment of various 
control strategies in a virtual environment before deployment on ac-
tual hardware. A high-fidelity dynamic model of quadrotors was also 
developed, which is capable of executing vertical takeoffs and landings. 
Nonetheless, a major limitation of the system is its applicability to 
quadrotor configurations only.

Zhang, Geng, and Fei (2012) proposed a flight simulation testbed 
that integrates an autopilot system, the FlightGear open-source simula-
tor, and a ground control station. FlightGear plays a central role in this 
setup, supporting the creation of new aircraft models and terrains while 
adhering to control standards and offering realistic visualization. The 
proposed system integrates a ground station, autopilot, and FlightGear, 
enabling real-time simulation of UAV behavior under different flight 
conditions. The control laws are tested through User Datagram Protocol 
(UDP) communication between the autopilot and the simulator. The 
system successfully demonstrates UAV simulation, reducing the cost 
and risks of real-world flight tests, while verifying the control logic and 
enhancing research efficiency. Nevertheless, a major drawback of the 
proposed system is its limited scalability and the absence of distributed 
processing capabilities.

Moness, Mostafa, Abdel-Fadeel, Aly, and Al-Shamandy (2012) pre-
sented a virtual lab-based testbed that integrates MATLAB with the 
FlightGear simulator, useful for control engineering. The system uti-
lizes a Cessna 310 aircraft model to demonstrate core and advanced 
concepts through three structured experiments. The first experiment 
focuses on simulating aircraft dynamics to apply classical control tech-
niques. The second one explores the behavior of the dynamic UAV 
for longitudinal and lateral modes through both time and frequency 
domain analysis. The third experiment involves designing Proportional-
Integral-Derivative (PID) controllers for various autopilot function-
alities, including pitch, altitude, airspeed, bank angle, and heading 
regulation. This virtual lab makes use of FlightGear for high-fidelity 
visualization, JSBSim for accurate flight dynamics simulation, and 
MATLAB for developing and analyzing control strategies. The overall 
setup offers a highly interactive and immersive learning platform for 
researchers.
2 
Sonu and Doshi (2012) presented the Georgia testbed for autonomou
control (GaTAC), an open-source and scalable testbed specifically de-
veloped to evaluate multi-agent decision-making strategies in realistic 
environments involving autonomous aerial vehicles. The GaTAC frame-
work is both cost-effective and flexible, integrating seamlessly with 
the FlightGear simulator to support the testing of various cooperative 
and competitive policy models. It accommodates both autonomous and 
manually operated UAVs, facilitating experimentation in complex and 
uncertain operational contexts. The authors elaborate on the architec-
ture, modular components, and key features of GaTAC, showcasing 
its use in reconnaissance-based UAV missions. The study underscores 
the value of GaTAC in enabling the development of scalable, practical 
solutions for autonomous aerial decision-making systems.

Aschauer, Schirrer, and Kozek (2015) introduced a testbed that 
combines MATLAB with the FlightGear simulator to facilitate aircraft 
control and system identification. In this configuration, FlightGear is 
responsible for visualizing and simulating the flight environment, while 
MATLAB processes sensor data and calculates actuator commands. 
Communication between both platforms is established using the UDP, 
which ensures seamless real-time exchange of flight states and control 
signals. The flight dynamics are modeled using gray-box techniques, 
and various controller responses are evaluated using standard input 
signals like step and ramp functions. This testbed offers flexibility for 
cross-platform deployment on local networks and can be extended to 
support other complex environments. The proposed setup is useful for 
academic research in aerospace control systems.

Zhang, Zhou, and Xu (2015) developed a Hardware-In-the-Loop 
Simulation (HILS) testbed aimed at enhancing the design, simula-
tion, and validation of UAV flight control systems using the dSPACE 
platform. This testbed uses MATLAB’s Simulink to model UAV dynam-
ics, onboard sensors, and environmental influences, while leveraging 
dSPACE’s real-time simulation tools for rapid and efficient system 
development. A nonlinear six-degree-of-freedom UAV model was con-
structed based on standard motion equations, and real-time C code 
was auto-generated using dSPACE’s real-time interface. Flight dynam-
ics data and control commands were exchanged via a UDP mod-
ule, enabling real-time visualization in FlightGear. Additionally, the 
testbed integrates the C Interface Library to support customized tools 
for tracking aircraft paths and monitoring flight status.

Habib, Malik, Rahman, and Raja (2017) introduced a novel Namal 
Unmanned Aerial Vehicle (NUAV) testbed for the design and simu-
lation of UAVs, providing researchers with the capability to model 
various operational scenarios. This testbed interfaces with the Flight-
Gear simulator through a dedicated communication module, facilitating 
the real-time exchange of flight dynamics data. The system features 
a data reception module that acquires key flight parameters such 
as velocity, orientation, and spatial coordinates from FlightGear, and 
responds by transmitting the corresponding control surface commands. 
The framework incorporates the Non-Dominated Sorting Genetic Algo-
rithm (NSGA)-II algorithm to perform multi-objective optimization and 
utilizes an Artificial Neural Network (ANN) to construct the control 
architecture.

Ahmed, Quinones-Grueiro, and Biswas (2022) developed a high-
fidelity simulation testbed for fault-tolerant octo-rotor UAV control 
using RL. This system models the Tarot T-18 UAV using a Gazebo 
flight simulator, and a Python back-end program was used to evaluate 
flight control performance under atmospheric disturbances such as 
wind. The testbed supports simulation of brushless direct current motor 
failures, both abrupt and gradual, and enables the injection of external 
force vectors for disturbance modeling. The testbed supports the sim-
ulations of multiple UAV geometries, including quadrotor, hexarotor, 
and octarotor configurations. Experimental trials show stable trajec-
tory tracking in the presence of faults and disturbances, along with 
analysis of control allocation errors and system performance. The mod-
ular Python-Gazebo interface enables fast prototyping and facilitates 
transfer learning across different UAV platforms.
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Fig. 1. Framework for the implementation of ICM for the testbed.
3. The development of the UAV testbed

To enable real-time simulations, the proposed RL algorithms were 
integrated with the FlightGear flight simulation environment. A major 
challenge during the development of the testbed was ensuring smooth 
and reliable communication between FlightGear, the JSBSim FDM, and 
the RL algorithms. Achieving this integration was critical to maintain 
synchronized control loops and realistic flight behavior throughout the 
simulation process. FlightGear served as the primary simulation plat-
form, offering real-time graphical rendering, while JSBSim functioned 
as the FDM, responsible for simulating realistic flight dynamics. The 
architecture of the communication module was influenced by design 
principles from the NUAV and GaTAC testbeds. This module transmits 
control commands such as elevator, rudder, and aileron adjustments to 
FlightGear. Concurrently, FlightGear relays updated flight information, 
including altitude, latitude, and longitude, back to the system via the 
same communication interface. To ensure efficient and low-latency 
data transmission, the system utilized the UDP, facilitating bidirectional 
communication in real-time. This continuous data exchange enables 
the UAV to dynamically update its control strategies based on real-
time environmental feedback, thereby ensuring accurate and adaptive 
simulation behavior. Fig.  1 illustrates the structural overview of the 
framework of the testbed, incorporating the A3C-ICM architecture to 
compute intrinsic reward.

The use of the ICM in UAVs encouraged effective exploration in a 
complex environment. It helped the agents learn meaningful behaviors 
even when external rewards were sparse or delayed. It improved the 
robustness of the policies by guiding UAVs to discover new strategies 
and explore the environment. Furthermore, it enhanced adaptability in 
dynamic conditions, making UAVs more autonomous and efficient in 
real-world missions.

3.1. Interfacing FDM with RL algorithms

FlightGear functioned as a simulation environment and utilized a 
FDM to replicate the flight behavior of the aircraft. Specifically, JSBSim 
delivered a highly detailed physics-based modeling approach capable of 
accurately reproducing various aspects of flight, including aerodynam-
ics, propulsion systems, and control surfaces. A communication module 
was implemented to facilitate data exchange between FlightGear and 
the RL algorithms.

Dispatching control instructions: The RL model generated control 
outputs such as throttle, rudder, elevator, and aileron commands based 
on the agent’s learned policy and forwarded them to FlightGear through 
JSBSim.

Receiving real-time flight data: In response, FlightGear returned 
the current state data of the aircraft, such as its coordinates, velocity, 
3 
Fig. 2. Flowchart illustrating the working mechanism of JSBSim.

and altitude, to the communication module. This process occurs in 
a continuous feedback loop, allowing the RL models to dynamically 
adjust their control strategies based on the current flight conditions of 
the UAVs.

As illustrated in Fig.  2, the control commands are relayed from 
FlightGear to JSBSim, which then processes and simulates the behavior 
of the aircraft. In return, JSBSim provides comprehensive real-time 
updates that include spatial location (latitude, longitude, altitude), 
flight speed and direction, orientation angles (roll, pitch, yaw), engine 
parameters, and control surface deflections.

3.2. Implementation of the intrinsic curiosity module

Curiosity Driven Learning (CDL) is an approach that incentivizes 
agents to explore their environment by providing internal rewards 
for encountering novel or unexpected states. Unlike conventional RL 
methods that depend solely on externally provided rewards (extrinsic 
rewards), this method introduced intrinsic motivation, allowing the 
agent to seek and learn from unfamiliar experiences. This mechanism is 
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Fig. 3. Implementation of ICM.

particularly useful in environments where external rewards are sparse 
or delayed, as it promotes consistent learning progress. Fig.  3 illus-
trates the implementation of the ICM, which supports curiosity-driven 
learning by generating intrinsic motivation based on prediction discrep-
ancies. In UAV target tracking, the ICM helped agents explore effec-
tively when the target is temporarily occluded, enabling re-engagement 
through learned behaviors. It improved learning in sparse reward set-
tings by providing internal motivation signals. The ICM also supports 
adaptability to dynamic target paths and helps avoid getting stuck 
in suboptimal trajectories. This leads to more robust, accurate, and 
responsive tracking performance in a complex environment.

Prediction: The forward dynamics model estimated the next state 
�̂�𝑡+1 based on the current state 𝑠𝑡 and the action 𝑎𝑡, as shown be-
low (Bougie & Ichise, 2020; Colas, Fournier, Chetouani, Sigaud, & 
Oudeyer, 2019): 
�̂�𝑡+1 = 𝑓forward(𝑠𝑡, 𝑎𝑡) (1)

Intrinsic curiosity: The intrinsic reward is defined as the prediction 
error between the next estimated state and the actual next state (Lin, 
Lai, Chen, Cao, & Wang, 2022; Zhelo, Zhang, Tai, Liu, & Burgard, 
2018): 
𝑟intrinsic = ‖�̂�𝑡+1 − 𝑠𝑡+1‖

2 (2)

Extrinsic Reward: In addition to intrinsic curiosity signals, agents also 
receive extrinsic rewards directly from the environment. These rewards 
are typically task-specific and represent performance feedback provided 
by the simulation or the environment itself (Li et al., 2019; Wu, Yu, 
Liao, & Ou, 2024). 
𝑟extrinsic = environment reward (3)

Total Reward: The overall reward used to train the agent is a combi-
nation of intrinsic and extrinsic components, thereby enhancing both 
exploration and task-specific performance (Li & Gajane, 2023): 
𝑟𝑡 = 𝑟extrinsic + 𝑟intrinsic (4)

We have added the intrinsic reward generated by ICM to the extrinsic 
reward.

Final Update: After integrating the ICM into the A3C architecture, 
the training process involved computing gradients for both actor and 
critic networks. These gradients are used to update the respective 
networks asynchronously. The gradient of the actor network is defined 
according to Eq.  (5) (Zheng et al., 2021): 

∇ 𝐿 =
𝜕𝐿actor (5)
𝜃 actor 𝜕𝜃

4 
Fig. 4. Framework to overcome the problem of delayed reward using A3C-ICM model.

Similarly, the gradient for the critic network is computed according 
to Eq.  (6): 

∇𝜃𝑣𝐿critic =
𝜕𝐿critic
𝜕𝜃𝑣

(6)

In RL, a delayed reward means that the agent, such as a UAV, did 
not receive immediate feedback after taking an action. Instead, it only 
gets a reward much later, maybe after completing a task or reaching 
a certain point. For example, if a UAV is tracking a moving target, it 
might not receive any reward until it gets close to the target after many 
steps. During this time, the UAV has no clear idea whether the actions 
it is taking are good or bad. This makes learning slow and confusing 
because the UAV cannot immediately connect its earlier movements 
with the final result. For UAVs, this is a serious problem. They operate 
in a swarm in continuous environments where the goal (like staying 
close to a moving target at a constant distance) is critical. Without quick 
feedback, the UAV may continue flying by following poor strategies, 
wasting time and fuel, and could cause collisions, and fail to improve 
its behavior.

To solve this problem, we used the A3C-ICM model, which adds a 
special type of reward called the intrinsic reward. The UAV does not 
have to wait for a delayed external reward to learn something useful. 
The curiosity reward fills in the gaps, keeping the UAV motivated and 
helping it learn good tracking behaviors much earlier and learn to 
track moving targets more efficiently, even in complex or changing 
environments. Fig.  4 shows the framework for overcoming the delayed 
reward problem.

SRCW hyperparameter tuning is a mechanism to adaptively tune 
the hyperparameters of the ICM during training, optimizing curiosity-
driven exploration. SRCW hyperparameter tuning is an adaptive ap-
proach in which the tracking UAV, governed by the A3C-ICM frame-
work, dynamically adjusts its learning parameters based on its perfor-
mance during training. While pursuing the target, the UAV evaluates 
its flight dynamics and progress in tracking performance. Through 
this self-evaluation, the UAV modifies its hyperparameters accordingly. 
These adjustments include adjusting the intrinsic curiosity, modifying 
learning rates, and improving decision-making (Wang, Liu et al., 2024).
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Pseudocode: SRCW-Tuning

Pseudocode SRCW-Tuning(agent)
Input:

Initial Hyperparameters:
icm_beta in [0.1, 0.6]
icm_learning_rate in [1e-4, 5e-4]
entropy_coefficient in [0.005, 0.02]
gradient_clipping_norm in [20, 40]
rollout_length (Tmax) in [5, 20]
inverse_loss_weight in [0.6, 0.9]
forward_loss_weight in [0.1, 0.4]
feature_dim in [64, 256]
curiosity_learning_rate in [3e-5, 5e

-4]
reward_normalization in {True, False}

Begin:
Initialize all hyperparameters randomly

within specified ranges
For each training episode do:

Evaluate:
Reward = reward(t) - reward(t -

1)
Entropy level of agent’s policy
Gradient norms and training loss

trends
Curiosity reward vs extrinsic

reward ratio

If Reward < threshold and entropy too
high:
icm_beta = max(0.1, icm_beta -

0.05)
entropy_coefficient =
max(0.005, entropy_coefficient -

0.002)

If Reward < threshold and entropy too
low:
icm_beta = min(0.6, icm_beta +

0.05)
entropy_coefficient =
min(0.02, entropy_coefficient +

0.002)

If training unstable:
curiosity_learning_rate =
curiosity_learning_rate * 0.9
gradient_clipping_norm =
min(40, gradient_clipping_norm +

2)

If reward improving steadily:
curiosity_learning_rate =
max(3e-5, curiosity_learning_rate

* 0.95)
entropy_coefficient =
entropy_coefficient * 0.95

Optionally:
Adjust rollout_length or

feature_dim
Maintain num_workers constant or

increase for stability
If reward_normalization == True:

Normalize rewards
Update agent with new hyperparameters

End

Table  1 presents the hyperparameters associated with the ICM, their 
ranges, and brief descriptions. The hyperparameter ranges in Table 
5 
1 are partially derived from previous research papers and partially 
configured through experimental tuning (Stadie et al., 2020; Sun et al., 
2025; Wang, Li et al., 2024; Wang, Liu et al., 2024).

4. Experimental validation and discussion of results

This section demonstrates the implementation of these RL models, 
discusses computation time and training stability, and discusses the 
effectiveness of the swarm UAVs in tracking a moving target along 
complex paths.

4.1. Implementation of the A2C model

A2C is a synchronous policy-gradient RL algorithm that combines 
value-based and policy-based approaches. It is designed to optimize 
decision-making in environments where agents select actions to maxi-
mize long-term rewards. A2C consists of an actor and a critic network.

The actor learns a policy 𝜋(𝑎|𝑠) that maps states to actions, and the 
critic estimates the value function 𝑉 (𝑠) to evaluate how good a given 
state is. The algorithm uses the advantage function to measure how 
much better an action is compared to the average, defined as: 
𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉 (𝑠) (7)

The actor is updated using this advantage signal to improve the policy, 
while the critic is updated by minimizing the value estimation error.

The network receives as input the state representation of the en-
vironment. For UAVs, this includes position, velocity, and orientation. 
The hidden layers extract features that are useful both for control and 
value estimation. At each time step, the agent observes its current state 
within the environment, including its position, speed, altitude, and 
orientation. The actor network takes this state as input and produces a 
probability distribution over possible actions. An action is selected from 
this distribution and applied to the environment (e.g., change heading 
or throttle). The environment then returns a reward and the next state 
based on the action taken. The reward indicates how effective the ac-
tion was, and the critic network estimates the value of the current state, 
how much reward the UAV can expect to receive in the future, starting 
from this state. The algorithm computes the ‘‘advantage’’, which is the 
difference between the observed reward and the value predicted by 
the critic. The actor is updated to increase the probability of actions 
with positive advantage and decrease the probability of bad ones. The 
critic is updated by minimizing the error between the predicted and 
actual returns (value loss). Fig.  5 shows the implementation of the A2C 
algorithm.

4.2. Implementation of the A3C algorithm

The A3C algorithm integrates the actor–critic structure with an 
asynchronous training mechanism to enable efficient RL. The A3C algo-
rithm comprises two primary components: the actor and the critic. The 
actor is responsible for defining the policy by selecting actions based 
on the current state of the agent. This policy produces a probability 
distribution over possible actions. One of the defining qualities of A3C 
lies in its asynchronous training approach, where multiple workers 
interact with separate instances of the environment simultaneously. 
Each worker interacts with its respective part of the environment and 
periodically calculates gradients from its local experience. These gra-
dients are then applied asynchronously to update the global network. 
In TensorFlow, this is implemented using 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑇 𝑎𝑝𝑒 to compute 
gradients, and 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟.𝑎𝑝𝑝𝑙𝑦.𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 is used to apply updates to the 
shared global network.
Step-by-Step workflow of asynchronous updates in A3C: The fol-
lowing steps outline the complete workflow using two workers as an 
example (Babaeizadeh, Frosio, Tyree, Clemons, & Kautz, 2016; Nahhas, 
Kharitonov, & Turowski, 2022; Zhou, Wang, Hu, & Deng, 2021):
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Table 1
SRCW Hyperparameters for ICM (Stadie, Zhang, & Ba, 2020; Sun et al., 2025; Wang, Li et al., 2024; Wang, Liu et al., 2024).
 Hyperparameter Range Description  
 icm_beta 0.1 to 0.6 Balances intrinsic (curiosity) and extrinsic rewards  
 icm_learning_rate 1 × 10−4 to 5 × 10−4 Learning rate for the ICM’s internal forward and inverse models  
 entropy_coefficient 0.005 to 0.02 Controls randomness in policy to promote exploration  
 gradient_clipping_norm 20 to 40 Upper limit for gradient norms to stabilize training  
 rollout_length (Tmax) 5 to 20 Number of steps before the worker sends updates to the global model 
 inverse_loss_weight 0.6 to 0.9 Weight assigned to inverse model loss in the ICM  
 forward_loss_weight 0.1 to 0.4 Weight assigned to forward model prediction loss in the ICM  
 feature_dim 64 to 256 Size of the learned feature representation used in the ICM  
 curiosity_learning_rate 3 × 10−5 to 5 × 10−4 Learning rate specifically for curiosity-based updates  
 reward_normalization True/False Whether to normalize total rewards for stable training  
Fig. 5. Implementation of A2C algorithm.
1. Initialization : A global neural network is created with shared 
parameters for the actor (policy) and critic (value function). 
Each worker creates its own local copy to interact with the 
environment.

2. Local roll-outs: Both workers independently observe the current 
state, choose actions based on their local policy, receive rewards, 
and store the experiences (state, action, reward, next state) in a 
local buffer.

3. Independent experience collection: Workers proceed for a 
fixed number of steps or until a terminal state is reached. This 
6 
process is done entirely independently by each worker, with no 
synchronization required during rollout.

4. Gradient computation: Each worker computes the policy gra-
dient and value loss using its local experience. The advantage 
function is estimated as: 
𝐴(𝑠𝑡, 𝑎𝑡) = 𝑅𝑡 − 𝑉 (𝑠𝑡) (8)

where 𝑅𝑡 is the cumulative reward and 𝑉 (𝑠𝑡) is the estimated 
value.

5. Global update: Each worker sends its computed gradients to the 
global network. The global network immediately applies these 
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Fig. 6. Implementation of A3C model.
updates using an optimizer (e.g., RMSProp or Adam), without 
waiting for other workers.

6. Parameter synchronization: After updating the global net-
work, each worker periodically synchronizes by copying the 
latest global parameters into its local network to benefit from 
the improvements learned by others (Nahhas et al., 2022). Fig. 
6 shows the implementation of the A3C algorithm.

In UAV applications, A3C allows multiple simulated UAVs to train 
simultaneously with diverse experiences, accelerating policy develop-
ment for navigation, tracking, or coordination tasks. It is particu-
larly well-suited for large, continuous environments where traditional 
single-threaded learning would be too slow or unstable.

The actor loss is a measure of how well the policy network (actor) is 
learning to choose optimal actions based on the observed state. It is de-
rived from the policy gradient method and encourages the agent to take 
actions that lead to higher returns (rewards). Episode length mean refers 
to the average number of steps the agent takes in the environment per 
episode; higher values generally signify better performance. Frames Per 
Second (FPS) is the step rate that measures the speed of training and 
reflects how efficiently the system processes the simulation steps. The 
cumulative reward is the total accumulated reward across iterations 
7 
and is a direct indicator of the learning progress and performance of 
the agent. Learning rate is a key hyperparameter that controls how 
much the model’s parameters are updated in response to the gradients 
calculated during training. Entropy loss is used to encourage explo-
ration by penalizing overly deterministic policies; high entropy loss 
values promote randomness, while low values indicate convergence. 
Critic loss quantifies the error between the predicted value of a state 
and the actual observed return. The critic is responsible for learning 
the value function, which estimates how good a particular state (or 
state–action pair) is in terms of expected future rewards. Entropy 
itself measures the randomness in action selection, with high entropy 
indicating exploration and low entropy suggesting a more deterministic 
policy.

In Fig.  7(a), the actor loss initially drops sharply to negative values, 
then gradually rises to a peak before slowly decreasing. This pattern 
reflects the agent’s early exploration and the gradual stabilization of 
its policy over time. In Fig.  7(b), the episode length mean increases 
significantly in the training phase, reaching a peak in the middle of 
the training iterations, suggesting the agent learns to perform well. In 
Fig.  7(c), the FPS curve shows that training speed stabilizes early in 
the process but eventually drops considerably in later stages, likely 
due to computational overhead. In Fig.  7(d), the cumulative reward 



J. Mahmood et al.

Fig. 7. Graphical results for the implementation of A3C algorithm (a) Actor loss, (b) Episode length mean, (c) FPS, (d) Cumulative reward.

Fig. 8. Graphical results for the implementation of A3C algorithm (e) Learning rate (f) entropy loss (g) critic loss (h) entropy.
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Fig. 9. Swarm UAVs to UAV target tracking demonstration on (a) Python editor and (b) FlightGear map.
demonstrates a consistent upward trend, moving from negative values 
to significantly higher values, indicating successful learning and policy 
improvement, eventually reaching a plateau that signals convergence.

In Fig.  8(e), the learning rate remains constant throughout the 
training period. However, the entropy loss in Fig.  8(f) fluctuates heavily 
at the start, reflecting high randomness and exploration, then gradu-
ally settles near zero as the agent becomes more confident and less 
stochastic in its action selection. The critic loss in Fig.  8(g) displays 
high variability at the beginning and end of training, with a long stretch 
of stability in the middle, indicating that the value network becomes 
reliable during the main training phase. Finally, the entropy graph in 
Fig.  8(h) shows a sharp decline from high to low values, confirming 
the transition of the agent’s policy from exploratory to deterministic as 
training progresses.

4.3. Swarm UAVs target tracking

The asynchronous learning architecture of the A3C algorithm makes 
it highly effective for handling complex and dynamic tasks, such as 
UAV target tracking. In this study, we utilized the multiplayer feature 
of FlightGear, which allows real-time interaction among multiple users. 
This feature supports collaborative or adversarial flight scenarios by 
9 
allowing pilots to observe and respond to each other’s actions within 
a shared virtual airspace. The target UAV is controlled using the A2C 
algorithm, enabling it to follow a continuously adaptive trajectory. This 
setup creates a challenging target for the trackers, as the movement is 
not predefined but rather evolves based on learned policies. The two 
tracking UAVs operate under the control of an A3C model integrated 
with the ICM, which encourages the trackers to explore effectively even 
when external rewards are sparse or delayed, helping the agents stay 
engaged in goal-directed behavior by generating internal rewards. This 
is particularly useful in dynamic path scenarios where the feedback is 
not immediate. Overall, this approach effectively addresses the delayed 
reward issue, supports adaptive multi-agent cooperation, and enables 
robust target tracking in real-time UAV swarm systems. This swarm-
based UAV target tracking task involves coordinating multiple tracking 
agents to follow a single target UAV in real-time. Fig.  9 illustrates 
the FlightGear map interface used to visualize the real-time execution 
of the tracking scenario. This visual feedback helps assess tracking 
accuracy, evaluate swarm behavior, and monitor spatial relationships. 
Fig.  10 demonstrates different motion patterns of the tracking aircraft 
as they respond to the manoeuvers of the target UAV.

A three-dimensional trajectory plot is utilized to visualize the flight 
paths of the target and the tracking UAVs. This visualization employs 
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Fig. 10. UAV to UAV target tracking (a) Target and tracker moving straight line (b) Target and tracker turning left (c) Target turning right and tracker is turning from left to 
right (d) Target is turning right and tracker is turning from straight to right (e) Target and tracker are turning right (f) Target is turning straight from right and tracker is turning 
right.
Table 2
Comparison of the testbed from this research with previous studies.
 Testbed Scalable Solved Delayed Reward Problem ICM Based SRCW Hyperparameter Tuning 
 GaTAC (Sonu & Doshi, 2012) 3 7 7  
 Octo-Rotor RL Testbed (Ahmed et al., 2022) 7 7 7  
 NUAV Testbed (Habib et al., 2017) 7 7 7  
 Micro-UAV Testbed (Michael et al., 2010) 7 7 7  
 RUAV Testbed (Yasar et al., 2006) 7 7 7  
 AutoPilot Testbed (Zhang et al., 2012) 7 7 7  
 Virtual lab Testbed (Moness et al., 2012) 7 7 7  
 dSPACE Testbed (Zhang et al., 2015) 7 7 7  
 MATLAB Co-Simulation(Aschauer et al., 2015) 7 7 7  
 Testbed of this research project 3 3 3  
the X, Y, and Z axes to represent spatial coordinates and altitude, 
offering a clear and detailed overview of the positional dynamics of 
the UAVs over time. As illustrated in Fig.  11, the trajectory of the target 
UAV is highlighted using a distinct color to set it apart from the tracking 
agents. Each tracking UAV is also assigned a unique color, enabling the 
visualization of individual flight paths and movement patterns as agents 
coordinate their efforts to pursue the target.

4.4. Demonstration of experimental simulation video for swarm UAVs tar-
get tracking in a complex path

The experimental simulation video was recorded using the iTop 
screen recorder, with voice-over narration added via Veed software. 
The resulting video has been uploaded to the Open Science Framework 
10 
and is available through the corresponding DOI link (Mahmood, 2025). 
Click on the Files tab to access the MP4 video. The video presents 
a target tracking scenario that involves one target aircraft and two 
tracking aircraft.

As shown in Table  2, previous testbeds were developed primarily to 
evaluate autonomous flight control, coordination, and decision mak-
ing in real time. However, these systems typically relied on extrinsic 
rewards and lacked mechanisms to manage delayed reward scenarios. 
Furthermore, except for GaTAC, existing platforms were not designed 
for the scalability of UAVs. Delayed rewards remain a significant ob-
stacle in RL, often leading to poor learning performance and unstable 
policy development. In contrast to earlier testbeds, the testbed in this 
research incorporates the ICM, effectively addressing the challenge of 
delayed rewards.
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Fig. 11. Trajectory plots for target and tracking aircraft.

5. Conclusion

This study proposed a RL-based testbed for swarm UAV target track-
ing, utilizing curiosity-enhanced A2C and A3C models. The framework 
effectively addressed key limitations of traditional UAV testbeds, specif-
ically, the challenges of delayed rewards and lack of scalability through 
integration of FlightGear, JSBSim, and state-of-the-art RL techniques. 
The A2C model was responsible for guiding the target UAV. On the 
other hand, the A3C algorithm enabled real-time, asynchronous control 
of multiple tracking UAVs. By incorporating the ICM, the system signif-
icantly improved the agent’s exploratory behavior, generating internal 
rewards that mitigated the effects of sparse or delayed extrinsic signals, 
thus enhancing learning outcomes and policy development. The exper-
imental findings validated the system’s capability to accurately track 
dynamic flight paths, demonstrating coordinated swarm behaviors and 
adaptability under changing conditions. The inclusion of multiplayer 
functionality further enriched the simulation environment, allowing 
realistic testing of cooperative swarm navigation strategies.
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