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Abstract. This study proposes a structured framework for mitigating algorithmic 
bias through sampling-based preprocessing techniques, with particular attention 
to the roles of group size adjustment and sample selection strategies. We focus on 
SMOTE-based methods and introduce a 3 × 3 matrix to categorize bias mitigation 
techniques. This matrix combines three group size strategies, Equalized Repre-
sentation, UP-Focused Equalized Representation, and Balanced, group sizes and 
three sample selection strategies. This framework enables systematic evaluation 
of each technique’s impact on fairness metrics, including Demographic Parity 
and Equalized Odds, as well as predictive performance. Evaluations across ten 
diverse datasets show that methods focusing on the unprivileged positive group and 
leveraging decision-boundary-aware sampling yield significant fairness improve-
ments without substantial accuracy loss. These results highlight the efficacy of tar-
geted oversampling strategies in achieving equitable outcomes in machine learning 
applications. State-of-the-art methods like preferential sampling continue to excel 
in optimizing Demographic Parity, while uniform sampling remains superior for 
achieving Equalized Odds. 
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1 Introduction 

Unwanted algorithmic bias in Machine Learning (ML) systems can result in unfair treat-
ment of certain demographic groups, particularly in classification tasks [1]. These biases 
can lead to discriminatory outcomes based on sensitive attributes like race, gender, or 
socioeconomic status [2]. Such disparities often stem from historical prejudices embed-
ded in training data, underrepresentation of certain groups, or design choices within 
algorithms themselves [3]. In an interesting study [4], the critical role of data prepro-
cessing in mitigating algorithmic bias was highlighted, emphasizing that biases present 
in training data can lead to discriminatory outcomes in ML systems. Similar studies also 
categorize preprocessing techniques into methods such as label modification, sampling, 
and feature modification, noting that these approaches aim to adjust the data distribu-
tion to promote fairness [4–6]. These studies underscore the importance of selecting 
appropriate preprocessing strategies tailored to specific bias scenarios to enhance the 
fairness of ML models [7]. Prior research has broadly explored preprocessing sampling
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interventions, ranging from reweighting, random over/under-sampling, and SMOTE, to 
fairness-aware oversampling techniques based on generative models and causal inference 
frameworks [8–13]. However, Friedler et al. [14] demonstrate that fairness-enhancing 
interventions through these techniques can behave inconsistently across datasets and fair-
ness definitions. This variability underscores the need for more structured evaluations 
of sampling-based techniques. 

This paper addresses this gap by exposing how adjusting group sizes during the pre-
processing stage, specifically within sampling-based bias mitigation techniques, can 
influence fairness outcomes. To do this, we introduce a framework for bias mitigation 
that jointly examines two critical preprocessing dimensions: group size adjustment and 
sample selection strategies. Our approach is built around a 3 × 3 matrix that systemati-
cally combines three methods of group size adjustment with three sampling strategies. 
We evaluate these effects using a range of fairness metrics, focusing primarily on Demo-
graphic Parity while also considering Equalized Odds to assess whether these techniques 
inadvertently introduce new forms of bias. By doing so, we provide a more comprehen-
sive view of fairness-performance trade-offs. The remainder of this paper is organized 
as follows: Sect. 2 delves into foundational concepts, fairness metrics, and an analysis of 
dataset imbalances pertinent to our study. Section 3 details the methodology employed, 
highlighting the novel preprocessing techniques developed. Section 4 presents an anal-
ysis of the results, evaluating the effectiveness of the proposed methods. Finally, Sect. 5 
concludes the paper with key findings and offers suggestions for future research direc-
tions. To support reproducibility and transparency, the source code and datasets used in 
this study are publicly available a t: https://github.com/MaliHeidarpourSh/Group_size. 

2 Fairness Evaluation Framework 

2.1 Concept of Bias and Discrimination 

Bias, in the context of decision-making, is an inherent tendency or inclination that 
influences the way information is interpreted or decisions are made [15]. It is a necessary 
element for classification and differentiation between instances. Bias allows systems, 
whether human or machine, to make distinctions and categorizations based on various 
features or criteria [16]. Discrimination, on the other hand, refers to the adverse effects 
or unfair treatment that can result from bias [16]. In other words, discrimination occurs 
when biased decisions lead to unequal or unfavorable outcomes for certain individuals 
or groups [15]. In ML, discrimination can be measured as a difference in the probability 
of receiving a favorable outcome (positive classification rates) between privileged and 
unprivileged groups [17]. 

2.2 Metrics 

Fairness in ML is often associated with principles of non-discrimination and equitable 
treatment [16, 18]. However, fairness is a broad social and ethical concept that cannot 
be fully captured by any single formal definition [19]. In practice, to mitigate unwanted 
algorithmic bias, researchers use fairness metrics, quantitative tools that approximate
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specific notions of fairness within ML systems [14, 20]. These metrics provide oper-
ational tools to evaluate disparities between groups but only reflect particular fairness 
definitions, highlighting the complexity and context-dependency of fairness in real-world 
applications [1, 14, 21]. There are two popular categories of group-based concepts of 
fairness: Demographic Parity and Equalized Odds [22]. These metrics aim to evaluate 
disparities between privileged and unprivileged groups based on protected attributes. 
Fairness can be evaluated in the context of unequal distribution of different groups in 
the training set of the model by Demographic Parity metrics which originates from 
discrimination-aware modeling practices. Specifically, these fairness metrics examine 
whether different demographic groups receive equal treatment in terms of favorable 
outcomes [23]. Disparate Impact (DI) and Statistical Parity (SP) are two widely used 
fairness metrics in this concept of fairness. 

SP: In this metric the likelihood of a positive outcome (Y = 1) should be the same 
for the privileged group (S = 1) and unprivileged group (S = 0) [24] therefore the ideal 
value for that is 0 as shown in Eq. 1. 

SP = P(Y = 1|S = 0) − P(Y = 1| S = 1) (1)

DI: This metric resembles SP but instead of using the difference, the ratio is taken 
[25]. Therefore, according to Eq. 2 the ideal value for this metric is 1. 

DI = 
P(Y = 1|S = 0)
P(Y = 1|S = 1 )

(2)

In this paper we aim to improve fairness with respect to the above metrics. However, 
we consider other group-based fairness strategies, known as equalized odds, to assess 
whether these techniques inadvertently introduce new forms of bias. By doing so, we 
provide a more comprehensive view of fairness-performance trade-offs. Equalized Odds 
is a fairness criterion that assesses whether a ML model’s predictions are equally accurate 
across different demographic groups [26]. In this context, two widely used metrics are 
Average Odds Difference (AOD) and Equal Opportunity Difference (EO). 

AOD: This metric quantifies the average disparity in both the true positive rate and 
false positive rate between unprivileged and privileged groups [27]. The ideal result is 
zero. 

EO: This measure ensures everyone is treated similarly and satisfies the same require-
ments [28]. It mandates that the privileged and unprivileged groups should have similar 
true positive rates. The ideal result is zero. 

By utilizing both Demographic Parity and Equalized Odds metrics, a more compre-
hensive assessment of bias mitigation techniques can be achieved. The trade-off between 
fairness and predictive performance remains a critical consideration, as increasing fair-
ness often results in a decline in model accuracy, a phenomenon extensively discussed 
in the algorithmic fairness literature [19, 29]. 

Accuracy (Acc) is the most common performance measure which calculates the 
number of correct predictions divided by the number of total predictions [30]. However, 
in dealing with an imbalanced dataset, using Acc alone may not be sufficient. Balanced 
Accuracy (BAC), which calculates the average of sensitivity and specificity, offers a
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more robust evaluation [31]. BAC provides a more reliable evaluation metric for imbal-
anced datasets by considering both the true positive rate and true negative rate [31]. 
Notably, Acc and BAC will yield the same value if the dataset is balanced. 

2.3 Group Definitions 

Each sample in the training set is categorized based on its protected attribute (privileged or 
unprivileged) and class label (positive or negative) [8, 32]. For instance, the Unprivileged 
Positive (UP) group is defined according to Eq. 3. Similarly, the other groups, Privileged 
Positive (PP), Unprivileged Negative (UN), and Privileged Negative (PN), follow the 
same structural definition. 

UP = (S = 0, Y = 1 ) (3)

If the dataset includes more than one protected attribute, to mitigate bias toward mul-
tiple protected attributes simultaneously the number of groups will be increased [33, 34]. 
For instance, combining two protected attributes with the class label results in eight dis-
tinct demographic groups. Addressing bias in this manner is crucial for ensuring fairness 
in ML models [35], as focusing on a single attribute may overlook complex interdepen-
dencies between different attributes, potentially leading to unintended discriminatory 
outcomes [36]. 

2.4 Dataset 

In our study, we utilized ten tabular datasets widely used in fairness-aware ML research 
[37]. These datasets span diverse domains such as finance, healthcare, education, and 
criminology, and each includes at least one protected attribute, making them suitable 
for evaluating bias mitigation strategies. Notably, five of these datasets feature multiple 
protected attributes. To systematically analyze the datasets, we categorized them based 
on four key types of imbalances, using threshold-based criteria to assess severity levels: 

Class Label Imbalance: refers to the disproportionate distribution between positive 
and negative class labels. A dataset is considered highly imbalanced if one class makes 
up more than 70% of the data, moderately imbalanced if it falls between 60%–70%, and 
less imbalanced if both classes represent at least 40% of the data [38]. 

Protected Attribute Imbalance: captures unequal representation among different 
groups defined by a sensitive attribute. If the majority group exceeds 80% of the pop-
ulation, the imbalance is high; if it falls between 65%–80%, it is moderate; and if it is 
under 65%, the distribution is considered balanced. 

Group-Based Imbalance: accounts for disparities in the sizes of subgroups formed 
by intersecting class labels and protected attributes. This is evaluated as High, when 
there are substantial differences in group sizes; Moderate, when group size disparities 
are noticeable but less extreme; Low, when group sizes are relatively uniform. 

Positive Class Label Ratio Imbalance: Measures differences in the rates of pos-
itive outcomes across protected groups. A difference greater than 20% indicates high 
imbalance, 10%–20% is moderate, and below 10% is considered low.
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Based on these criteria, we assigned each dataset–attribute combination an imbalance 
level of High, Moderate, or Low, treating each as a distinct evaluation scenario. These 
results are summarized in Fig. 1, which presents a heatmap illustrating the imbalance 
levels across all four dimensions for each dataset. 

Fig. 1. Class label, protected attribute, group and positive ratio imbalanced level of Scenario 

3 Methodology 

In this study, we categorize preprocessing sampling methods based on two primary 
dimensions: group size adjustment strategies and sample selection techniques. This dual 
taxonomy facilitates a comprehensive analysis of how different configurations impact 
fairness in classification tasks. 

3.1 Group Size Adjustment Strategies 

In terms of group size adjustment strategies, we identify three principal strategies for 
adjusting group sizes: 

• Equalized Representation: 

This strategy aims to balance the ratio of positive to negative samples across both 
privileged and unprivileged groups, in line with the principles of Demographic Parity. 
The expected size for each subgroup is calculated to ensure that the proportion of positive 
outcomes is equal across all groups [8, 39]. For the UP group, the expected size is 
computed in Eq. 4. Similar calculations are applied for the PP, PN, and UN groups by
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substituting the corresponding group counts into the formula. This method maintains the 
overall dataset size while achieving equal positive-to-negative ratios across all groups, 
thereby promoting fairness without altering the total number of samples. 

Expected_SizeUP = 
|PositiveClass|∗|UnprivilegedSamples |

|TrainingSet| (4) 

• UP -Focused Equalized Representation: 

This method focuses on oversampling the UP group to adjust the dataset in a manner 
that aims to reduce disparities in model predictions, particularly those measured by 
the Disparate Impact metric in Eq. 2 [13, 40]. The expected size for the UP group is 
determined by Eq. 5. 

Expected_SizeUP = 
|PP| ∗ | UN |

|PN | − |UP| (5)

This approach involves oversampling the UP group, which will increase the total 
number of positive samples, unprivileged samples, and the overall training set size. 
For scenarios involving two protected attributes, resulting in eight distinct groups, the 
expected sizes for groups containing at least one unprivileged attribute will be calculated. 

This strategy aims to create a dataset that, when used to train a predictive model, 
may lead to outcomes with reduced disparate impact, thereby promoting fairness in the 
model’s predictions. 

• Balanced Size Techniques: 

Inspired by the Fair_SMOTE method, this strategy adjusts all subgroup sizes to 
match the largest group, ensuring uniform representation as shown in Eq. 6 [33, 41]. 
This ensures a balanced representation across all subgroups [42]. This uniformity aids 
in mitigating biases arising from unequal group representations. 

Expected_SizePP = Expected_SizeUP = Expected_SizePN 
= Expected_SizeUN = max{|PP|, |UP|, |PN |, |UN |} (6)

3.2 Sampling Strategies 

The Synthetic Minority Oversampling Technique (SMOTE) is a widely used data aug-
mentation method designed to address class imbalance in datasets [41]. It generates 
synthetic examples for the minority class by interpolating between existing minority 
instances and their nearest neighbors in the feature space [43]. This approach helps in 
creating a more balanced dataset, which can lead to improved model performance on 
minority classes [43]. 

In this paper, we applied Fair-SMOTE, a fairness-aware oversampling method devel-
oped by Chakraborty et al. [33, 41, 44], to generate new synthetic data points. Unlike 
standard SMOTE variants, Fair-SMOTE preserves inter-feature associations by extrap-
olating all variables by the same factor between two nearest neighbors, thereby reducing
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distortion in the feature space [41]. It also accounts for data types: boolean, categorical, 
and numeric features are mutated using dedicated logic [45]. In accordance with the 
original Fair-SMOTE implementation, we set the mutation amount (f) and crossover 
frequency (cr) hyperparameters to 0.8, reflecting a strong preference for interpolating 
new points that remain close to their parent instances [41]. A k-nearest neighbors’ algo-
rithm with k = 3 was used to identify neighbors for interpolation, ensuring consistent 
subgroup-level sampling across all datasets. In our work, we explicitly decompose the 
Fair-SMOTE mechanism into two components:

1. Parent sample selection and 
2. Sample generation via extrapolation 

We retain the original Fair-SMOTE generation logic unchanged for the second com-
ponent. Importantly, throughout this paper, the term “SMOTE” always refers to the 
synthetic sample generation process implemented using Fair-SMOTE, rather than the 
standard SMOTE algorithm. 

For the first stage, parent selection, we extend the original Fair-SMOTE implemen-
tation, which selected parent points randomly, by exploring three alternative strategies 
aimed at better aligning data augmentation with fairness objectives: 

• Uniform Sampling with SMOTE (US_SM): Randomly selects samples from under-
represented groups to generate synthetic data until the expected size is reached [8]. 
All groups’ sizes are adjusted based on demographic parity. This strategy mirrors the 
random parent selection used in the original Fair-SMOTE implementation. 

• Preferential Sampling with SMOTE (PS_SM): prioritizes samples near the 
decision boundary for generating synthetic data [39]. 

• Weighted Preferential Sampling with SMOTE (WPS_SM): Assigns sampling 
weights based on proximity to decision boundaries, offering more nuanced augmen-
tation by focusing on more informative samples [46, 47]. 

3.3 Preprocessing Techniques 

By combining the aforementioned group size adjustment strategies with sampling 
techniques, we designed and evaluated nine preprocessing methods: 

1. US_SM: Applies Uniform Sampling with SMOTE to adjust all groups according to 
demographic parity-based global adjustment. 

2. PS_SM: Integrates Preferential Sampling with SMOTE, focusing on samples near 
the decision boundary across all groups to meet demographic parity-based global 
adjustment. 

3. WPS_SM: Weighted Preferential Sampling with SMOTE enhances PS_SM by 
assigning weights to samples based on their distance from the decision boundary. 
More informative samples have a higher probability of being selected as parents for 
SMOTE across all groups, in line with demographic parity-based global adjustment. 

4. UP_US_SM: Applies Uniform Sampling with SMOTE only to the UP group, 
adjusting its size based on UP-based adjustment approach. 

5. UP_PS_SM: Applies Preferential Sampling with SMOTE solely to the UP group, 
targeting samples near the decision boundary according to the UP-based adjustment 
approach.
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6. UP_WPS_SM: Applies Weighted Preferential Sampling with SMOTE exclusively 
to the UP group to meet UP-based adjustment approach. 

7. B_US_SM: Utilizes Uniform Sampling with SMOTE to equalize all group sizes 
to the largest group. This technique is functionally equivalent to the Fair-SMOTE 
method introduced by Chakraborty et al. [41]. To maintain consistency in our naming 
convention, we refer to it as B_US_SM. 

8. B_PS_SM: Combines Preferential Sampling with SMOTE, balancing all groups to 
the largest size as per the Balanced Size Techniques strategy. 

9. B_WPS_SM: Integrates Weighted Preferential Sampling with SMOTE, ensuring all 
groups match the size of the largest group. 

This structured approach allows for a systematic evaluation of different preprocess-
ing configurations and their impact on fairness and performance metrics. To ensure robust 
and reliable results, we conducted experiments using 50 random seeds for each com-
bination of dataset and protected attribute. First, a baseline experiment with a standard 
Logistic Regression, Decision Tree, Gradient Boosting, Random Forest, and Support 
Vector Classification on each of the conditions (dataset_protected_attribute) was per-
formed to compare and benchmark the results of the debiasing experiments. These five 
algorithms, with the goal of maximizing accuracy, were employed to compare how 
pre-processing mitigation techniques impact different models in different datasets with 
different protected attributes. 

All techniques were applied under two scenarios, mitigating bias toward a single 
protected attribute and mitigating bias toward multiple protected attributes simultane-
ously. All techniques were evaluated under identical conditions and compared against 
the current techniques to assess their performance and fairness. 

4 Results and Discussion 

All the introduced techniques were capable of mitigating bias towards one protected 
attribute at a time and multiple protected attributes simultaneously. Table 1 presents a 
demonstration of the results for one of the datasets, the Adult Income dataset, focusing 
on mitigating bias related to the race protected attribute. Logistic Regression is employed 
as both the classifier and ranker in this analysis. B_US_SM serves as an established pre-
processing sampling technique, while the other methods generate synthetic data based 
on different methodologies for defining group sizes and sample selection. To evaluate 
the effectiveness of these techniques, we analyzed the median values of performance 
and fairness metrics. The results indicate that UP_WPS_SM and PS_SM are competitive 
in achieving the most favorable outcomes concerning the Demographic Parity fairness 
metric for this dataset. Regarding Equalized Odds fairness metrics, among the tech-
niques, US_SM outperforms the others. Techniques focusing on the UP group size also 
perform well concerning these metrics. While B_US_SM and B_PS_SM exhibit strong 
performance among the balanced group techniques for Equalized Odds fairness metrics, 
B_WPS_SM adversely affects these metrics. The highest overall accuracy is achieved 
by techniques focusing on the demographic parity notion of fairness size approach, 
whereas the highest BAC is attained by techniques employing balanced group sizes. 
Figure 2 presents a Pareto Frontier plot [48], illustrating the trade-off between DI and
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accuracy for different sampling techniques on the Adult Income dataset with the race 
protected attribute. Techniques like PS_SM and WPS_SM demonstrate significant gains 
in fairness (DI) but show varied effects on accuracy. In contrast, the UP-based methods 
maintain higher accuracy but yield more modest improvements in fairness. 

Table 1. Results of applying pre-processing techniques to mitigate race-protected attribute in the 
Adult dataset 

Technique DI SP AOD EO ACC BAC 

baseline 0.41 -0.09 -0.09 -0.13 0.82 0.68 

US_SM 0.73 -0.04 0.01 0.02 0.82 0.68 

PS_SM 1.21 0.03 0.12 0.19 0.82 0.68 

WPS_SM 2.46 0.08 0.19 0.33 0.80 0.61 

UP_US_SM 0.80 -0.03 0.03 0.06 0.82 0.69 

UP_PS_SM 0.83 -0.03 0.04 0.07 0.82 0.69 

UP_WPS_SM 0.88 -0.02 0.04 0.08 0.82 0.69 

B_US_SM 0.79 -0.08 0.00 0.02 0.77 0.76 

B_PS_SM 0.76 -0.09 -0.02 0.01 0.77 0.76 

B_WPS_SM 2.23 0.21 0.31 0.40 0.80 0.70 

Fig. 2. Pareto Frontier: Tradeoff between Disparate Impact and Accuracy (Adult-race) 

Given the extensive nature of the results across ten diverse datasets, presenting all 
findings in detail would be impractical and could obscure key insights. To succinctly 
summarize and compare the effectiveness of each technique, we employed the Scott-
Knott clustering method, a statistical approach that partitions techniques into distinct
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groups based on their performance distributions [41]. This method assigns ranks to 
each group, where a higher rank signifies superior performance, and techniques within 
the same group are considered statistically indistinguishable [41]. For a more granular 
comparison, we reported the number of Wins, Losses, and Ties for each technique. A 
"Win" indicates that a technique achieved a higher rank compared to another, a "Loss" 
denotes a lower rank, and a "Tie" reflects statistical parity between techniques. To further 
quantify these comparisons, we calculated the Win/Loss Ratio (WLR), representing the 
proportion of wins to losses, and the Tie/Total Ratio (TTR), indicating the ratio of tied 
outcomes to the total number of comparisons. This analytical framework allowed us to 
effectively distill the performance of various bias mitigation strategies across multiple 
datasets, facilitating a robust and comprehensive comparison. 

Table 2 shows the Scott-Knott results comparing PS_SM and UP_PS_SM techniques 
across all datasets in the study. Both apply SMOTE to generate synthetic samples near the 
decision boundary. PS_SM oversamples UP and PN groups while undersampling UN and 
PP groups based on the Demographic Parity objective, whereas UP_PS_SM exclusively 
oversamples the UP group. The results reveal that PS_SM outperforms UP_PS_SM 
in terms of Demographic Parity fairness metrics and most performance metrics such 
as accuracy and balanced accuracy. However, UP_PS_SM achieves significantly better 
results for Equalized Odds fairness metrics. 

Table 2. PS_SM vs UP_PS_SM Scott-Knott Result 

1 protected attribute at a time 2 protected attributes at a time 

Metric Wins Ties Losses WLR TTR Wins Ties Losses WLR TTR 

DI 34 18 23 1.48 0.24 24 16 10 2.4 0.32 

SP 37 14 24 1.54 0.19 29 10 11 2.64 0.2 

AOD 10 24 41 0.24 0.32 10 18 22 0.45 0.36 

EO 8 28 39 0.21 0.37 4 24 22 0.18 0.48 

Acc 25 28 22 1.14 0.37 16 16 18 0.89 0.32 

BAC 33 24 18 1.83 0.32 24 12 14 1.71 0.24 

In general, techniques based on UP group size adjustment consistently perform 
better than those based on balanced group sizes. Among all, B_WPS_SM ranks low-
est in fairness metrics, suggesting that balancing all groups equally while focusing 
only on samples near the decision boundary may not effectively reduce bias. Inter-
estingly, while WPS-based methods underperform when applied within demographic 
parity-based global size adjustment or balanced group frameworks, the UP_WPS_SM 
technique shows substantial improvements in all fairness metrics and in accuracy. As 
illustrated in Table 3, UP_WPS_SM achieves a high number of wins in fairness com-
parisons against B_WPS_SM, confirming that selective oversampling in the UP group 
using weighted proximity can effectively mitigate bias without overly disturbing model 
accuracy.
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Table 3. UP_WPS_SM VS B_WPS_SM Scott-Knott Result 

1 protected attribute at a time 2 protected attributes at a time 

Metric Wins Ties Losses WLR TTR Wins Ties Losses WLR TTR 

DI 47 12 16 2.94 0.16 22 14 14 1.57 0.28 

SP 38 14 23 1.65 0.19 15 10 25 0.6 0.2 

AOD 49 18 8 6.12 0.24 24 16 10 2.4 0.32 

EO 54 17 4 13.5 0.23 31 18 1 31 0.36 

Acc 50 15 10 5 0.2 38 6 6 6.33 0.12 

BAC 21 16 38 0.55 0.21 16 12 22 0.73 0.24 

Finally, Table 4 presents a comprehensive ranking of all SMOTE-based bias mitiga-
tion techniques, evaluated across all datasets using the Scott-Knott methodology. This 
analysis considers both fairness metrics (DI and AOD) and performance metrics (accu-
racy and balanced accuracy) when applying techniques to mitigate bias toward a single 
protected attribute. The rankings highlight that PS_SM and US_SM excel in enhancing 
fairness. 

Across the evaluated datasets, the performance of SMOTE-based bias mitigation 
techniques varies, particularly concerning the Demographic Parity fairness metric. The 
PS_SM technique frequently achieves top performance, ranking first, in 9 out of 15 
datasets. The UP_PS_SM method also demonstrates strong performance, often secur-
ing the second position. The theoretical foundation supporting our empirical find-
ings lies in the observation that samples located near the decision boundary are more 
prone to misclassification, particularly for underrepresented or unprivileged groups [39]. 
Prior research has demonstrated that concentrating synthetic sampling in these bound-
ary regions allows the classifier to gain a more nuanced understanding of ambiguous 
instances, ultimately reducing classification errors for disadvantaged groups [49]. Con-
sequently, techniques which generate synthetic data in the proximity of the decision 
boundary, are better equipped to improve Demographic Parity fairness metrics without 
significantly compromising predictive performance [8]. 

According to both Fig. 2 and Tabe 4, while the baseline technique performs the 
worst on both DI and AOD, it achieves the highest accuracy, demonstrating the inherent 
tradeoff between fairness and accuracy. Similarly, B_US_SM leads in balanced accu-
racy, another performance metric. However, while PS_SM and US_SM perform best on 
specific fairness metrics such as DI and AOD, they do not consistently lead in predictive 
performance metrics. This highlights a core insight of our study: no single technique 
dominates across all dimensions. In many cases, improvements in fairness come at the 
cost of reduced predictive performance, underscoring the need for context-dependent 
decision-making. Practitioners must therefore weigh the relative importance of fair-
ness versus accuracy depending on the societal, ethical, and operational implications 
of misclassification. Techniques focusing on the UP group, such as UP_WPS_SM and 
UP_PS_SM, consistently achieve high rankings across both fairness and accuracy. These 
methods are particularly suitable for scenarios where fairness and accuracy must be
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optimized simultaneously. In contrast, techniques such as B_WPS_SM, while enhanc-
ing certain fairness metrics, incur a noticeable drop in accuracy, reflecting a steeper 
trade-off. Interpreted through the lens of cost-sensitive fairness, this implies that the 
marginal fairness gain may not always justify the associated performance cost [50]. 
These insights support a multi-objective optimization perspective, where fairness and 
accuracy are treated not in isolation but as competing objectives to be jointly optimized 
depending on application-specific constraints [48]. 

Table 4. Comparative rankings of preprocessing sampling bias mitigation techniques 

Rank DI AOD ACC Bac 

1 PS_SM US_SM Baseline B_US_SM 

2 UP_WPS_SM UP_PS_SM US_SM B_PS_SM 

3 UP _PS_SM UP_WPS_SM UP_US_SM Baseline 

4 UP _US_SM UP_US_SM UP_WPS_SM B_WPS_SM 

5 US_SM B_US_SM PS_SM US_SM 

6 WPS_SM B_PS_SM UP_PS_SM PS_SM 

7 B_PS_SM PS_SM WPS_SM UP_US_SM 

8 B_US_SM WPS_SM B_US_SM UP_WPS_SM 

9 B_WPS_SM B_WPS_SM B_PS_SM UP_PS_SM 

10 Baseline Baseline B_WPS_SM WPS_SM 

The behavior of each method also varies by dataset. For example, B_WPS_SM 
excels, particularly in datasets that suffer from both group and positive ratio imbalance, 
such as the Heart dataset. This method is effective because it focuses on generating more 
samples relative to their positions. On the other hand, for the Open University dataset, 
US_SM (randomly sampling) is sufficient, as the imbalance is mild and there is no need 
to specifically focus on samples near the decision boundary. For the Compass dataset, 
generating samples only within the UP group is adequate, and this approach results in 
fair outcomes, making UP_SM_PS perform well for this dataset. 

While our proposed techniques yield notable improvements in fairness metrics, sev-
eral limitations should be acknowledged. First, SMOTE-based methods rely on gener-
ating synthetic samples, which may not always reflect the true data distribution, partic-
ularly in high-dimensional or non-linear feature spaces, leading to potential overfitting. 
Second, the effectiveness of these techniques depends on access to protected attribute 
labels during training, which may not always be available due to legal, ethical, or privacy 
restrictions. Lastly, computational overhead can be significant when boundary estimation 
is expensive, especially for large-scale or streaming data environments. These factors 
highlight the importance of cautious validation and adaptive deployment when applying 
fairness-aware preprocessing in practice.
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5 Conclusion 

This study conducted a comprehensive evaluation of SMOTE-based bias mitigation tech-
niques, focusing on their effectiveness in enhancing Demographic Parity and Equalized 
Odds fairness metrics across ten diverse datasets. The techniques were categorized based 
on group size determination methods: (1) Demographic Parity-Based Global Adjust-
ment, (2) Demographic Parity focusing solely on the unprivileged positive group, and (3) 
Balanced group sizes. Additionally, we explored three synthetic sample selection strate-
gies: Uniform Sampling, Preferential Sampling, and Weighted Preferential Sampling. 
We established a structured framework to assess their impacts. Our analysis revealed 
that PS_SM and US_SM achieved the best performance among all techniques for Dis-
parate Impact and Average Odds Difference fairness metrics, respectively. Techniques 
focusing on the UP group, especially those that generate synthetic samples near the 
decision boundary, offered strong fairness gains with minimal sacrifice in accuracy, val-
idating the hypothesis that boundary-focused augmentation reduces misclassification of 
disadvantaged groups. These results highlight the trade-off space between fairness and 
performance, with methods like UP_WPS_SM offering effective middle ground solu-
tions for real-world deployments. While no single method dominates across all settings, 
our findings emphasize the need for context-specific choices in real-world deployments. 
Future work should expand to more complex models, including deep learning models. 
Furthermore, practical deployment considerations, such as the limited availability of 
protected attribute labels, regulatory compliance, and the risks associated with synthetic 
data generation, must be central to developing fair, robust, and scalable machine learning 
systems. 
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