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Abstract. Sampling bias can be mitigated through preprocessing techniques such 

as oversampling and undersampling in imbalanced datasets. However, they do 

not address labeling bias, which can reinforce unfair model behavior. To address 

this, we established a structured evaluation framework that applies Situation 

Testing as an additional step after six SMOTE-based sampling techniques. 

Across 10 datasets and multiple classifiers, our findings reveal that the number 

of biased samples removed by Situation Testing depends on the dataset, classi-

fier, and preprocessing sampling technique applied beforehand. Applying Situa-

tion Testing directly to the baseline consistently improved fairness with respect 

to both Demographic Parity and Equalized Odds, albeit with reduced predictive 

performance. In contrast, the impact of Situation Testing after sampling varied 

across strategies, proving to be more effective in group size adjustments based 

on Equalized Representation than in balanced-size techniques. Overall, the re-

sults highlight the trade-off between fairness gains and predictive utility, under-

scoring the need to align mitigation strategies with dataset characteristics and 

fairness objectives. 
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1 Introduction 

Unwanted algorithmic bias refers to unfair and discriminatory outcomes in algorithms 

that result in disadvantages for certain groups of people [1]. This bias can emerge when 

algorithms unintentionally favor or disadvantage particular individuals or communities 

based on race, gender, ethnicity, socioeconomic status, or other characteristics [2]. 

These characteristics, known as protected attributes, are features of individuals who are 

legally and ethically safeguarded from discrimination because they represent groups 

particularly vulnerable to unfair treatment [3, 4]. Protected attributes typically divide a 

population into privileged and unprivileged groups [5]. The privileged group typically 

receives favorable treatment or holds a more advantageous position, while the unprivi-

leged group is subjected to unfair treatment in discriminatory decision-making pro-

cesses [3].  

Bias can arise in Machine Learning (ML) models in different ways [6]. The most 

frequent sources of bias in ML can be grouped into data, algorithm, and user interaction 
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[1]. When biases are present in the underlying training data, the algorithms trained on 

them will inevitably incorporate these biases into their predictions. Data bias might be 

amplified and maintained by algorithms. In addition, even if the data is not biased, al-

gorithms themselves may exhibit biased behavior as a result of specific design decisions 

[7]. The outputs of these biased algorithms are then fed into actual systems and can 

influence user decisions, leading to further bias [1, 8]. Therefore, addressing bias early 

in the model's lifecycle, before it becomes amplified, is critical. One effective approach 

is through preprocessing techniques, which adjust the training data to mitigate bias [9–

11]. Other approaches, such as in-processing techniques, incorporate fairness consider-

ations directly into the training process [12, 13], and post-processing techniques modify 

model predictions to reduce bias [14, 15]. 

This study focuses on preprocessing sampling techniques designed to balance train-

ing data. These techniques, including oversampling and a combination of oversampling 

and undersampling, employ methods such as generating synthetic data points to balance 

underrepresented classes. Once the dataset is balanced, we apply Situation Testing 

(ST), which involves flipping protected attributes in the data and checking whether pre-

dictions change [9]. If predictions differ, the data point is flagged as biased and re-

moved. In this way, ST identifies and eliminates potential labeling bias in the training 

data. Accordingly, this study addresses the following research question: Does the ap-

plication of ST consistently enhance fairness across SMOTE-based preprocessing sam-

pling techniques in ML, without adversely affecting model performance? 

The following section reviews related work on the application of ST. Section 3 out-

lines the methodology, including sampling and ST techniques. In section 4, we present 

the fairness and performance metrics used for evaluation, along with key details about 

the datasets employed in this study. Section 5 provides a detailed analysis of the results, 

and Section 6 offers the concluding remarks. 

2 Related works 

ST is a critical method for detecting discrimination, particularly in legal contexts [16]. 

It involves structured experiments where individuals with similar qualifications but dif-

fering in a protected characteristic (e.g., race, gender) are placed in identical situations 

to detect discriminatory practices. This method has been widely used in European ju-

risdictions to provide empirical evidence of discrimination. In legal proceedings, it 

plays a crucial role in shifting the burden of proof to defendants, requiring them to 

justify their actions with legitimate, non-discriminatory reasons [16]. Beyond its legal 

applications, ST is also an effective tool for raising public awareness and shaping anti-

discrimination policies. Its impact extends to legal professionals, policymakers, and 

researchers working to combat discrimination and promote equality [16]. 

In employment discrimination research, ST has been instrumental in exposing biases 

in hiring decisions [17]. ST involves pairs of individuals, testers, who are matched in 

qualifications and experience but differ in a specific characteristic. These pairs apply 

for the same job openings to observe whether employers treat them differently based 

on the characteristic being tested [17]. Studies conducted in the U.S. have revealed that 

discriminatory behavior, whether conscious or unconscious, was exhibited by 
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approximately 20% to 40% of employers [17]. One well-known study demonstrated 

that résumés with white-sounding names received 50% more callbacks than those with 

black-sounding names, highlighting racial bias in hiring decisions [18]. These findings 

have influenced public policy and civil rights enforcement by providing empirical evi-

dence of workplace discrimination [17].  

Beyond traditional employment settings, ST has been applied in data-driven envi-

ronments to detect bias within datasets. One study introduces a framework that inte-

grates ST with causal inference to uncover individual discrimination by isolating dis-

parities linked to protected attributes [19]. Another study applies ST to software sys-

tems, systematically testing inputs that differ only in protected attributes to evaluate 

whether these attributes unjustly influence decision-making processes [20]. By identi-

fying causal relationships that contribute to biased outcomes, this method effectively 

assesses discrimination in automated decision-making systems [20]. 

In ML, the "Fairway" approach integrates ST into a two-step bias mitigation frame-

work [21]. The first step applies ST to detect biased data points by altering protected 

attributes and observing changes in model predictions. Data points that cause prediction 

shifts are removed from the training dataset to reduce the influence of protected attrib-

utes [21]. The second step employs multi-objective optimization to balance fairness and 

predictive performance during model training. This ensures that bias is mitigated with-

out compromising accuracy, making Fairway a comprehensive tool for fairness im-

provement [21]. Another ML-based approach, Fair_SMOTE, combines oversampling 

techniques with ST to enhance fairness [9]. Fair_SMOTE first rebalances data distri-

butions by ensuring equal representation of protected attributes across both positive and 

negative classes. After this oversampling step, ST is applied to evaluate whether model 

predictions remain consistent when protected attributes are modified [9]. Building on 

this line of work, our study isolates the ST component from Fair_SMOTE and system-

atically applies it across a wider set of state-of-the-art sampling techniques. This allows 

us to disentangle ST’s independent contribution to fairness and performance and eval-

uate its consistency across diverse preprocessing strategies. 

3 Methodology 

We applied ST after preprocessing sampling techniques with the expectation that mod-

els would be trained not only on balanced datasets but also on datasets with reduced 

bias related to protected attributes. This combined approach was hypothesized to im-

prove fairness in predictions while limiting trade-offs in dataset size and predictive per-

formance.  

Each dataset was partitioned into four canonical subgroups defined by the cross-

product of protected attribute and class label: Privileged Positive, Privileged Negative, 

Unprivileged Positive, and Unprivileged Negative. These subgroups served as the basis 

for fairness-aware resampling [22].  

Preprocessing sampling techniques were organized into two categories according to 

their subgroup size adjustment strategy. Equalized Representation (ER) balances the 

ratio of positive to negative samples across both privileged and unprivileged groups, 

consistent with Demographic Parity [22]. This preserves the overall dataset size while 
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equalizing outcome distributions. In contrast, the Balanced-Size (B) approach, inspired 

by Fair_SMOTE [9], adjusts all subgroups to match the size of the largest subgroup, 

ensuring uniform representation [23]. 

Standard Fair_SMOTE [9] operates similarly to Uniform Sampling (US) [22], ran-

domly selecting samples to generate synthetic data [23]. We extend this approach by  

incorporating alternative selection strategies: Preferential Sampling (PS), which prior-

itizes samples close to the decision boundary where fairness vulnerabilities are most 

acute [24], and Weighted Preferential Sampling (WPS), which assigns probabilistic 

weights based on distance to the boundary, giving higher likelihood to fairness-sensi-

tive regions [25]. 

By combining the two group size adjustment strategies (ER vs. B) with the three selec-

tion mechanisms (US, PS, WPS), we obtained six distinct SMOTE-based techniques: 

• ER_US_SM: Equalized Representation with Uniform Sampling + SMOTE 

• ER_PS_SM: Equalized Representation with Preferential Sampling + SMOTE 

• ER_WPS_SM: Equalized Representation with Weighted Preferential Sampling + 

SMOTE 

• B_US_SM: Balanced-Size with Uniform Sampling + SMOTE, aligned with the first 

stage of the Fair_SMOTE methodology [9]. 

• B_PS_SM: Balanced Preferential Sampling + SMOTE  

• B_WPS_SM: Balanced Weighted Preferential Sampling + SMOTE 

The practical steps for integrating ST with preprocessing sampling techniques include: 

1. Preprocessing Sampling Techniques: 

a. Apply preprocessing sampling techniques 

b. Evaluate the impact of these techniques using the selected fairness and perfor-

mance metrics. 

2. Apply ST: 

a. Conduct ST by modifying protected attributes and analyzing how these changes 

affect the model's predictions. 

b. Identify and remove data points whose predictions change solely due to the pro-

tected attribute. 

c. Assess the impact of the combined approach (preprocessing sampling + ST) using 

the same fairness and performance metrics. 

A supervised ML model is trained using the preprocessed sampled dataset. The trained 

model is used to predict outcomes for all data points. For each data point, the value of 

the protected attribute is flipped to its opposite or an equivalent category. The modified 

dataset is passed through the same trained model, and new predictions are obtained. If 

a prediction changes after the flip, it indicates that the model is sensitive to the protected 

attribute, suggesting it has learned biased patterns from the training data. Such biased 

data points are removed, and the model is retrained on the reduced dataset. 

Combining preprocessing sampling techniques with ST yields several new approaches, 

denoted by appending “_ST” to the original method names. In this paper, we refer to 

B_US_SM_ST as Fair_SMOTE, consistent with the terminology used in the original 

study. Moreover, we applied the ST to the Baseline model, meaning no preprocessing 

or sampling techniques were applied before the implementation of ST, referred to as 

Baseline_ST. 
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4 Evaluation  

We evaluated the effectiveness of these methods by examining the bias toward a single 

protected attribute and multiple (two) protected attributes simultaneously. The first im-

plementation focused on applying preprocessing techniques to mitigate bias toward a 

single protected attribute. In the second implementation, the dataset was partitioned by 

the combination of two protected attributes and the class label, resulting in eight sub-

groups rather than four. Addressing bias in this manner is crucial for ensuring fairness 

in ML models [26], as focusing on a single attribute may overlook complex interde-

pendencies between different attributes, potentially leading to unintended discrimina-

tory outcomes [27]. For example, mitigating bias solely based on non-white individu-

als, considering race as the first protected attribute, without addressing gender as a sec-

ond protected attribute (e.g., female), may result in a model that even increases biases 

against women. Therefore, adopting comprehensive strategies that address all protected 

attributes simultaneously are essential to ensure equitable treatment across diverse 

groups [28]. By considering two protected attributes simultaneously, our techniques 

enable a more comprehensive bias mitigation strategy that accounts for intersectional 

biases.  

We conducted experiments using five well-known ML algorithms, namely Logistic 

Regression (LR), Decision Tree (DT), Gradient Boosting (GB), Random Forest (RF), 

and Support Vector Classification (SVC).  For each dataset and protected attribute com-

bination, we repeated the experiments 50 times with randomized sampling. We then 

applied the Scott-Knott [29] statistical test to compare the techniques.  

4.1 Metrics 

Fairness in algorithmic decision-making can be assessed through various metrics; 

broadly, the two main groups are Demographic Parity (DP) and Equalized Odds (EQO) 

fairness metrics [30]. While both aim to promote fairness, they measure different crite-

ria. DP focuses on balancing outcomes across groups, whereas EQO ensures fairness 

in predictive performance by considering error rates [31]. This distinction reflects trade-

offs between equal treatment and equitable outcomes, making the choice of metric con-

text dependent. 

DP fairness metrics assess whether different demographic groups receive similar 

outcomes, ensuring that no group is disproportionately advantaged or disadvantaged 

[32]. Statistical Parity (SP), a key metric under Demographic Parity, ensures that the 

probability of a positive outcome is equal across groups, aiming to prevent allocation 

harms where resources or opportunities may be unevenly distributed [33]. Disparate 

Impact (DI), on the other hand, measures the ratio of favorable outcomes between a 

protected group and the overall population [31]. 

EQO fairness metrics focus on reducing disparities in error rates between groups by 

ensuring fair treatment in terms of both true positives and false negatives [31]. In this 

criteria, Average Odds Difference (AOD) quantifies the disparity in error rates by av-

eraging differences in false positive rates and false negative rates between groups. 

Equal Opportunity (EO) ensures that true positive rates are equal across demographic 

groups, thereby preventing bias in granting favorable outcomes [33]. By utilizing both 
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DP and EQO metrics, a more comprehensive assessment of bias mitigation techniques 

can be achieved. The trade-off between fairness and predictive performance remains a 

critical consideration, as increasing fairness often results in a decline in model accuracy, 

a phenomenon extensively discussed in the algorithmic fairness literature [34]. 

Accuracy (Acc) is the most common performance measure which calculates the 

number of correct predictions divided by the number of total predictions [35]. However, 

in dealing with an imbalanced dataset, using accuracy alone may not be sufficient. In-

stead, it is suggested to use Balanced Accuracy (BAC), which calculates the average of 

sensitivity and specificity [36]. Balanced accuracy provides a more reliable evaluation 

metric for imbalanced datasets by considering both the true positive rate and true neg-

ative rate [36]. Notably, accuracy and balanced accuracy will yield the same value if 

the dataset is balanced.  

4.2 Datasets 

There are numerous well-established datasets in the fairness literature that facilitate 

comparisons with prior work on bias mitigation methods [37]. In this study, we utilize 

ten widely recognized tabular datasets, summarized in Table 1. This selection enables 

external validation and supports a rigorous assessment of the proposed techniques. 

These datasets are characterized by substantial class imbalance, as well as disparities 

in the distribution of protected attributes, both of which significantly impact model per-

formance and the trade-offs associated with bias mitigation. Notably, five of these da-

tasets contain two protected attributes, providing a unique opportunity to analyze the 

effects of mitigating bias across multiple protected attributes simultaneously.  

Table 1.  List of datasets 

Dataset Size Class Label 
Positive 

Class% 

Protected 

Attributes 

Privi-

leged % 

Adult Income  (48842,14) Income 24 
sex 

race 

67 

85 

German Credit  (1000,20) Credit 70 
sex 

age 

69 

85 

Bank Marketing  (45211,16) Term deposit 47 age 14 

Default of Credit 

Card Clients  
(30000,23) 

Default pay-

ment 
22 sex 40 

Titanic  (891,12) Survived 38 sex 35 

Heart Disease  (303,13) Heart disease 46 
sex 

age 

68 

64 

OULAD  (32593,12) Final result 68 sex 46 

Law School  (20798,12) Pass exam 95 race 84 

Student Performance  (649,33) Score>=10 54 
sex 

age 

59 

94 

COMPAS  (7214,52) 
Two-year-re-

cid 
55 

sex 

race 

19 

34 

5 Results and Analysis 

We evaluated five classifiers, using the same model in each case for both performance 

evaluation and ST-based bias detection. We examined the median percentage of 

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://analyse.kmi.open.ac.uk/open_dataset
https://github.com/tailequy/fairness_dataset/tree/main/Law_school
https://archive.ics.uci.edu/dataset/320/student+performance
https://github.com/propublica/compas-analysis
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samples removed from the training data after applying ST. For single protected attrib-

utes, techniques that focused on decision-boundary instances, such as ER_PS_SM, 

ER_WPS_SM, and B_WPS_SM, identified a larger proportion of samples as biased. 

Consequently, applying ST to these techniques resulted in substantial data reduction. 

Notably, ER_PS_SM_ST and ER_WPS_SM_ST led to severe data loss, with up to 50% 

of the training samples removed in the highly imbalanced COMPAS dataset.  

It is important to emphasize that the reported percentage reductions for ER-based 

Group size techniques are calculated relative to the original dataset size, as these pre-

processing sampling techniques do not alter the size of the entire training set. In con-

trast, for balanced techniques, the percentage reductions were computed based on the 

dataset size after oversampling. Consistent with previous research [7], Fair_SMOTE 

showed a maximum reduction of 13%, across different classifiers. Table 2 shows the 

similar pattern when ST was applied after preprocessing bias mitigation techniques 

aimed at reducing bias toward two protected attributes simultaneously. 

ER_PS_SM_ST, ER_WPS_SM_ST, and B_WPS_SM_ST techniques, resulted in a 

significant reduction of training samples, particularly when applied to the COMPAS 

dataset. In contrast, techniques like Fair_SMOTE, and B_PS_SM_ST led to a more 

moderate reduction in the dataset, with a maximum of 12% of the training data removed 

across different datasets. 

Table 2.  Percentage of removed samples after applying ST following various sampling tech-

niques to mitigate bias toward two protected attributes simultaneously with LR 

Dataset Adult COMPAS German Heart  Student 

Technique  race sex race sex age sex age sex age sex 

WRT 

Original 

Size 

Baseline_ST 12 12 22 22 24 24 12 12 10 10 

ER_US_SM_ST 2 2 20 20 0 0 6 6 9 9 

ER_PS_SM_ST 19 19 32 32 1 1 15 15 23 23 

ER_WPS_SM_ST 27 27 47 47 1 1 20 20 27 27 

WRT 
Over-

sampled 

Size 

Fair_SMOTE 2 2 11 11 3 3 5 5 7 7 

B_PS_SM_ST 2 2 12 12 2 2 5 5 9 9 

B_WPS_SM_ST 20 20 19 19 4 4 10 10 7 7 

To comprehensively assess the performance of the techniques, we evaluated them 

on 10 datasets with varying characteristics. Presenting results for all datasets in a single 

table would require extensive space and may complicate the visual interpretation of the 

findings. To mitigate this issue, we adopted a methodology inspired by Chakraborty et 

al. [7, 37] using the Scott-Knott test to compare result distributions across all datasets. 

This statistical test was applied to all methods to identify performance groupings based 

on statistically significant differences. The Scott-Knott procedure ranks the methods, 

with higher ranks indicating superior performance. If two distributions are statistically 

indistinguishable, they are assigned to the same rank. The terms Wins, Losses, and Ties 

are defined as follows: a Win occurs when one technique achieves a higher rank for a 

particular metric compared to another; a Loss denotes a lower rank; and a Tie indicates 

no significant difference in performance between the two techniques. By employing 

this approach, we were able to succinctly summarize performance across multiple 
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datasets and conduct a robust comparison between the new and established methods, as 

suggested in previous studies [7, 37]. 

Table 3 presents the Scott-Knott statistical test results comparing the Baseline model 

with its counterpart after applying ST, referred to as Baseline_ST. WLR (Win/Loss 

Ratio) represents the proportion of wins to losses for each technique across all evaluation 

metrics. TTR (Tie/Total Ratio) indicates the ratio of tied outcomes to the total number 

of comparisons made. The results demonstrate that incorporating ST alone significantly 

improves fairness in terms of both DP and EQO fairness metrics. However, this im-

provement comes with a trade-off, as applying ST leads to a reduction in overall model 

performance. This suggests that while ST effectively enhances fairness, it may also 

impact the predictive capability of the model, highlighting the balance between fairness 

and accuracy in bias mitigation strategies.  

Table 3.  Baseline_ST VS Baseline Scott-Knott Result. 

 1 protected attribute at a time 2 protected attributes at a time 

Metric Wins Ties Losses WLR TTR  Wins Ties Losses WLR  TTR 

DI 36 36 3 12 0.48 29 20 1 29 0.4 

SP 41 30 4 10.25 0.4 31 14 5 6.2 0.28 

AOD 40 31 4 10 0.41 31 14 5 6.2 0.28 

EO 37 34 4 9.25 0.45 30 16 4 7.5 0.32 

Acc 4 51 20 0.2 0.68 0 26 24 0 0.52 

BAC 2 38 35 0.06 0.51 0 20 30 0 0.4 

Finally, according to the Scott Knott statistical test, we ranked all techniques, deter-

mining which techniques performed best for each evaluation metric. Tables 4 and 5 

summarize the performance of various bias mitigation techniques concerning fairness 

and performance metrics, ranking each method based on its effectiveness across all 

evaluated criteria. According to Table 4, all techniques improved fairness in terms of 

DP fairness metrics when compared to the Baseline. Surprisingly, applying ST to the 

original training set (Baseline_ST) achieved better performance than B_WPS_SM. 

Among sampling approaches, techniques that incorporated ER-based group size adjust-

ments consistently outperformed both Fair_SMOTE and balanced-size methods with 

respect to the DP fairness metric. Moreover, sampling methods targeting decision-

boundary instances (ER_PS_SM and ER_WPS_SM) are more effective in improving 

DI than random oversampling approaches such as ER_US_SM. In contrast, for the EO 

fairness metric, this trend is reversed, with random oversampling methods outperform-

ing decision-boundary-based techniques. The effectiveness of ST, however, varied de-

pending on the bias-mitigation setting: 

• Single Protected Attribute: For ER-based group size techniques, applying ST im-

proved DI and EO when mitigating bias for a single protected attribute. 

• Two Protected Attributes: When addressing bias across two protected attributes 

simultaneously, ST did not provide further DI improvements for ER-based group 

size techniques, though it did enhance EO. 

For balanced-size techniques, ST generally did not lead to additional fairness gains 

in either the single- or multi-attribute scenarios. The exception was B_WPS_SM_ST, 

which outperformed its preprocessing counterparts for both DI and EO. Notably, this 
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method was more effective when mitigating bias for two protected attributes than for a 

single attribute. 

Table 4.  Ranking of each technique based on fairness metrics  

 Single protected attribute Two protected attributes simultaneously 

Rank DI EO DI EO 

1 ER_PS_SM_ST ER_US_SM_ST ER_PS_SM ER_US_SM_ST 

2 ER_PS_SM ER_US_SM ER_WPS_SM ER_US_SM 

3 ER_US_SM_ST ER_PS_SM_ST ER_WPS_SM_ST ER_PS_SM_ST 

4 ER_WPS_SM_ST ER_WPS_SM_ST ER_PS_SM_ST ER_WPS_SM_ST 

5 ER_US_SM B_US_SM ER_US_SM Baseline_ST 

6 ER_WPS_SM Baseline_ST B_WPS_SM ER_PS_SM 

7 B_US_SM B_PS_SM B_WPS_SM_ST B_US_SM 

8 B_PS_SM Fair_SMOTE ER_US_SM_ST Fair_SMOTE 

9 B_WPS_SM_ST B_PS_SM_ST B_US_SM B_PS_SM 

10 Fair_SMOTE ER_PS_SM B_PS_SM B_PS_SM_ST 

11 B_PS_SM_ST B_WPS_SM_ST Fair_SMOTE ER_WPS_SM 

12 Baseline_ST ER_WPS_SM B_PS_SM_ST B_WPS_SM_ST 

13 B_WPS_SM Baseline Baseline_ST B_WPS_SM 

14 Baseline B_WPS_SM Baseline Baseline 

Table 5 summarizes the ranking of bias-mitigation techniques in terms of predictive 

performance metrics. Overall, ER-group-size-based techniques achieved higher accu-

racy than methods that adjusted group sizes to match the largest group, across both 

single and multi-attribute bias simulations. Among these, ER_US_SM demonstrated  

Table 5.  Ranking of each technique based on performance metrics 

 Single protected attribute Two protected attributes simultaneously 

Rank ACC BAC ACC BAC 

1 Baseline B_US_SM Baseline B_PS_SM_ST 

2 ER_US_SM Fair_SMOTE ER_US_SM  Fair_SMOTE  

3 ER_US_SM_ST B_PS_SM ER_US_SM_ST B_PS_SM 

4 Baseline_ST B_PS_SM_ST Baseline_ST B_US_SM 

5 ER_PS_SM_ST B_WPS_SM_ST ER_PS_ SM_ST Baseline 

6 ER_PS_SM Baseline ER_PS_SM ER_US_SM 

7 ER_WPS_SM_ST B_WPS_SM ER_WPS_ SM_ST  ER_US_SM_ST 

8 ER_WPS_SM ER_US_SM B_PS_SM_ST B_WPS_SM_ST 

9 B_US_SM ER_PS_SM_ST Fair_SMOTE ER_PS_SM_ST 

10 B_PS_SM_ST ER_PS_SM ER_WPS_SM  B_WPS_SM 

11 B_WPS_SM_ST ER_US_SM_ST B_PS_SM ER_PS_SM 

12 Fair_SMOTE Baseline_ST B_US_SM Baseline_ST 

13 B_PS_SM ER_WPS_SM B_WPS_SM_ST ER_WPS_SM_ST 

14 B_WPS_SM ER_WPS_SM_ST B_WPS_SM ER_WPS_SM 
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the best overall accuracy. Incorporating ST into sampling techniques that used directed-

selection further improved accuracy. In contrast, results for balanced accuracy followed 

a different pattern. ER-based adjustment methods generally performed worse than 

Baseline, whereas techniques that matched group sizes to the largest group typically 

showed improvements, except for B_WPS_SM, which did not yield substantial gains. 

Notably, applying ST to directed sampling techniques within the ER group-size cate-

gory enhanced balanced accuracy. 

In response to our research question, we find that ST does not consistently enhance 

fairness across all sampling techniques without affecting performance. While it reliably  

improves fairness on the baseline, its effectiveness after sampling varies, and fairness 

gains are often offset by reduced accuracy and balanced accuracy. 

6 Conclusion 

This study systematically evaluated the impact of ST on preprocessing sampling-based 

bias mitigation techniques, examining both fairness and performance. Several im-

portant patterns emerged. First, the number of biased samples removed by ST varies 

depending on the dataset, classifier, and preprocessing sampling technique applied be-

forehand. Decision-boundary approaches such as ER_PS_SM_ST and 

ER_WPS_SM_ST caused substantial data loss, particularly in highly imbalanced da-

tasets like COMPAS. Second, the effectiveness of ST depended on the underlying sam-

pling design, especially how group sizes were defined, and which samples were se-

lected for synthetic data generation. Third, applying ST directly to the baseline consist-

ently improved fairness with respect to both Demographic Parity and Equalized Odds, 

though these gains came at the cost of predictive utility, as evidenced by reductions in 

both accuracy and balanced accuracy. This underscores a central trade-off between fair-

ness enhancement and predictive utility.  

Overall, the results emphasize that ST is not a universal solution but can provide 

substantial fairness gains when applied directly to the baseline. Future work should 

investigate the drivers of data removal across technique–dataset–classifier settings and 

investigate fairness-aware oversampling strategies designed to counteract label bias. 
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