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Abstract. Sampling bias can be mitigated through preprocessing techniques such
as oversampling and undersampling in imbalanced datasets. However, they do
not address labeling bias, which can reinforce unfair model behavior. To address
this, we established a structured evaluation framework that applies Situation
Testing as an additional step after six SMOTE-based sampling techniques.
Across 10 datasets and multiple classifiers, our findings reveal that the number
of biased samples removed by Situation Testing depends on the dataset, classi-
fier, and preprocessing sampling technique applied beforehand. Applying Situa-
tion Testing directly to the baseline consistently improved fairness with respect
to both Demographic Parity and Equalized Odds, albeit with reduced predictive
performance. In contrast, the impact of Situation Testing after sampling varied
across strategies, proving to be more effective in group size adjustments based
on Equalized Representation than in balanced-size techniques. Overall, the re-
sults highlight the trade-off between fairness gains and predictive utility, under-
scoring the need to align mitigation strategies with dataset characteristics and
fairness objectives.
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1 Introduction

Unwanted algorithmic bias refers to unfair and discriminatory outcomes in algorithms
that result in disadvantages for certain groups of people [1]. This bias can emerge when
algorithms unintentionally favor or disadvantage particular individuals or communities
based on race, gender, ethnicity, socioeconomic status, or other characteristics [2].
These characteristics, known as protected attributes, are features of individuals who are
legally and ethically safeguarded from discrimination because they represent groups
particularly vulnerable to unfair treatment [3, 4]. Protected attributes typically divide a
population into privileged and unprivileged groups [5]. The privileged group typically
receives favorable treatment or holds a more advantageous position, while the unprivi-
leged group is subjected to unfair treatment in discriminatory decision-making pro-
cesses [3].

Bias can arise in Machine Learning (ML) models in different ways [6]. The most
frequent sources of bias in ML can be grouped into data, algorithm, and user interaction
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[1]. When biases are present in the underlying training data, the algorithms trained on
them will inevitably incorporate these biases into their predictions. Data bias might be
amplified and maintained by algorithms. In addition, even if the data is not biased, al-
gorithms themselves may exhibit biased behavior as a result of specific design decisions
[7]. The outputs of these biased algorithms are then fed into actual systems and can
influence user decisions, leading to further bias [1, 8]. Therefore, addressing bias early
in the model's lifecycle, before it becomes amplified, is critical. One effective approach
is through preprocessing techniques, which adjust the training data to mitigate bias [9—
11]. Other approaches, such as in-processing techniques, incorporate fairness consider-
ations directly into the training process [12, 13], and post-processing techniques modify
model predictions to reduce bias [14, 15].

This study focuses on preprocessing sampling techniques designed to balance train-
ing data. These techniques, including oversampling and a combination of oversampling
and undersampling, employ methods such as generating synthetic data points to balance
underrepresented classes. Once the dataset is balanced, we apply Situation Testing
(ST), which involves flipping protected attributes in the data and checking whether pre-
dictions change [9]. If predictions differ, the data point is flagged as biased and re-
moved. In this way, ST identifies and eliminates potential labeling bias in the training
data. Accordingly, this study addresses the following research question: Does the ap-
plication of ST consistently enhance fairness across SMOTE-based preprocessing sam-
pling techniques in ML, without adversely affecting model performance?

The following section reviews related work on the application of ST. Section 3 out-
lines the methodology, including sampling and ST techniques. In section 4, we present
the fairness and performance metrics used for evaluation, along with key details about
the datasets employed in this study. Section 5 provides a detailed analysis of the results,
and Section 6 offers the concluding remarks.

2 Related works

ST is a critical method for detecting discrimination, particularly in legal contexts [16].
It involves structured experiments where individuals with similar qualifications but dif-
fering in a protected characteristic (e.g., race, gender) are placed in identical situations
to detect discriminatory practices. This method has been widely used in European ju-
risdictions to provide empirical evidence of discrimination. In legal proceedings, it
plays a crucial role in shifting the burden of proof to defendants, requiring them to
justify their actions with legitimate, non-discriminatory reasons [16]. Beyond its legal
applications, ST is also an effective tool for raising public awareness and shaping anti-
discrimination policies. Its impact extends to legal professionals, policymakers, and
researchers working to combat discrimination and promote equality [16].

In employment discrimination research, ST has been instrumental in exposing biases
in hiring decisions [17]. ST involves pairs of individuals, testers, who are matched in
qualifications and experience but differ in a specific characteristic. These pairs apply
for the same job openings to observe whether employers treat them differently based
on the characteristic being tested [17]. Studies conducted in the U.S. have revealed that
discriminatory behavior, whether conscious or unconscious, was exhibited by
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approximately 20% to 40% of employers [17]. One well-known study demonstrated
that résumés with white-sounding names received 50% more callbacks than those with
black-sounding names, highlighting racial bias in hiring decisions [18]. These findings
have influenced public policy and civil rights enforcement by providing empirical evi-
dence of workplace discrimination [17].

Beyond traditional employment settings, ST has been applied in data-driven envi-
ronments to detect bias within datasets. One study introduces a framework that inte-
grates ST with causal inference to uncover individual discrimination by isolating dis-
parities linked to protected attributes [19]. Another study applies ST to software sys-
tems, systematically testing inputs that differ only in protected attributes to evaluate
whether these attributes unjustly influence decision-making processes [20]. By identi-
fying causal relationships that contribute to biased outcomes, this method effectively
assesses discrimination in automated decision-making systems [20].

In ML, the "Fairway" approach integrates ST into a two-step bias mitigation frame-
work [21]. The first step applies ST to detect biased data points by altering protected
attributes and observing changes in model predictions. Data points that cause prediction
shifts are removed from the training dataset to reduce the influence of protected attrib-
utes [21]. The second step employs multi-objective optimization to balance fairness and
predictive performance during model training. This ensures that bias is mitigated with-
out compromising accuracy, making Fairway a comprehensive tool for fairness im-
provement [21]. Another ML-based approach, Fair SMOTE, combines oversampling
techniques with ST to enhance fairness [9]. Fair SMOTE first rebalances data distri-
butions by ensuring equal representation of protected attributes across both positive and
negative classes. After this oversampling step, ST is applied to evaluate whether model
predictions remain consistent when protected attributes are modified [9]. Building on
this line of work, our study isolates the ST component from Fair SMOTE and system-
atically applies it across a wider set of state-of-the-art sampling techniques. This allows
us to disentangle ST’s independent contribution to fairness and performance and eval-
uate its consistency across diverse preprocessing strategies.

3 Methodology

We applied ST after preprocessing sampling techniques with the expectation that mod-
els would be trained not only on balanced datasets but also on datasets with reduced
bias related to protected attributes. This combined approach was hypothesized to im-
prove fairness in predictions while limiting trade-offs in dataset size and predictive per-
formance.

Each dataset was partitioned into four canonical subgroups defined by the cross-
product of protected attribute and class label: Privileged Positive, Privileged Negative,
Unprivileged Positive, and Unprivileged Negative. These subgroups served as the basis
for fairness-aware resampling [22].

Preprocessing sampling techniques were organized into two categories according to
their subgroup size adjustment strategy. Equalized Representation (ER) balances the
ratio of positive to negative samples across both privileged and unprivileged groups,
consistent with Demographic Parity [22]. This preserves the overall dataset size while



equalizing outcome distributions. In contrast, the Balanced-Size (B) approach, inspired
by Fair SMOTE [9], adjusts all subgroups to match the size of the largest subgroup,
ensuring uniform representation [23].

Standard Fair SMOTE [9] operates similarly to Uniform Sampling (US) [22], ran-
domly selecting samples to generate synthetic data [23]. We extend this approach by
incorporating alternative selection strategies: Preferential Sampling (PS), which prior-
itizes samples close to the decision boundary where fairness vulnerabilities are most
acute [24], and Weighted Preferential Sampling (WPS), which assigns probabilistic
weights based on distance to the boundary, giving higher likelihood to fairness-sensi-
tive regions [25].

By combining the two group size adjustment strategies (ER vs. B) with the three selec-
tion mechanisms (US, PS, WPS), we obtained six distinct SMOTE-based techniques:
e ER_US_SM: Equalized Representation with Uniform Sampling + SMOTE

e ER_PS_SM: Equalized Representation with Preferential Sampling + SMOTE

¢ ER_ WPS SM: Equalized Representation with Weighted Preferential Sampling +

SMOTE

e B_US_SM: Balanced-Size with Uniform Sampling + SMOTE, aligned with the first
stage of the Fair SMOTE methodology [9].
e B PS_SM: Balanced Preferential Sampling + SMOTE
e B WPS SM: Balanced Weighted Preferential Sampling + SMOTE
The practical steps for integrating ST with preprocessing sampling techniques include:
1. Preprocessing Sampling Techniques:
a. Apply preprocessing sampling techniques
b. Evaluate the impact of these techniques using the selected fairness and perfor-
mance metrics.
2. Apply ST:

a. Conduct ST by modifying protected attributes and analyzing how these changes

affect the model's predictions.

b. Identify and remove data points whose predictions change solely due to the pro-

tected attribute.

c. Assess the impact of the combined approach (preprocessing sampling + ST) using

the same fairness and performance metrics.

A supervised ML model is trained using the preprocessed sampled dataset. The trained
model is used to predict outcomes for all data points. For each data point, the value of
the protected attribute is flipped to its opposite or an equivalent category. The modified
dataset is passed through the same trained model, and new predictions are obtained. If
a prediction changes after the flip, it indicates that the model is sensitive to the protected
attribute, suggesting it has learned biased patterns from the training data. Such biased
data points are removed, and the model is retrained on the reduced dataset.

Combining preprocessing sampling techniques with ST yields several new approaches,
denoted by appending “ ST to the original method names. In this paper, we refer to
B _US SM ST as Fair SMOTE, consistent with the terminology used in the original
study. Moreover, we applied the ST to the Baseline model, meaning no preprocessing
or sampling techniques were applied before the implementation of ST, referred to as
Baseline ST.
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4 Evaluation

We evaluated the effectiveness of these methods by examining the bias toward a single
protected attribute and multiple (two) protected attributes simultaneously. The first im-
plementation focused on applying preprocessing techniques to mitigate bias toward a
single protected attribute. In the second implementation, the dataset was partitioned by
the combination of two protected attributes and the class label, resulting in eight sub-
groups rather than four. Addressing bias in this manner is crucial for ensuring fairness
in ML models [26], as focusing on a single attribute may overlook complex interde-
pendencies between different attributes, potentially leading to unintended discrimina-
tory outcomes [27]. For example, mitigating bias solely based on non-white individu-
als, considering race as the first protected attribute, without addressing gender as a sec-
ond protected attribute (e.g., female), may result in a model that even increases biases
against women. Therefore, adopting comprehensive strategies that address all protected
attributes simultaneously are essential to ensure equitable treatment across diverse
groups [28]. By considering two protected attributes simultaneously, our techniques
enable a more comprehensive bias mitigation strategy that accounts for intersectional
biases.

We conducted experiments using five well-known ML algorithms, namely Logistic
Regression (LR), Decision Tree (DT), Gradient Boosting (GB), Random Forest (RF),
and Support Vector Classification (SVC). For each dataset and protected attribute com-
bination, we repeated the experiments 50 times with randomized sampling. We then
applied the Scott-Knott [29] statistical test to compare the techniques.

4.1 Metrics

Fairness in algorithmic decision-making can be assessed through various metrics;
broadly, the two main groups are Demographic Parity (DP) and Equalized Odds (EQO)
fairness metrics [30]. While both aim to promote fairness, they measure different crite-
ria. DP focuses on balancing outcomes across groups, whereas EQO ensures fairness
in predictive performance by considering error rates [31]. This distinction reflects trade-
offs between equal treatment and equitable outcomes, making the choice of metric con-
text dependent.

DP fairness metrics assess whether different demographic groups receive similar
outcomes, ensuring that no group is disproportionately advantaged or disadvantaged
[32]. Statistical Parity (SP), a key metric under Demographic Parity, ensures that the
probability of a positive outcome is equal across groups, aiming to prevent allocation
harms where resources or opportunities may be unevenly distributed [33]. Disparate
Impact (DI), on the other hand, measures the ratio of favorable outcomes between a
protected group and the overall population [31].

EQO fairness metrics focus on reducing disparities in error rates between groups by
ensuring fair treatment in terms of both true positives and false negatives [31]. In this
criteria, Average Odds Difference (AOD) quantifies the disparity in error rates by av-
eraging differences in false positive rates and false negative rates between groups.
Equal Opportunity (EO) ensures that true positive rates are equal across demographic
groups, thereby preventing bias in granting favorable outcomes [33]. By utilizing both



DP and EQO metrics, a more comprehensive assessment of bias mitigation techniques
can be achieved. The trade-off between fairness and predictive performance remains a
critical consideration, as increasing fairness often results in a decline in model accuracy,
a phenomenon extensively discussed in the algorithmic fairness literature [34].

Accuracy (Acc) is the most common performance measure which calculates the
number of correct predictions divided by the number of total predictions [35]. However,
in dealing with an imbalanced dataset, using accuracy alone may not be sufficient. In-
stead, it is suggested to use Balanced Accuracy (BAC), which calculates the average of
sensitivity and specificity [36]. Balanced accuracy provides a more reliable evaluation
metric for imbalanced datasets by considering both the true positive rate and true neg-
ative rate [36]. Notably, accuracy and balanced accuracy will yield the same value if
the dataset is balanced.

4.2 Datasets

There are numerous well-established datasets in the fairness literature that facilitate
comparisons with prior work on bias mitigation methods [37]. In this study, we utilize
ten widely recognized tabular datasets, summarized in Table 1. This selection enables
external validation and supports a rigorous assessment of the proposed techniques.
These datasets are characterized by substantial class imbalance, as well as disparities
in the distribution of protected attributes, both of which significantly impact model per-
formance and the trade-offs associated with bias mitigation. Notably, five of these da-
tasets contain two protected attributes, providing a unique opportunity to analyze the
effects of mitigating bias across multiple protected attributes simultaneously.

Table 1. List of datasets

. Positive Protected Privi-
Dataset Size Class Label Class% Attributes leged %

sex 67

Adult Income (48842,14) Income 24
race 85
German Credit (1000,20) Credit 70 sex 69
age 85
Bank Marketing (45211,16)  Term deposit 47 age 14

Default of Credit Default pay-

Card Clients (30000,23) ment 2 sex 40
Titanic (891,12) Survived 38 sex 35
Heart Disease (303,13)  Heart disease 46 sex 68
age 64
OULAD (32593,12)  Final result 68 sex 46
Law School (20798,12) Pass exam 95 race 84
Student Performance ~ (649,33)  Score>=10 54 sex 59
age 94
Two-year-re- sex 19
COMPAS (7214,52) cid 55 race 34

5 Results and Analysis

We evaluated five classifiers, using the same model in each case for both performance
evaluation and ST-based bias detection. We examined the median percentage of
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samples removed from the training data after applying ST. For single protected attrib-
utes, techniques that focused on decision-boundary instances, such as ER PS SM,
ER WPS SM, and B. WPS SM, identified a larger proportion of samples as biased.
Consequently, applying ST to these techniques resulted in substantial data reduction.
Notably, ER PS SM_STand ER. WPS SM ST led to severe data loss, with up to 50%
of the training samples removed in the highly imbalanced COMPAS dataset.

It is important to emphasize that the reported percentage reductions for ER-based
Group size techniques are calculated relative to the original dataset size, as these pre-
processing sampling techniques do not alter the size of the entire training set. In con-
trast, for balanced techniques, the percentage reductions were computed based on the
dataset size after oversampling. Consistent with previous research [7], Fair SMOTE
showed a maximum reduction of 13%, across different classifiers. Table 2 shows the
similar pattern when ST was applied after preprocessing bias mitigation techniques
aimed at reducing bias toward two protected attributes simultaneously.
ER PS SM ST, ER WPS SM ST, and B WPS SM ST techniques, resulted in a
significant reduction of training samples, particularly when applied to the COMPAS
dataset. In contrast, techniques like Fair SMOTE, and B PS SM_ST led to a more
moderate reduction in the dataset, with a maximum of 12% of the training data removed
across different datasets.

Table 2. Percentage of removed samples after applying ST following various sampling tech-
niques to mitigate bias toward two protected attributes simultancously with LR

Dataset Adult COMPAS German Heart Student
Technique race sex race Sex age sex age sex age  sex
Baseline ST 12 12 22 22 24 24 12 12 10 10
WRT = prussmst 2 2 20 20 0 0 6 6 9 9
Original
Size ER_PS SM_ST 19 19 | 32 32 1 1 15 15 23 23
ER WPS SM ST | 27 27 DM 1 1 (20 20 27 27
WRT Fair SMOTE 2 2 111 3 3
Over-
sampled B PS SM ST 2 2 12 12 2 2
4 4

Size BWPSSMST 20 20 19 19 10 10

To comprehensively assess the performance of the techniques, we evaluated them
on 10 datasets with varying characteristics. Presenting results for all datasets in a single
table would require extensive space and may complicate the visual interpretation of the
findings. To mitigate this issue, we adopted a methodology inspired by Chakraborty et
al. [7, 37] using the Scott-Knott test to compare result distributions across all datasets.
This statistical test was applied to all methods to identify performance groupings based
on statistically significant differences. The Scott-Knott procedure ranks the methods,
with higher ranks indicating superior performance. If two distributions are statistically
indistinguishable, they are assigned to the same rank. The terms Wins, Losses, and Ties
are defined as follows: a Win occurs when one technique achieves a higher rank for a
particular metric compared to another; a Loss denotes a lower rank; and a Tie indicates
no significant difference in performance between the two techniques. By employing
this approach, we were able to succinctly summarize performance across multiple



datasets and conduct a robust comparison between the new and established methods, as
suggested in previous studies [7, 37].

Table 3 presents the Scott-Knott statistical test results comparing the Baseline model
with its counterpart after applying ST, referred to as Baseline ST. WLR (Win/Loss
Ratio) represents the proportion of wins to losses for each technique across all evaluation
metrics. TTR (Tie/Total Ratio) indicates the ratio of tied outcomes to the total number
of comparisons made. The results demonstrate that incorporating ST alone significantly
improves fairness in terms of both DP and EQO fairness metrics. However, this im-
provement comes with a trade-off, as applying ST leads to a reduction in overall model
performance. This suggests that while ST effectively enhances fairness, it may also
impact the predictive capability of the model, highlighting the balance between fairness
and accuracy in bias mitigation strategies.

Table 3. Baseline ST VS Baseline Scott-Knott Result.

1 protected attribute at a time 2 protected attributes at a time
Metric Wins Ties Losses WLR TTR Wins Ties Losses WLR TTR
DI 36 36 3 12 0.48 29 20 1 29 0.4
SP 41 30 4 1025 04 31 14 5 6.2 0.28
AOD 40 31 4 10 0.41 31 14 5 6.2 0.28
EO 37 34 4 925 045 30 16 4 7.5 0.32
Acc 4 51 20 0.2 0.68 0 26 24 0 0.52
BAC 2 38 35 0.06 0.51 0 20 30 0 0.4

Finally, according to the Scott Knott statistical test, we ranked all techniques, deter-
mining which techniques performed best for each evaluation metric. Tables 4 and 5
summarize the performance of various bias mitigation techniques concerning fairness
and performance metrics, ranking each method based on its effectiveness across all
evaluated criteria. According to Table 4, all techniques improved fairness in terms of
DP fairness metrics when compared to the Baseline. Surprisingly, applying ST to the
original training set (Baseline ST) achieved better performance than B. WPS SM.
Among sampling approaches, techniques that incorporated ER-based group size adjust-
ments consistently outperformed both Fair SMOTE and balanced-size methods with
respect to the DP fairness metric. Moreover, sampling methods targeting decision-
boundary instances (ER_PS SM and ER_ WPS_SM) are more effective in improving
DI than random oversampling approaches such as ER_US SM. In contrast, for the EO
fairness metric, this trend is reversed, with random oversampling methods outperform-
ing decision-boundary-based techniques. The effectiveness of ST, however, varied de-
pending on the bias-mitigation setting:

o Single Protected Attribute: For ER-based group size techniques, applying ST im-

proved DI and EO when mitigating bias for a single protected attribute.

o Two Protected Attributes: When addressing bias across two protected attributes
simultaneously, ST did not provide further DI improvements for ER-based group
size techniques, though it did enhance EO.

For balanced-size techniques, ST generally did not lead to additional fairness gains
in either the single- or multi-attribute scenarios. The exception was B. WPS SM_ST,
which outperformed its preprocessing counterparts for both DI and EO. Notably, this
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method was more effective when mitigating bias for two protected attributes than for a
single attribute.

Table 4. Ranking of each technique based on fairness metrics

Single protected attribute

Two protected attributes simultaneously

Rank DI EO DI EO
1 ER PS SM ST ER US SM ST ER PS SM ER US SM ST
2 ER PS SM ER US SM ER WPS SM ER US SM
3 ER US SM ST ER PS SM ST ER WPS SM ST ER PS SM ST
4 ER WPS SM ST ER WPS SM ST ER PS SM ST ER WPS SM ST
5 ER US SM B US SM ER US SM Baseline ST
6 ER WPS SM Baseline ST B WPS SM ER PS SM
7 B US SM B PS SM B WPS SM ST B US SM
8 B PS SM Fair SMOTE ER US SM ST Fair SMOTE
9 B WPS SM ST B PS SM ST B US SM B PS SM
10 Fair SMOTE ER PS SM B PS SM B PS SM ST
11 B PS SM ST B_WPS SM_ST Fair SMOTE ER_WPS SM
12 Baseline ST ER WPS SM B PS SM ST B WPS SM ST
13 B WPS SM Baseline Baseline ST B WPS SM
14 Baseline B _WPS SM Baseline Baseline

Table 5 summarizes the ranking of bias-mitigation techniques in terms of predictive
performance metrics. Overall, ER-group-size-based techniques achieved higher accu-
racy than methods that adjusted group sizes to match the largest group, across both
single and multi-attribute bias simulations. Among these, ER US SM demonstrated

Table 5. Ranking of each technique based on performance metrics

Single protected attribute

Two protected attributes simultaneously

Rank ACC BAC ACC BAC
1 Baseline B_US_SM Baseline B_PS_SM_ST
2 ER US_SM Fair SMOTE ER US_SM Fair_SMOTE
3 ER_US_SM_ST B_PS_SM ER US_SM_ST B_PS_SM
4 Baseline_ST B_PS_SM_ST Baseline_ST B_US_SM
5 ER PSSM_ ST B WPS SM ST ER_PS_SM_ST Baseline
6 ER PS SM Baseline ER PS_SM ER US_SM
7 ER_WPS_SM_ST B_WPS_SM ER_WPS_SM_ST ER_US_SM_ST
8 ER_WPS_SM ER_US_SM B_PS_SM_ST B_WPS_SM_ST
9 B_US_SM ER_PS_SM_ST Fair_SMOTE ER PS SM ST
10 B_PS_SM_ST ER PS_SM ER WPS_SM B_WPS_SM
11 B_.WPS_SM_ST  ER_US_SM_ST B_PS_SM ER_PS_SM
12 Fair_SMOTE Baseline_ST B_US_SM Baseline_ST
13 B_PS_SM ER_WPS_SM B_WPS_SM_ST ER_WPS_SM_ST
14 B_WPS_SM ER WPS_SM_ST B_WPS_SM ER WPS_SM
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the best overall accuracy. Incorporating ST into sampling techniques that used directed-
selection further improved accuracy. In contrast, results for balanced accuracy followed
a different pattern. ER-based adjustment methods generally performed worse than
Baseline, whereas techniques that matched group sizes to the largest group typically
showed improvements, except for B WPS SM, which did not yield substantial gains.
Notably, applying ST to directed sampling techniques within the ER group-size cate-
gory enhanced balanced accuracy.

In response to our research question, we find that ST does not consistently enhance
fairness across all sampling techniques without affecting performance. While it reliably
improves fairness on the baseline, its effectiveness after sampling varies, and fairness
gains are often offset by reduced accuracy and balanced accuracy.

6 Conclusion

This study systematically evaluated the impact of ST on preprocessing sampling-based
bias mitigation techniques, examining both fairness and performance. Several im-
portant patterns emerged. First, the number of biased samples removed by ST varies
depending on the dataset, classifier, and preprocessing sampling technique applied be-
forechand. Decision-boundary approaches such as ER PS SM ST and
ER_WPS SM_ST caused substantial data loss, particularly in highly imbalanced da-
tasets like COMPAS. Second, the effectiveness of ST depended on the underlying sam-
pling design, especially how group sizes were defined, and which samples were se-
lected for synthetic data generation. Third, applying ST directly to the baseline consist-
ently improved fairness with respect to both Demographic Parity and Equalized Odds,
though these gains came at the cost of predictive utility, as evidenced by reductions in
both accuracy and balanced accuracy. This underscores a central trade-off between fair-
ness enhancement and predictive utility.

Overall, the results emphasize that ST is not a universal solution but can provide
substantial fairness gains when applied directly to the baseline. Future work should
investigate the drivers of data removal across technique—dataset—classifier settings and
investigate fairness-aware oversampling strategies designed to counteract label bias.
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